

Scaling Up Text Classification for Large File Systems

George Forman, Shyamsundar Rajaram
HP Laboratories
HPL-2008-29R1

Keyword(s):
machine learning, classification, document categorization, information retrieval,
enterprise scalability, forensic search

Abstract:
We combine the speed and scalability of information retrieval with the generally superior
classification accuracy offered by machine learning, yielding a two-phase text classifier that can
scale to very large document corpora. We investigate the effect of different methods of
formulating the query from the training set, as well as varying the query size. In empirical tests
on the Reuters RCV1 corpus of 806,000 documents, we find runtime was easily reduced by a
factor of 27x, with a somewhat surprising gain in F-measure compared with traditional text
classification.

External Posting Date: June 21, 2008 [Fulltext] Approved for External Publication

Internal Posting Date: June 21, 2008 [Fulltext]

To be presented and published in the 14th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD’08), August 2008

© Copyright 2008 the 14th ACM SIGKDD International Conference

Scaling Up Text Classification for Large File Systems
George Forman

Hewlett-Packard Labs
Palo Alto, CA, USA

ghforman@hpl.hp.com

Shyamsundar Rajaram
Hewlett-Packard Labs

Palo Alto, CA, USA

shyam.rajaram@hp.com

ABSTRACT
We combine the speed and scalability of information retrieval
with the generally superior classification accuracy offered by
machine learning, yielding a two-phase text classifier that can
scale to very large document corpora. We investigate the effect
of different methods of formulating the query from the training
set, as well as varying the query size. In empirical tests on the
Reuters RCV1 corpus of 806,000 documents, we find runtime was
easily reduced by a factor of 27x, with a somewhat surprising
gain in F-measure compared with traditional text classification.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology— classifier
design and evaluation, feature evaluation and selection;
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—query formulation, selection process.

General Terms
Algorithms, Performance, Experimentation.

Keywords
machine learning, text classification, document categorization,
information retrieval, enterprise scalability, forensic search.

1. INTRODUCTION
Consider using a trained document classifier to search for
‘relevant’ files from one’s personal file system—typically
containing hundreds of thousands of files—or from within an
enterprise containing billions of files spread across distributed
servers worldwide. For such scale, it would be nearly infeasible
to pump every single file through the document classifier. Yet
such scalability could become essential for future Information
Lifecycle Management (ILM) applications seeking to verify, for
example, that corporate retention and file protection policies are
being followed for certain classes of confidential documents.
Likewise, this scalability could be demanded by future e-
discovery or forensic searches to find all files related to a legal
matter.
Note that in such applications, the objective is both precision and
recall. This is in contrast to most information retrieval settings
where only high precision in the top few search results is needed.

Information retrieval methods excel in scalability, as evidenced
by their success in web search engines. However, text
classification via machine learning is generally called for if one
needs to balance precision and recall, assuming a training set is
available. Note that for large scale corpora, the time to train the
classifier is dwarfed by the cumulative classification time. The
computational workload of classification is linear in the number
of documents to be classified: each document is fetched from
disk, its text features extracted, and then the classifier makes its
class prediction. Even were thousands of CPU cores cheaply
available to classify documents in parallel, it would place
tremendous bandwidth demands on the disks and the I/O paths.
In this paper we improve the scalability of text classification by
leveraging a full-text index over the corpus of documents. (The
availability of such indices is becoming more common in personal
and corporate file systems.) The basic concept is simple: we first
use the index to quickly extract a small subset of documents that
are potentially relevant, and then pass only these to the traditional
text classifier. The workload of such a classifier is proportional to
the size of the query hit list, yielding excellent speedup in the
common case where only a small fraction of the documents are
sought. This enables the system to scale up to very large
document corpora. Our overall purpose is to optimize the design
choices appropriate for querying one or more file systems, each
with its own static full-text index.
Our research objective is to minimize runtime while maximizing
F-measure—the harmonic average of precision and recall. The
research questions include how to generate an effective query
from the training set, how large a query is ideal, and how great is
the savings in time vs. the tradeoff in accuracy? Although we
expected a tradeoff, it turns out that the two-phase process can be
both much faster and more accurate than a single text
classification pass over all the documents.
For reproducibility, our experiments use publically available data
and software. We use 140 classes of the large Reuters RCV1
corpus [9] indexed by Apache Lucene software v2.2.0 [6], and
classified via the Weka v3.4 linear Support Vector Machine
(SVM) model [13]. We take care that the operating system begins
each timing experiment with a cold file cache, so that we
accurately measure the performance of the whole system. A
typical machine learning experiment conducts many runs in
succession, but for this sort of information retrieval experiment, if
one does not clear the cache, the pertinent data becomes cached in
RAM, hiding the substantial cost of slow disk seeks.
Section 2 describes the problem scope, and Section 3 describes a
variety of design choices around our solution. Sections 4 and 5
summarize a suite of experiments we performed. Section 7
discusses related work, and Section 8 concludes and offers
perspective on future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08...$5.00.

