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ABSTRACT 
We combine the speed and scalability of information retrieval 
with the generally superior classification accuracy offered by 
machine learning, yielding a two-phase text classifier that can 
scale to very large document corpora.  We investigate the effect 
of different methods of formulating the query from the training 
set, as well as varying the query size.  In empirical tests on the 
Reuters RCV1 corpus of 806,000 documents, we find runtime was 
easily reduced by a factor of 27x, with a somewhat surprising 
gain in F-measure compared with traditional text classification. 

Categories and Subject Descriptors 
I.5.2 [Pattern Recognition]: Design Methodology— classifier 
design and evaluation, feature evaluation and selection;  
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval—query formulation, selection process. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
machine learning, text classification, document categorization, 
information retrieval, enterprise scalability, forensic search. 

1. INTRODUCTION 
Consider using a trained document classifier to search for 
‘relevant’ files from one’s personal file system—typically 
containing hundreds of thousands of files—or from within an 
enterprise containing billions of files spread across distributed 
servers worldwide.  For such scale, it would be nearly infeasible 
to pump every single file through the document classifier.  Yet 
such scalability could become essential for future Information 
Lifecycle Management (ILM) applications seeking to verify, for 
example, that corporate retention and file protection policies are 
being followed for certain classes of confidential documents.  
Likewise, this scalability could be demanded by future e-
discovery or forensic searches to find all files related to a legal 
matter.  
Note that in such applications, the objective is both precision and 
recall. This is in contrast to most information retrieval settings 
where only high precision in the top few search results is needed. 

Information retrieval methods excel in scalability, as evidenced 
by their success in web search engines.  However, text 
classification via machine learning is generally called for if one 
needs to balance precision and recall, assuming a training set is 
available.  Note that for large scale corpora, the time to train the 
classifier is dwarfed by the cumulative classification time. The 
computational workload of classification is linear in the number 
of documents to be classified: each document is fetched from 
disk, its text features extracted, and then the classifier makes its 
class prediction.  Even were thousands of CPU cores cheaply 
available to classify documents in parallel, it would place 
tremendous bandwidth demands on the disks and the I/O paths. 
In this paper we improve the scalability of text classification by 
leveraging a full-text index over the corpus of documents. (The 
availability of such indices is becoming more common in personal 
and corporate file systems.)  The basic concept is simple: we first 
use the index to quickly extract a small subset of documents that 
are potentially relevant, and then pass only these to the traditional 
text classifier. The workload of such a classifier is proportional to 
the size of the query hit list, yielding excellent speedup in the 
common case where only a small fraction of the documents are 
sought.  This enables the system to scale up to very large 
document corpora.  Our overall purpose is to optimize the design 
choices appropriate for querying one or more file systems, each 
with its own static full-text index. 
Our research objective is to minimize runtime while maximizing 
F-measure—the harmonic average of precision and recall.  The 
research questions include how to generate an effective query 
from the training set, how large a query is ideal, and how great is 
the savings in time vs. the tradeoff in accuracy?  Although we 
expected a tradeoff, it turns out that the two-phase process can be 
both much faster and more accurate than a single text 
classification pass over all the documents. 
For reproducibility, our experiments use publically available data 
and software. We use 140 classes of the large Reuters RCV1 
corpus [9] indexed by Apache Lucene software v2.2.0 [6], and 
classified via the Weka v3.4 linear Support Vector Machine 
(SVM) model [13]. We take care that the operating system begins 
each timing experiment with a cold file cache, so that we 
accurately measure the performance of the whole system. A 
typical machine learning experiment conducts many runs in 
succession, but for this sort of information retrieval experiment, if 
one does not clear the cache, the pertinent data becomes cached in 
RAM, hiding the substantial cost of slow disk seeks. 
Section 2 describes the problem scope, and Section 3 describes a 
variety of design choices around our solution. Sections 4 and 5 
summarize a suite of experiments we performed. Section 7 
discusses related work, and Section 8 concludes and offers 
perspective on future work. 
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2. THE PROBLEM SETTING 
For the applications we are interested in, the volume of 
classification workload dwarfs the initial training time. This is 
especially so in view of recent breakthroughs in training state-of-
the-art linear Support Vector Machine (SVM) models for text 
classification in near linear time, e.g. [7].  The rise of multi-core 
parallelism can aid with training time, but has little impact on the 
classification process, which is fundamentally I/O bound in 
fetching files for classification.   
We expect that the full-text indices have been previously 
constructed for other purposes, with no special attention to the 
classification labels or tasks for which we leverage them. 
Our research scope is limited to binary text classification tasks 
where the positive class of interest is usually rare, e.g. <1% of the 
population. Such high class imbalance is often a difficult 
operating region for machine learning.  In particular, if the 
positive training examples are too rare, the learning process may 
select a decision threshold that classifies all items as negative, 
optimizing its training accuracy under uncertainty. Common 
techniques used in such situations are to over-sample the positives 
in training or to under-sample the negatives [11].   
At some point after indexing, a training set is provided with 
labeled positive and negative training examples from which to 
learn a classifier to select all relevant documents from the entire 
collection.  In practical settings, it is often not feasible to get a 
training set that represents a true random sample of the population 
of all files.  For one thing, since positives are rare, asking a 
domain expert to provide binary labels to a stream of random 
samples is not an effective way to obtain a sufficiently large set of 
positive examples.  If 1% of a random sample is positive, a 
domain expert would have to consider 10,000 randomly selected 
training cases to build up a set of 100 positive examples—many 
fewer would likely under-represent the diversity of positives.  In 
practice, positive training cases are sometimes gathered by 
various ad hoc keyword searches, or have already been gathered 
in a directory by someone with an unknown, organic method. 
Considering this, the percentage of positives may be over-
represented in the training set, but this is tantamount to under-
sampling training negatives anyway [11]. 

