Jump to content United States-English
HP.com Home Products and Services Support and Drivers Solutions How to Buy
» Contact HP

HP Labs home

Technical reports

» 

HP Labs

» Research
» News and events
» Technical reports
» About HP Labs
» Careers @ HP Labs
» People
» Worldwide sites
» Downloads
Content starts here

 
Click here for full text: PDF

Scaling Up Text Classification for Large File Systems

Forman, George; Rajaram, Shyamsundar
HP Laboratories

HPL-2008-29R1

Keyword(s): machine learning, text classification, document categorization, information retrieval, enterprise scalability, forensic search.

Abstract: We combine the speed and scalability of information retrieval with the generally superior classification accuracy offered by machine learning, yielding a two- phase text classifier that can scale to very large document corpora. We investigate the effect of different methods of formulating the query from the training set, as well as varying the query size. In empirical tests on the Reuters RCV1 corpus of 806,000 documents, we find runtime was easily reduced by a factor of 27x, with a somewhat surprising gain in F- measure compared with traditional text classification.

8 Pages

Additional Publication Information: Submitted to 14th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD'08), August 2008.

External Posting Date: June 21, 2008 [Fulltext]. Approved for External Publication
Internal Posting Date: June 21, 2008 [Fulltext]

Back to Index

»Technical Reports

» 2009
» 2008
» 2007
» 2006
» 2005
» 2004
» 2003
» 2002
» 2001
» 2000
» 1990 - 1999

Heritage Technical Reports

» Compaq & DEC Technical Reports
» Tandem Technical Reports
Printable version
Privacy statement Using this site means you accept its terms Feedback to HP Labs
© 2009 Hewlett-Packard Development Company, L.P.