2. THE PROBLEM SETTING
For the applications we are interested in, the volume of
classification workload dwarfs the initial training time. This is
especially so in view of recent breakthroughs in training state-of-
the-art linear Support Vector Machine (SVM) models for text
classification in near linear time, e.g. [7]. The rise of multi-core
parallelism can aid with training time, but has little impact on the
classification process, which is fundamentally I/O bound in
fetching files for classification.
We expect that the full-text indices have been previously
constructed for other purposes, with no special attention to the
classification labels or tasks for which we leverage them.
Our research scope is limited to binary text classification tasks
where the positive class of interest is usually rare, e.g. <1% of the
population. Such high class imbalance is often a difficult
operating region for machine learning. In particular, if the
positive training examples are too rare, the learning process may
select a decision threshold that classifies all items as negative,
optimizing its training accuracy under uncertainty. Common
techniques used in such situations are to over-sample the positives
in training or to under-sample the negatives [11].
At some point after indexing, a training set is provided with
labeled positive and negative training examples from which to
learn a classifier to select all relevant documents from the entire
collection. In practical settings, it is often not feasible to get a
training set that represents a true random sample of the population
of all files. For one thing, since positives are rare, asking a
domain expert to provide binary labels to a stream of random
samples is not an effective way to obtain a sufficiently large set of
positive examples. If 1% of a random sample is positive, a
domain expert would have to consider 10,000 randomly selected
training cases to build up a set of 100 positive examples—many
fewer would likely under-represent the diversity of positives. In
practice, positive training cases are sometimes gathered by
various ad hoc keyword searches, or have already been gathered
in a directory by someone with an unknown, organic method.
Considering this, the percentage of positives may be over-
represented in the training set, but this is tantamount to under-
sampling training negatives anyway [11].

3. TWO-PHASE CLASSIFICATION
Our approach consists of two phases: The first phase executes a
query against a full-text index to determine a list of filenames that
are likely positive. The second phase retrieves the file contents
for each specified file, extracts its feature vector from the text
content, and then classifies it. We list a number of design choices
for each phase.

Phase 1: First, what is the space of query terms that may be used?
Most text classification research focuses on the universal bag-of-
words representation, although it has been shown repeatedly that
including phrases can help substantially. In phase 1, we may only
query for terms that have been previously indexed. Even so, most
indexing packages provide the ability—at some additional
overhead—to query for phrases. This gives us the flexibility to
form our query from words only, or also to include phrases—
adjacent pairs of words. We experimented with both options.

Training data

Feature Extraction
(BNS/IG)

(Number of Features)
(Words/Words+Phrases)

Learning Classifiers and
cross validate

(Linear SVM)
(Weighted/Non-Weighted Instances)

Query Formulation
(Number of query terms Q)

(Boolean/Weighted)

Picking Final Classifier
(Number of classifier features C)

Query the
Index

Fetch docs
from Disk

Apply Final
Classifier

Testing

Figure 1. Block diagram of training and test phase where the
design choices involved in each task are listed.
Next, given the large number of terms in the training set, how
shall we select the best terms? And how many terms Q should we
include in the query? We vary Q widely (1–16K), and evaluate
term goodness via Bi-Normal Separation (BNS, our default) or
via Information Gain (IG, only where stated)—two feature
selection methods that have been shown to perform well [5]. We
ignore terms that occur fewer than three times in the training set.
The computation for BNS is simply |F-1(tpr) - F-1(fpr)|, where F-1
represents the inverse cumulative Normal function from statistical
tables, tpr represents the “true positive rate” of the feature, i.e.
what percentage of positives the feature occurs in, and fpr
represents the “false positive rate” of the feature—what
percentage of negatives the feature occurs in. The computation
for IG is better known and more involved:
 IG = H(pos,neg) – [P(term) H(tp,fp) + (1–P(term)) H(fn,tn)]
where

pos = number of positive training cases (minority),
neg = number of negative training cases,
tp = number of positive training cases containing term,
fp = number of negative training cases containing term,
fn = pos – tp,
tn = neg – fp,
P(term) = the prevalence of the term (tp+fp)/(pos+neg),
entropy H(x,y) = –nln(x/(x+y)) – nln(y/(x+y)), and
nln(x) = x log2 x.