3. TWO-PHASE CLASSIFICATION 
Our approach consists of two phases:  The first phase executes a 
query against a full-text index to determine a list of filenames that 
are likely positive.  The second phase retrieves the file contents 
for each specified file, extracts its feature vector from the text 
content, and then classifies it.  We list a number of design choices 
for each phase. 

Phase 1: First, what is the space of query terms that may be used?  
Most text classification research focuses on the universal bag-of-
words representation, although it has been shown repeatedly that 
including phrases can help substantially. In phase 1, we may only 
query for terms that have been previously indexed. Even so, most 
indexing packages provide the ability—at some additional 
overhead—to query for phrases. This gives us the flexibility to 
form our query from words only, or also to include phrases—
adjacent pairs of words.  We experimented with both options. 
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Figure 1. Block diagram of training and test phase where the 
design choices involved in each task are listed. 
Next, given the large number of terms in the training set, how 
shall we select the best terms?  And how many terms Q should we 
include in the query?  We vary Q widely (1–16K), and evaluate 
term goodness via Bi-Normal Separation (BNS, our default) or 
via Information Gain (IG, only where stated)—two feature 
selection methods that have been shown to perform well [5].  We 
ignore terms that occur fewer than three times in the training set. 
The computation for BNS is simply |F-1(tpr) - F-1(fpr)|, where F-1 
represents the inverse cumulative Normal function from statistical 
tables, tpr represents the “true positive rate” of the feature, i.e. 
what percentage of positives the feature occurs in, and fpr 
represents the “false positive rate” of the feature—what 
percentage of negatives the feature occurs in.  The computation 
for IG is better known and more involved: 
        IG = H(pos,neg) – [P(term) H(tp,fp) + (1–P(term)) H(fn,tn)] 
where  

pos = number of positive training cases (minority), 
neg = number of negative training cases, 
tp = number of positive training cases containing term, 
fp = number of negative training cases containing term,  
fn = pos – tp, 
tn = neg – fp, 
P(term) = the prevalence of the term (tp+fp)/(pos+neg), 
entropy H(x,y) = –nln(x/(x+y)) – nln(y/(x+y)), and 
nln(x) = x log2 x. 