Next, we have a design choice for the form of the query. We
experiment with the two logical choices: (1) a straightforward
Boolean query, namely Lucene’s default disjunction1 of the
chosen terms, or (2) a weighted query, where each term is
associated with a real number. The latter amounts to a linear
classifier, especially if we allow the weights to be negative and
only select documents that end up having a positive score. This
opens the issue of how to set the weights. To limit our scope, we
assume—not unreasonably—that a linear SVM provides state-of-
the-art classification accuracy [7]. Thus, to obtain the weights for
Q terms (whether words only, or words and phrases), we filter the
training set so that it contains only the Q best terms according to
BNS or IG, train a linear SVM classifier Weka v3.4 SMO using

1 Although Google, Microsoft and Yahoo! Search each default to

a conjunction of terms, such a query focuses on precision to the
exclusion of recall and would be unworkable for our phase 1.

default parameters, and then extract its learned weight for each
term. This will naturally include negative weights, e.g. for
features whose presence is correlated with the negative class.
Our last option in phase 1 is whether to just focus on providing
the best F-measure, or to try to bias toward higher recall and
expect the phase 2 classifier to restore the precision to optimize
our objective, F-measure.

Phase 2: We have the same choices with respect to the feature
set to provide for training the final classifier. That is, we can
optionally include phrases, select via BNS or IG, and can control
the number of classifier features C used to train the final
classifier. Except where explicitly stated otherwise, our typical
phase 2 classifier used C=16,384 features selected via BNS from
among the set of words and two-word phrases; these choices were
selected after some preliminary experimentation. Because in
phase 2 we have the complete file contents in memory, we can
cheaply afford to use many features as far as it improves F-
measure. More generally, phase 2 is not restricted to indexed
features, so it could easily include other feature generators for
improved accuracy, such as n-grams or domain-specific features.
We leave this option for future work.
A final consideration is what training set to use for the phase 2
classifier. It will only encounter the files that were classified
positive by phase 1, correctly or incorrectly. It seems proper then
to train the phase 2 classifier only on labeled training cases that
the phase 1 classifier finds positive. But it turns out this is
impractical. There is a limited supply of training data, and the
phase 1 classifier mostly excludes the negative training examples.
Hence, the phase 2 training set would have most of the original
positives, but would only sometimes contain a handful of
negatives. It would be impractical in our setting to perform phase
1, and then ask the user to label a new large set of negatives from
the query hits. Hence, we are left with the simple option to train
phase 2 on the full training set.

4. EXPERIMENT METHODOLOGY
For a publically available corpus that includes ground truth
classification labels, we use Reuters RCV1 [9], which has
806,791 news articles in XML formatted text files. We removed
from all these files the metadata tags that reveal their true class
labels, and saved this information in an isolated file. The average
file size is 4 KB, which closely matches typical file systems
historically [3]. We indexed all the Reuters files using the default
Lucene text analyzer, which does not give any special
consideration to the XML structure of the text. The indexing took
just over two hours, including index optimization. Because
indexing is slow, we did not consider rebuilding the index for
each run to exclude the files used in the training set of that run.
Hence, the training positives are among the query hits found in
each run. (In a real deployment, it may well be the case that the
training examples are already included in the index of the local
PC; but this is less likely for a federated search of many
distributed file systems throughout an enterprise.) Despite
training examples being included among the query hits, we
explicitly remove them before phase 2 and whenever we compute
F-measure performance, in accordance with accepted practice for
measuring performance in machine learning research. Recall that
F-measure is the harmonic average of precision and recall:
2*p*r/(p+r). It drops rapidly if either precision or recall is poor.

Except where stated otherwise, each data point we show
represents results averaged over a large set of separate
classification tasks, i.e. macro-averaged. We selected all Reuters
classes that have a prevalence <= 5% positive overall and have
over 1000 examples (500 for training and over 500 others to find).
This leads to 140 classes in all, ranging from 1001 to 37,410
examples, 6854 on average (0.1% to 4.6% positive, averaging
0.8% positive). The classes include Reuters geography/country
codes, industry codes, and topic codes.
In each training set, we provide 500 positive examples and 5000
negative examples, selected at random just once from the ground
truth labels. We want to be sure to provide enough training data
to learn a decent classifier, so that we might avoid potentially
useless ‘garbage-in, garbage-out’ results. That said, for many
classes, decent discrimination could have been learned with fewer
examples. Exploring these tradeoffs is outside the scope of this
paper. The query-time benefits of our methods are largely
independent of the size of the training set.
Note that each training set has 9% positives, whereas the actual
prevalence is typically ~1%. (We briefly tried training with
49,500 negatives to match 1% positive, but the Weka software
crashed when it exhausted the 2 GB of available heap memory.)
Instead of having a huge set of negative examples, we set the
Weka instance weights such that the total weight of the positives
amounts to 1% (alternately, some SVM implementations let one
adjust the relative misclassification costs of positives vs.
negatives). We do this for all phase 1 classifiers we train.
Assuming the phase 1 classifier achieves decent precision, the
phase 2 classifier should expect a much higher rate of positives.
Thus, there is no need for weighting the training data for the
phase 2 classifier. We confirmed this experimentally.
As mentioned in the introduction, it is important that we clear the
file cache between tests, otherwise realistic disk delays are
completely hidden. The ability for a user with root privileges to
drop the file cache has recently been added to the Linux 2.6.16
kernel via “echo 3 >/proc/sys/vm/drop_caches”.
(Even so, this novel capability is still buggy as of 2.6.18-8.el5 and
causes CPU soft lockups occasionally, requiring power-cycle
reboots.) Specifically, we drop the cache before each query. We
verified that without dropping the cache, we get wildly erroneous
timings.

Hardware: HP Proliant DL360 G3 server, with dual 2.8GHz
Xeon CPUs and 4GB RAM. It has a locally attached disk: a
36.4 GB, 10K RPM Ultra320 SCSI disk with an HP SmartArray
5i controller. We actually used 20 such servers independently to
complete the many experiments involved; there was no
communication or interference between them.

5. EMPIRICAL RESULTS
Our first set of results present the main take-home message of this
paper: that two-phase classification greatly improves the speed as
well as the final accuracy, compared to the baseline of simply
testing every file with the (phase 2) classifier. Refer to Figure 2,
which shows the overall F-measure on the y-axis, and the total
elapsed time on the x-axis. The elapsed time includes the time to
run the query, fetch the file contents for each query hit (excluding
training cases), and extract its text features. Each file is
effectively classified with no additional time at the completion of
its text feature extraction.

On the far right, we see the baseline method took ~66 minutes on
average, and achieved 0.545 F-measure averaged over all 140
classes. The baseline method consists of the phase 2 classifier
(16,384 words and phrases selected via BNS) applied to every file
except the 5500 training files. Since no phase 1 is involved, the
baseline classifier includes reweighting the training positives,
which brings up its precision and F-measure substantially.
To the left in the graph, we see that Boolean queries of words
alone (or words and phrases together) can greatly cut down on the
number of documents to process in phase 2. The different points
climbing up each of these curves correspond to Q=1, 2, 4, 8, 16,
32, or 64 query terms. With enough query terms, 100% recall is
achieved on the positive class, and the phase 2 classifier obtains
the same baseline F-measure, but 2–3 times faster. As Q
increases, we see a rapid increase in the elapsed time: Once we
have achieved 100% recall, additional query terms only serve to
increase the number of false positives that need to be discarded by
the phase 2 classifier. Lastly we note that because phrases are
more specific, recalling fewer documents each, we see that more
terms are required to achieve a given level of recall compared to
the words only curve.
The pair of curves furthest left indicates the greatly improved
overall performance of using a weighted query for phase 1. The
different points represent Q=16, 64, 256, 1024, or 4096 terms, as
selected by BNS, and the weights are determined from a trained
SVM. Despite the extremely large number of query terms to
process, in most cases we see much improved speed vs. the
Boolean query—the weights give the phase 1 classifier much
better control to exclude negatives while selecting positives. This
increased precision cuts down on the irrelevant files that must be
retrieved for phase 2. Furthermore, this more accurate, weighted
phase 1 classifier excludes some negatives that otherwise get past
the phase 2 classifier. Because it eliminates some complementary
negatives, the effect is that the two-phase classifier obtains higher
precision overall, improving the final F-measure average for all
140 classes. By using Q=1024 word & phrase terms in the
weighted query, the process completes in just 2.4 minutes on
average—27x faster than the baseline—with an F-measure 0.597
averaged over all 140 classes.
Comparing these two curves, we see that including phrases
consistently improves performance at any given number of query
terms. This effect is known, although most text classification
research is done with a simple bag-of-words only.

We made sure to extend Q far enough to verify that having more
terms is not always better. This is consistent with feature selection
literature, which usually shows a benefit to limiting the number of
terms, e.g. [5]. But note that the weighted classifier can benefit
from many more terms than the Boolean classifier (Q=1024 vs.
~32). Having such a large number of query terms slows down the
query, but yields a speedup overall because phase 1 is more
discriminating in which files to fetch for phase 2. As a result,
large Q values lead to great savings in overall retrieval time. The
best performing weighted query setting is 3x faster than the best
performing Boolean query setting while achieving 10% better F-
measure (6 points).

5.1 Timing Breakdown
Next, we break down the elapsed time of the x-axis of Figure 2
into its constituent parts: the time taken (1) to query the index, (2)
to fetch the files that satisfy the query, and (3) to analyze the file
contents for specific text features and thereby obtain its final
classification. These times correspond to the three segments in
each column of Figure 3. Boolean queries achieve nearly 100%
recall with few query terms, and hence the query time is too small
to see with respect to the total time. Boolean queries produce a
large number of false positives, which leads to very high fetching
and analyzing time. The fetching time averaged 12 ms per file,
and the analysis time averaged 3 ms per file. Given that we end
up fetching and analyzing thousands of files, it is relatively cheap
to increase Q: an additional 7 ms per word on average, or 29 ms if
we allow phrases. This relatively low incremental cost of adding
terms opens an opportunity for weighted queries. They can be
much more accurate, but they require significantly more query
terms for good performance. The right half of Figure 3 shows
weighted queries up to Q=1024 terms, where we begin to see the
query time take a visually perceptible amount of the overall time.
And because of their superior accuracy to Boolean queries, they
waste much less time fetching and analyzing false positives.
Figure 4 further illustrates this effect: For weighted queries there
is a sharp increase in phase 1 recall rate with very large Q, and yet
with very little increase in false positives. By contrast, Boolean
queries obtain high recall at a terrible cost in false positives, i.e.
bad precision.