Next, we have a design choice for the form of the query.  We 
experiment with the two logical choices: (1) a straightforward 
Boolean query, namely Lucene’s default disjunction1 of the 
chosen terms, or (2) a weighted query, where each term is 
associated with a real number.  The latter amounts to a linear 
classifier, especially if we allow the weights to be negative and 
only select documents that end up having a positive score.   This 
opens the issue of how to set the weights.  To limit our scope, we 
assume—not unreasonably—that a linear SVM provides state-of-
the-art classification accuracy [7].  Thus, to obtain the weights for 
Q terms (whether words only, or words and phrases), we filter the 
training set so that it contains only the Q best terms according to 
BNS or IG, train a linear SVM classifier Weka v3.4 SMO using 
                                                                 
1 Although Google, Microsoft and Yahoo! Search each default to 

a conjunction of terms, such a query focuses on precision to the 
exclusion of recall and would be unworkable for our phase 1. 



default parameters, and then extract its learned weight for each 
term.  This will naturally include negative weights, e.g. for 
features whose presence is correlated with the negative class.  
Our last option in phase 1 is whether to just focus on providing 
the best F-measure, or to try to bias toward higher recall and 
expect the phase 2 classifier to restore the precision to optimize 
our objective, F-measure. 

Phase 2:  We have the same choices with respect to the feature 
set to provide for training the final classifier.  That is, we can 
optionally include phrases, select via BNS or IG, and can control 
the number of classifier features C used to train the final 
classifier. Except where explicitly stated otherwise, our typical 
phase 2 classifier used C=16,384 features selected via BNS from 
among the set of words and two-word phrases; these choices were 
selected after some preliminary experimentation. Because in 
phase 2 we have the complete file contents in memory, we can 
cheaply afford to use many features as far as it improves F-
measure. More generally, phase 2 is not restricted to indexed 
features, so it could easily include other feature generators for 
improved accuracy, such as n-grams or domain-specific features. 
We leave this option for future work. 
A final consideration is what training set to use for the phase 2 
classifier. It will only encounter the files that were classified 
positive by phase 1, correctly or incorrectly.   It seems proper then 
to train the phase 2 classifier only on labeled training cases that 
the phase 1 classifier finds positive. But it turns out this is 
impractical. There is a limited supply of training data, and the 
phase 1 classifier mostly excludes the negative training examples.  
Hence, the phase 2 training set would have most of the original 
positives, but would only sometimes contain a handful of 
negatives.  It would be impractical in our setting to perform phase 
1, and then ask the user to label a new large set of negatives from 
the query hits.  Hence, we are left with the simple option to train 
phase 2 on the full training set. 

4. EXPERIMENT METHODOLOGY 
For a publically available corpus that includes ground truth 
classification labels, we use Reuters RCV1 [9], which has 
806,791 news articles in XML formatted text files.  We removed 
from all these files the metadata tags that reveal their true class 
labels, and saved this information in an isolated file.  The average 
file size is 4 KB, which closely matches typical file systems 
historically [3].  We indexed all the Reuters files using the default 
Lucene text analyzer, which does not give any special 
consideration to the XML structure of the text.  The indexing took 
just over two hours, including index optimization. Because 
indexing is slow, we did not consider rebuilding the index for 
each run to exclude the files used in the training set of that run.  
Hence, the training positives are among the query hits found in 
each run. (In a real deployment, it may well be the case that the 
training examples are already included in the index of the local 
PC; but this is less likely for a federated search of many 
distributed file systems throughout an enterprise.)  Despite 
training examples being included among the query hits, we 
explicitly remove them before phase 2 and whenever we compute 
F-measure performance, in accordance with accepted practice for 
measuring performance in machine learning research.  Recall that 
F-measure is the harmonic average of precision and recall: 
2*p*r/(p+r). It drops rapidly if either precision or recall is poor. 