 45

 50

 55

 60

 0 10 20 30 40 50 60 70

F
-m

ea
su

re

total time (minutes)

baseline
(test all)

weighted query

boolean query

words
phrases + words

Figure 2. F-measure vs. elapsed time for various methods.

Figure 3. Time taken by different methods for varying query
sizes. The time columns have been segmented into querying,
fetching and analyzing time. Overall F-measure for each
setting is shown atop each bar.

A natural question that arises at this point is whether the complete
classification task can be done more efficiently in a single phase 1
pass. That is, given the trained linear SVM text classifier to be
applied to the entire corpus, extract its weights and execute it only
on the search engine, with no follow-up phase to further test the
files. This basic idea has been tried [1], but not compared to the
baseline, nor to two-phase classification. Note that the phase 2
classifier does not pay a time penalty for having a large number of
features: the file fetch time and the feature extraction time depend
on the disk performance and the file size, not on the number of
terms to be extracted for classification. In our experiments, we
found that 16K word and phrase terms was superior for the phase
2 classifier. But executing a query with such a large number of
terms would pay a significant time penalty. In fact, we conducted
this experiment and found it took 450 seconds, averaged over the
140 classes. This is 3x slower than using our two-phase system
with Q=1024 in the first phase and 16K terms in the second.
With such a large Q, the query time greatly exceeds the time it
would take to fetch the few likely positive files and classify them.
The two-phase classifier performs a balancing act in terms of the
querying time vs. fetching and analyzing time.
But besides time, there is a further disadvantage to running a
single, high-dimensional classification on the search engine:
recall the baseline classifier did not achieve as good F-measure as
the two-phase system. We discuss this effect next.

5.2 Cascaded Classifiers
Cascaded classifiers have been used extensively in face detection
from images where there is a huge computational cost involved in
determining for every window in an image whether it contains a
face or not [12][10]. The computational load is overcome by
cascading several classifiers, where the complexity of classifiers
increases as we go further down the cascade. The first few
classifiers of the cascade, which are very cheap, help in removing
most of the “easy” negatives, and the more accurate, complex
classifiers at the end of the cascade polish up with excellent
discrimination, yielding good overall performance. Our approach
in this work is similar in spirit, where we additionally use the
index to quicken the early classification phase. Figure 5 illustrates
the impact of our two-phase classification scheme in terms of F-
measure, precision and recall. The x-axis varies the number of
word+phase terms used, while the number of features in the final
classifier is 16K, which yielded excellent performance on
average. Two-phase classification has the consistent effect of

improving precision and lowering recall. This is natural, since a
case will be classified negative if either classifier rejects it. The
improvement in precision is generally more than the decrease in
recall, which is reflected in the overall increase in F-measure.
This can be attributed to the low correlation of classification
errors of the two classifiers in the cascade which has been well
studied in [8]. The average F-measure is highest at Q=1024 query
terms. Note that at the far right point, where Q matches the
number of terms in the final classifier, that the two-phase
classifier has no effect. In this case, the two phases are
computing the same function in different ways, and the final
decisions match that of a traditional, one phase classifier. The
benefit of the two phases only happens when the two classifiers
have a somewhat different perspective on the training data. We
have run additional experiments (not shown, but we could if the
reviewers request) that vary the number of features in phase 1 and
phase 2 independently, and they find a consistent plummet in F-
measure whenever the number of features matches.
Figure 6 illustrates the two-phase classifier effect in terms of
average F-measure over different groups of Reuters categories.
The plots indicate a consistent F-measure improvement across all
categories by using the two-phase classifier. Figure 6 also
illustrates the F-measure variation based on the query term count
Q. For the country based categories, good F-measure performance
is obtained with just 64 query terms. On the other hand, the
industry and the economy categories require a lot more query
terms, around 1024 to achieve good F-measure. The impact of the
two-phase classifier is also more pronounced in these difficult
cases.