Except where stated otherwise, each data point we show 
represents results averaged over a large set of separate 
classification tasks, i.e. macro-averaged. We selected all Reuters 
classes that have a prevalence <= 5% positive overall and have 
over 1000 examples (500 for training and over 500 others to find).  
This leads to 140 classes in all, ranging from 1001 to 37,410 
examples, 6854 on average (0.1% to 4.6% positive, averaging 
0.8% positive).  The classes include Reuters geography/country 
codes, industry codes, and topic codes. 
In each training set, we provide 500 positive examples and 5000 
negative examples, selected at random just once from the ground 
truth labels.  We want to be sure to provide enough training data 
to learn a decent classifier, so that we might avoid potentially 
useless ‘garbage-in, garbage-out’ results. That said, for many 
classes, decent discrimination could have been learned with fewer 
examples. Exploring these tradeoffs is outside the scope of this 
paper.  The query-time benefits of our methods are largely 
independent of the size of the training set. 
Note that each training set has 9% positives, whereas the actual 
prevalence is typically ~1%.  (We briefly tried training with 
49,500 negatives to match 1% positive, but the Weka software 
crashed when it exhausted the 2 GB of available heap memory.)  
Instead of having a huge set of negative examples, we set the 
Weka instance weights such that the total weight of the positives 
amounts to 1% (alternately, some SVM implementations let one 
adjust the relative misclassification costs of positives vs. 
negatives).  We do this for all phase 1 classifiers we train. 
Assuming the phase 1 classifier achieves decent precision, the 
phase 2 classifier should expect a much higher rate of positives. 
Thus, there is no need for weighting the training data for the 
phase 2 classifier. We confirmed this experimentally. 
As mentioned in the introduction, it is important that we clear the 
file cache between tests, otherwise realistic disk delays are 
completely hidden. The ability for a user with root privileges to 
drop the file cache has recently been added to the Linux 2.6.16 
kernel via “echo 3 >/proc/sys/vm/drop_caches”. 
(Even so, this novel capability is still buggy as of 2.6.18-8.el5 and 
causes CPU soft lockups occasionally, requiring power-cycle 
reboots.)  Specifically, we drop the cache before each query. We 
verified that without dropping the cache, we get wildly erroneous 
timings.  

Hardware:  HP Proliant DL360 G3 server, with dual 2.8GHz 
Xeon CPUs and 4GB RAM. It has a locally attached disk: a 
36.4 GB, 10K RPM Ultra320 SCSI disk with an HP SmartArray 
5i controller.  We actually used 20 such servers independently to 
complete the many experiments involved; there was no 
communication or interference between them. 

5. EMPIRICAL RESULTS 
Our first set of results present the main take-home message of this 
paper: that two-phase classification greatly improves the speed as 
well as the final accuracy, compared to the baseline of simply 
testing every file with the (phase 2) classifier.  Refer to Figure 2, 
which shows the overall F-measure on the y-axis, and the total 
elapsed time on the x-axis. The elapsed time includes the time to 
run the query, fetch the file contents for each query hit (excluding 
training cases), and extract its text features. Each file is 
effectively classified with no additional time at the completion of 
its text feature extraction. 



On the far right, we see the baseline method took ~66 minutes on 
average, and achieved 0.545 F-measure averaged over all 140 
classes. The baseline method consists of the phase 2 classifier 
(16,384 words and phrases selected via BNS) applied to every file 
except the 5500 training files.  Since no phase 1 is involved, the 
baseline classifier includes reweighting the training positives, 
which brings up its precision and F-measure substantially. 
To the left in the graph, we see that Boolean queries of words 
alone (or words and phrases together) can greatly cut down on the 
number of documents to process in phase 2.  The different points 
climbing up each of these curves correspond to Q=1, 2, 4, 8, 16, 
32, or 64 query terms.  With enough query terms, 100% recall is 
achieved on the positive class, and the phase 2 classifier obtains 
the same baseline F-measure, but 2–3 times faster.  As Q 
increases, we see a rapid increase in the elapsed time:  Once we 
have achieved 100% recall, additional query terms only serve to 
increase the number of false positives that need to be discarded by 
the phase 2 classifier. Lastly we note that because phrases are 
more specific, recalling fewer documents each, we see that more 
terms are required to achieve a given level of recall compared to 
the words only curve. 
The pair of curves furthest left indicates the greatly improved 
overall performance of using a weighted query for phase 1.  The 
different points represent Q=16, 64, 256, 1024, or 4096 terms, as 
selected by BNS, and the weights are determined from a trained 
SVM.  Despite the extremely large number of query terms to 
process, in most cases we see much improved speed vs. the 
Boolean query—the weights give the phase 1 classifier much 
better control to exclude negatives while selecting positives. This 
increased precision cuts down on the irrelevant files that must be 
retrieved for phase 2. Furthermore, this more accurate, weighted 
phase 1 classifier excludes some negatives that otherwise get past 
the phase 2 classifier. Because it eliminates some complementary 
negatives, the effect is that the two-phase classifier obtains higher 
precision overall, improving the final F-measure average for all 
140 classes.  By using Q=1024 word & phrase terms in the 
weighted query, the process completes in just 2.4 minutes on 
average—27x faster than the baseline—with an F-measure 0.597 
averaged over all 140 classes. 
Comparing these two curves, we see that including phrases 
consistently improves performance at any given number of query 
terms. This effect is known, although most text classification 
research is done with a simple bag-of-words only.  