5.3 Policies for Choosing Parameters
All the experimental results shown so far present the F-measure
averaged over the 140 classes (or some subset) for different
parameter settings (Q and C). In a real-world setting, we are
interested in picking parameters that maximize the F-measure for
the single class at hand. We adopt a dynamic scheme using the
cross-validation performance measures obtained during the
learning phase. The cross-validation results of performance
measures such as F-measure, precision and recall can be used to
devise policies for identifying good parameter settings for each
phase separately. We limit Q to be a power of 2 <= 1024 terms, in
order to avoid inordinate query time. Table 1 shows the F-
measure obtained for some of the top performing policies. The

 50

 60

 70

 80

 90

10K 25K 50,000 100,000

R
ec

al
l (

tp
 r

at
e)

false positives

Q=64 Q=32

Q=16,384

weighted +phrases
weighted words
boolean +phrases
boolean words
baseline

Figure 4. Recall vs. false positives for phase 1.

 40

 50

 60

 70

 80

 90

1K 4096 8192 16K

Q query terms

Recall

F-measure

Precision

phase 1 alone both phases
Figure 5. Effect of two-phase classification on each
performance measure.

results indicate that the best performing cross-validation based
method is very similar to an oracle having access to the F-
measure test set averaged over all 140 classes. Oracle I has
access to the F-measures on test data for each class and hence,
picks a parameter setting that maximizes the F-measure for each
class. Clearly, this represents the highest achievable F-measure in
this setting. Oracle II has access to the F-measure averaged over
all classes for all possible settings.

5.4 Varying Design Choices
In Section 3 we described a palette of design choices for the phase
1 and phase 2 classifiers. Here we briefly present their effect.

Table 1: Comparison of F-measure obtained through cross-
validation based policies to choose parameters compared with
two different oracle methods.

Policy for
Q

Policy for
C

F-measure

Oracle I Oracle I 62.6

Oracle II Oracle II 60.0

Maximize
F-measure

Maximize
Precision

60.1

Maximize
Recall

Maximize
Precision

59.5

Maximize
F-measure

Maximize
F-measure

60.0

Weighting Instances to Approximate the Test Distribution:
A practical problem that arises in machine learning is one of
changing class distributions from training to test phase, although

it is typically avoided in most machine learning research [4]. As
mentioned earlier, this problem arises in our problem setting as
well. The class distribution of the test data of the first phase
classifier is different from its training set. We adopt the approach
of weighting instances appropriately to overcome the difference.
While training the first phase classifiers, we weight the instances
in such a way that the total weight of the positive training set is
1%—a rough estimate of the prevalence we expect for typical
searches. (It would give an unfair advantage to determine the
exact prevalence of positives in the test set and then set the weight
exactly. Yet, this might be estimated via a quantifier [4].) The
positive effect of such a weighting on the first phase F-measure is
shown in Figure 7. On deeper inspection, the reweighting is
consistently improving the precision of the classifier, naturally.

Phase 1 Performance:
Figure 8 shows the F-measure of the first phase alone, as we vary
the cross-product of the design choices. For clarity of
presentation , we hold Q=1024 fixed—a reasonably good choice
for all. In this visualization, it is clear that (a) BNS consistently
outperformed IG, consistent with past studies [5], (b) weighting
the training positives to 1% significantly outperformed using the
more balanced training set provided (right vs. left), and (c) the
addition of phrases to the available terms improves performance.
A paired t-test indicates very strong statistical significance, even
between the two closest points (BNS vs. IG with phrases and
without 1% weighting).
In addition to these differences, we also analyzed the effect on
query time (not depicted). We found that IG queries consistently
took longer than BNS queries, e.g. 2x slower. This is because IG
tends to select terms that are more common and therefore have
longer posting lists to process: 2.9x longer on average. The
preference of BNS for rarer features is known [5], but here we
have exposed a side benefit: it selects terms with shorter posting
lists that are speedier information retrieval queries (as the research
of [2] sought to do with IG-hybrid methods that somewhat
preferred terms with shorter posting lists).

Phase 2 Performance:
These results so far only indicate the F-measure of phase 1. One
might reasonably wonder whether these differences are mirrored
by the final F-measure after both phases. Figure 9 presents the
final F-measure as we vary the cross-product of the design
choices (holding fixed Q=1024 query terms and C=16K classifier
terms). Each design choice is kept consistent between phase 1

Figure 6. Average F-measure for different Reuters categories

Figure 7. Weighting instances improves phase 1 F-measure.

and phase 2. (One could conceive of the cross product of phase 1
and phase 2 design choices separately, but such high dimensional
results are expensive to compute and difficult to present.) The
leading design choice (BNS +phrases and 1% weighted) continues
to dominate, but the picture has changed somewhat. All the F-
measures have improved vs. the F-measures of phase 1 in Figure
8. The superiority of each design choice for phase 1 is now less
pronounced, but each is still present.
One design choice we discussed early on was to focus the phase 1
query on high recall, and expect the phase 2 classifier to increase
the precision to the point that we obtain optimal F-measure. We
experimented with such a strategy by leaving off the 1%
weighting of the positive training examples; the 9% prevalence of
positives in the training set therefore make the phase 1 classifier
less conservative, and it yields higher recall. But then we found
the phase 2 classifier was not able to bring the precision as high.
We found that the highest average F-measure obtained was
57.9%, which is inferior compared to the F-measure obtained in
the weighted case.