We made sure to extend Q far enough to verify that having more 
terms is not always better. This is consistent with feature selection 
literature, which usually shows a benefit to limiting the number of 
terms, e.g. [5].  But note that the weighted classifier can benefit 
from many more terms than the Boolean classifier (Q=1024 vs. 
~32).  Having such a large number of query terms slows down the 
query, but yields a speedup overall because phase 1 is more 
discriminating in which files to fetch for phase 2.  As a result, 
large Q values lead to great savings in overall retrieval time. The 
best performing weighted query setting is 3x faster than the best 
performing Boolean query setting while achieving 10% better F-
measure (6 points). 

5.1 Timing Breakdown 
Next, we break down the elapsed time of the x-axis of Figure 2 
into its constituent parts: the time taken (1) to query the index, (2) 
to fetch the files that satisfy the query, and (3) to analyze the file 
contents for specific text features and thereby obtain its final 
classification. These times correspond to the three segments in 
each column of Figure 3. Boolean queries achieve nearly 100% 
recall with few query terms, and hence the query time is too small 
to see with respect to the total time. Boolean queries produce a 
large number of false positives, which leads to very high fetching 
and analyzing time. The fetching time averaged 12 ms per file, 
and the analysis time averaged 3 ms per file. Given that we end 
up fetching and analyzing thousands of files, it is relatively cheap 
to increase Q: an additional 7 ms per word on average, or 29 ms if 
we allow phrases.  This relatively low incremental cost of adding 
terms opens an opportunity for weighted queries. They can be 
much more accurate, but they require significantly more query 
terms for good performance. The right half of Figure 3 shows 
weighted queries up to Q=1024 terms, where we begin to see the 
query time take a visually perceptible amount of the overall time.  
And because of their superior accuracy to Boolean queries, they 
waste much less time fetching and analyzing false positives. 
Figure 4 further illustrates this effect: For weighted queries there 
is a sharp increase in phase 1 recall rate with very large Q, and yet 
with very little increase in false positives. By contrast, Boolean 
queries obtain high recall at a terrible cost in false positives, i.e. 
bad precision. 
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Figure 2.  F-measure vs. elapsed time for various methods. 

 
Figure 3. Time taken by different methods for varying query 
sizes. The time columns have been segmented into querying, 
fetching and analyzing time. Overall F-measure for each 
setting is shown atop each bar. 



A natural question that arises at this point is whether the complete 
classification task can be done more efficiently in a single phase 1 
pass. That is, given the trained linear SVM text classifier to be 
applied to the entire corpus, extract its weights and execute it only 
on the search engine, with no follow-up phase to further test the 
files. This basic idea has been tried [1], but not compared to the 
baseline, nor to two-phase classification.  Note that the phase 2 
classifier does not pay a time penalty for having a large number of 
features: the file fetch time and the feature extraction time depend 
on the disk performance and the file size, not on the number of 
terms to be extracted for classification.  In our experiments, we 
found that 16K word and phrase terms was superior for the phase 
2 classifier.  But executing a query with such a large number of 
terms would pay a significant time penalty.  In fact, we conducted 
this experiment and found it took 450 seconds, averaged over the 
140 classes.  This is 3x slower than using our two-phase system 
with Q=1024 in the first phase and 16K terms in the second.  
With such a large Q, the query time greatly exceeds the time it 
would take to fetch the few likely positive files and classify them. 
The two-phase classifier performs a balancing act in terms of the 
querying time vs. fetching and analyzing time. 
But besides time, there is a further disadvantage to running a 
single, high-dimensional classification on the search engine: 
recall the baseline classifier did not achieve as good F-measure as 
the two-phase system.  We discuss this effect next. 

5.2 Cascaded Classifiers 
Cascaded classifiers have been used extensively in face detection 
from images where there is a huge computational cost involved in 
determining for every window in an image whether it contains a 
face or not [12][10]. The computational load is overcome by 
cascading several classifiers, where the complexity of classifiers 
increases as we go further down the cascade. The first few 
classifiers of the cascade, which are very cheap, help in removing 
most of the “easy” negatives, and the more accurate, complex 
classifiers at the end of the cascade polish up with excellent 
discrimination, yielding good overall performance. Our approach 
in this work is similar in spirit, where we additionally use the 
index to quicken the early classification phase. Figure 5 illustrates 
the impact of our two-phase classification scheme in terms of F-
measure, precision and recall. The x-axis varies the number of 
word+phase terms used, while the number of features in the final 
classifier is 16K, which yielded excellent performance on 
average. Two-phase classification has the consistent effect of 

improving precision and lowering recall. This is natural, since a 
case will be classified negative if either classifier rejects it. The 
improvement in precision is generally more than the decrease in 
recall, which is reflected in the overall increase in F-measure. 
This can be attributed to the low correlation of classification 
errors of the two classifiers in the cascade which has been well 
studied in [8]. The average F-measure is highest at Q=1024 query 
terms.  Note that at the far right point, where Q matches the 
number of terms in the final classifier, that the two-phase 
classifier has no effect.  In this case, the two phases are 
computing the same function in different ways, and the final 
decisions match that of a traditional, one phase classifier.  The 
benefit of the two phases only happens when the two classifiers 
have a somewhat different perspective on the training data.  We 
have run additional experiments (not shown, but we could if the 
reviewers request) that vary the number of features in phase 1 and 
phase 2 independently, and they find a consistent plummet in F-
measure whenever the number of features matches.   
Figure 6 illustrates the two-phase classifier effect in terms of 
average F-measure over different groups of Reuters categories. 
The plots indicate a consistent F-measure improvement across all 
categories by using the two-phase classifier. Figure 6 also 
illustrates the F-measure variation based on the query term count 
Q. For the country based categories, good F-measure performance 
is obtained with just 64 query terms. On the other hand, the 
industry and the economy categories require a lot more query 
terms, around 1024 to achieve good F-measure. The impact of the 
two-phase classifier is also more pronounced in these difficult 
cases.  

5.3 Policies for Choosing Parameters 
All the experimental results shown so far present the F-measure 
averaged over the 140 classes (or some subset) for different 
parameter settings (Q and C). In a real-world setting, we are 
interested in picking parameters that maximize the F-measure for 
the single class at hand. We adopt a dynamic scheme using the 
cross-validation performance measures obtained during the 
learning phase. The cross-validation results of performance 
measures such as F-measure, precision and recall can be used to 
devise policies for identifying good parameter settings for each 
phase separately. We limit Q to be a power of 2 <= 1024 terms, in 
order to avoid inordinate query time. Table 1 shows the F-
measure obtained for some of the top performing policies. The 

 50

 60

 70

 80

 90

10K 25K 50,000 100,000

R
ec

al
l (

tp
 r

at
e)

false positives

Q=64 Q=32

Q=16,384

weighted +phrases
weighted words
boolean +phrases
boolean words
baseline
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results indicate that the best performing cross-validation based 
method is very similar to an oracle having access to the F-
measure test set averaged over all 140 classes.  Oracle I has 
access to the F-measures on test data for each class and hence, 
picks a parameter setting that maximizes the F-measure for each 
class. Clearly, this represents the highest achievable F-measure in 
this setting. Oracle II has access to the F-measure averaged over 
all classes for all possible settings. 

5.4 Varying Design Choices 
In Section 3 we described a palette of design choices for the phase 
1 and phase 2 classifiers.  Here we briefly present their effect.   