6. DISCUSSION
We have shown in this work that usage of phrases improves the F-
measure of the classifier over a simple bag of words
representation. Clearly, there are other features—such as n-grams,
file metadata, file-format-sensitive features (e.g. stripping XML
before indexing), and domain-specific features—which could
potentially aid in improving classification performance and can be

added to the index. On the other hand, there are cases where the
file needs to be explicitly fetched. Consider a case, where
someone is searching for articles about XML on their disk, or info
about a merger with XML Inc. company. The index, being made
with a generic bag of words parser that does not first strip XML,
would have XML tags in every single Reuters article. Clearly, a
query working on the index would do badly in terms of precision
and this scenario furthers the case for having a second phase
classifier which operates on file-format specific features, e.g.
parse the XML and make features from the non-tag text.
Typical search engines today limit the number of query terms
allowed to 20 or 30 maximum. Viewed from their perspective,
they want to limit the resource consumption of customer queries.
But as businesses begin to get greater value from their (central or
someday, federated) search infrastructure via text classification
queries, there will be business justification to raise term limits
into the hundreds or thousands. This leads to a qualitatively
different operating region for search engines, and we may see a
substantial increase in computer resources used for text
classification searches.

7. RELATED WORK
There is a single prior work in the literature that is highly
relevant. Anagnostopoulos, Broder, and Punera [1] considered a
classifier executed via a weighted search engine query, which
they refer to as Weak AND (WAND). This is equivalent to our
weighted queries of phase 1 alone. Their concern was with using
a search engine for classification, with no phase 2 follow-up to
improve accuracy. Our experiments in section 5.1 found that
operating entirely on the index took 3x longer than if we included
a separate phase 2. Even with respect to phase 1 alone, there are a
number of dimensions in which our work adds further
contributions: They only consider a bag-of-words model, where
we also measure the benefit of phrases, which search engines
easily facilitate. They only consider up to Q=100 terms, where we
extend to Q=16,384. They did not consider BNS, which we found
superior to IG. Their results are reported in terms of area under
the ROC curve, which is mainly insensitive to improvements in F-
measure when positives are very rare, e.g. 1%. And significantly,
they did not run their experiments with a cold cache, so their
reported results do not take disk performance into account.
Additionally, we address the class distribution difference between
the training set and test set using weighting of training data
instances and we show significant improvement in F-measure
performance. They consider the novel angle of biasing the feature
selection according to the length of the term posting lists, in order
to reduce processing time.
There is an older paper by Broder et al [2] that provides
techniques for speeding up a traditional information retrieval
query. Their experiments showed substantial speedup for queries
averaging 2.46 to 7 terms, suffering little loss in precision.
Coincidentally, they also use two phases, but the similarity is
superficial. Their first phase retrieves the posting lists of the
more important terms (as determined by their method), and the
second phase retrieves all the remaining terms, but tracking scores
only for documents that scored well in the first phase. Note that
the work does not address classification, but their technique could
be leveraged to speed up our phase 1 query on the index with
Q≈1024. Our current software simply scores every document that
is mentioned by the posting lists.

 40

 45

 50

 55

 60

words +phrases words +phrases

F
-m

ea
su

re

Phase 1 choices

weighted to 1%

BNS

IG

Figure 8. Phase 1 F-measure vs. design choices.

 40

 45

 50

 55

 60

words +phrases words +phrases

F
-m

ea
su

re

Phase 1 choice = Phase 2 choice

weighted to 1%

BNS

IG

Figure 9. Final F-measure vs. design choices.

8. CONCLUSION AND FUTURE WORK
Our goal was to make it text classification scalable enough to scan
distributed enterprise file systems for relevant documents. Ideally
such an application would also include infrastructure to efficiently
federate the search over many full-text indices throughout a
corporation. In a real-world deployment, the size of the datasets
would be much larger than the publicly available Reuters RCV1
collection, which occupies only 3.5 GB of disk space, and whose
Lucene index occupies only ~500 MB of disk space. The index is
small enough to fit entirely in RAM, although by dropping the file
cache, we ensured that we were measuring realistic disk delays.
For real-world usage, the index would be much larger and the
reverse posting lists would be longer. While this suggests longer
query times and perhaps a desire to reduce the query size Q to
save time, keep in mind that with a larger, distributed
infrastructure also comes much longer latency and lower
bandwidth to fetch the actual files for phase 2. Hence, if
anything, we anticipate the time and workload savings of our two-
phase technique to be proportionately more important for larger
environments. The World Wide Web is an extreme thereof—a
query to a fast, central index server such as Google can efficiently
provide a list of relevant documents, but actually fetching them
for a second phase test will be very slow. Moreover, on a large
scale it is likely to suffer from web servers being unavailable and
intermittently poor network performance. In view of this, text
classification on the web may best be served by extensive
computation with the reverse indices and perhaps Google’s large
file cache. In the end, it may still be important to fetch and check
the final list of hits, since URLs often become stale when web
pages are deleted. Also, a web page may have changed
substantially since its indexing, and no longer match the matching
criterion.
An interesting direction of future research would be to devise
schemes for using an index in an active learning setting. In the
real-world where training data is so scarce, active learning plays a
crucial part in acquiring labeled data through an oracle who has
time constraints. In such a time constrained setting, it is crucial
that the processing to identify useful training examples for
labeling has to be done quickly. The index can be exploited to
quicken the processing step, which normally involves identifying
the most informative instance(s) to be labeled towards improving
the current classifier.
In this paper, we excluded the training time from interest, for we
are targeting settings where it is dwarfed by the volume to
classify. But with active learning, this training time goes into the
user’s interactive loop. The rising multi-core revolution can
decimate this training time, as well as the time to analyze file
content for text features. However, it does not address the
primary bottleneck for this application: disk seek time involved in
executing queries and fetching files. In fact, the relative speed
between CPU and disk is becoming larger, so the techniques
described in this paper should continue to be relevant.
Considering the enormous interest in ranking problems, a related
research direction would be to analyze the impact of two-phase
processing through an index in the context of ranking. In our
experiments, we noticed a consistent improvement in precision in
the top 20 from first phase to second phase. It would be
interesting to analyze the performance of two-phase ranking
schemes on rigorous ranking accuracy measures.

9. ACKNOWLEDGMENTS
Our thanks to Hernan Laffitte and Eric Anderson for their
invaluable support in setting up racks of machines with the
updated Linux kernel.

10. REFERENCES
[1] Anagnostopoulos, A., Broder, A. Z., and Punera, K. 2006.

Effective and efficient classification on a search-engine
model. In Proc. of the 15th ACM International Conference
on Information and Knowledge Management (Arlington,
VA, Nov. 6-11, 2006). CIKM '06. ACM, 208-217.

[2] Broder, A. Z., Carmel, D., Herscovici, M., Soffer, A., and
Zien, J. 2003. Efficient query evaluation using a two-level
retrieval process. In Proc. of the Twelfth Int’l Conference on
information and Knowledge Management (New Orleans, LA,
Nov. 03 - 08, 2003). CIKM '03. ACM, 426-434.

[3] Douceur, J. R. and Bolosky, W. J. 1999. A large-scale study
of file-system contents. SIGMETRICS Perform. Eval. Rev.
27, 1 (Jun. 1999), 59-70.

[4] Forman, G. 2006. Quantifying trends accurately despite
classifier error and class imbalance. In Proc. of the 12th
ACM Int’l Conf. on Knowledge Discovery and Data Mining
(Philadelphia, Aug. 20-23, 2006). KDD'06. ACM, 157-166.

[5] Forman, G. 2003. An extensive empirical study of feature
selection metrics for text classification. J. Machine Learning
Research. 3 (Mar. 2003), 1289-1305.

[6] Hatcher, E. and Gospodnetic, O. 2004 Lucene in Action (In
Action Series). Manning Publications Co.

[7] Joachims, T. 2006. Training linear SVMs in linear time. In
Proceedings of the 12th ACM SIGKDD Int’l Conference on
Knowledge Discovery and Data Mining (Philadelphia, PA,
Aug. 20-23, 2006). KDD '06. ACM, 217-226.

[8] Kittler, J., Hatef, M., Duin, R. P. W., and Matas, J. 1998. On
combining classifiers. IEEE Trans. On Pattern Analysis and
Machine Intelligence, vol.20, no.3, Mar. 1998.

[9] Lewis, D. D.; Yang, Y.; Rose, T.; and Li, F. 2004. RCV1: a
new benchmark collection for text categorization research.
J. Machine Learning Research, 5:361-397.

[10] Luo, H. 2005. Optimization design of cascaded classifiers.
In Proc. of the 2005 IEEE Computer Society Conf. on
Computer Vision and Pattern Recognition (CVPR'05) –
Vol. 1 (June 20-26, 2005). IEEE Computer Society, 480-485.

[11] Van Hulse, J., Khoshgoftaar, T. M., and Napolitano, A.
2007. Experimental perspectives on learning from
imbalanced data. In Proceedings of the 24th International
Conference on Machine Learning (Corvalis, Oregon, June 20
- 24, 2007). ICML '07, vol. 227. ACM, 935-942.

[12] Viola, P. and Jones, M. J. 2002. Robust real-time object
detection. International Journal of Computer Vision.

[13] Witten, I. and Frank, E. 2005. Data Mining: Practical
machine learning tools and techniques, 2nd Edition, Morgan
Kaufmann, San Francisco.