Table 1: Comparison of F-measure obtained through cross-
validation based policies to choose parameters compared with 
two different oracle methods.  

Policy for 
Q 

Policy for 
C 

F-measure 

Oracle I Oracle I 62.6 

Oracle II Oracle II 60.0 

Maximize 
F-measure  

Maximize 
Precision 

60.1 

Maximize 
Recall 

Maximize 
Precision 

59.5 

Maximize 
F-measure 

Maximize 
F-measure 

60.0 

 

Weighting Instances to Approximate the Test Distribution:  
A practical problem that arises in machine learning is one of 
changing class distributions from training to test phase, although 

it is typically avoided in most machine learning research [4]. As 
mentioned earlier, this problem arises in our problem setting as 
well. The class distribution of the test data of the first phase 
classifier is different from its training set. We adopt the approach 
of weighting instances appropriately to overcome the difference. 
While training the first phase classifiers, we weight the instances 
in such a way that the total weight of the positive training set is 
1%—a rough estimate of the prevalence we expect for typical 
searches. (It would give an unfair advantage to determine the 
exact prevalence of positives in the test set and then set the weight 
exactly. Yet, this might be estimated via a quantifier [4].) The 
positive effect of such a weighting on the first phase F-measure is 
shown in Figure 7.  On deeper inspection, the reweighting is 
consistently improving the precision of the classifier, naturally. 

Phase 1 Performance: 
Figure 8 shows the F-measure of the first phase alone, as we vary 
the cross-product of the design choices.  For clarity of 
presentation , we hold Q=1024 fixed—a reasonably good choice 
for all. In this visualization, it is clear that (a) BNS consistently 
outperformed IG, consistent with past studies [5], (b) weighting 
the training positives to 1% significantly outperformed using the 
more balanced training set provided (right vs. left), and (c) the 
addition of phrases to the available terms improves performance.  
A paired t-test indicates very strong statistical significance, even 
between the two closest points (BNS vs. IG with phrases and 
without 1% weighting). 
In addition to these differences, we also analyzed the effect on 
query time (not depicted).  We found that IG queries consistently 
took longer than BNS queries, e.g. 2x slower.  This is because IG 
tends to select terms that are more common and therefore have 
longer posting lists to process: 2.9x longer on average.  The 
preference of BNS for rarer features is known [5], but here we 
have exposed a side benefit: it selects terms with shorter posting 
lists that are speedier information retrieval queries (as the research 
of [2] sought to do with IG-hybrid methods that somewhat 
preferred terms with shorter posting lists). 

Phase 2 Performance: 
These results so far only indicate the F-measure of phase 1. One 
might reasonably wonder whether these differences are mirrored 
by the final F-measure after both phases.  Figure 9 presents the 
final F-measure as we vary the cross-product of the design 
choices (holding fixed Q=1024 query terms and C=16K classifier 
terms).  Each design choice is kept consistent between phase 1 

 
Figure 6. Average F-measure for different Reuters categories 

 
Figure 7. Weighting instances improves phase 1 F-measure. 



and phase 2.  (One could conceive of the cross product of phase 1 
and phase 2 design choices separately, but such high dimensional 
results are expensive to compute and difficult to present.)   The 
leading design choice (BNS +phrases and 1% weighted) continues 
to dominate, but the picture has changed somewhat. All the F-
measures have improved vs. the F-measures of phase 1 in Figure 
8.  The superiority of each design choice for phase 1 is now less 
pronounced, but each is still present.  
One design choice we discussed early on was to focus the phase 1 
query on high recall, and expect the phase 2 classifier to increase 
the precision to the point that we obtain optimal F-measure. We 
experimented with such a strategy by leaving off the 1% 
weighting of the positive training examples; the 9% prevalence of 
positives in the training set therefore make the phase 1 classifier 
less conservative, and it yields higher recall.  But then we found 
the phase 2 classifier was not able to bring the precision as high.  
We found that the highest average F-measure obtained was 
57.9%, which is inferior compared to the F-measure obtained in 
the weighted case. 

6. DISCUSSION 
We have shown in this work that usage of phrases improves the F-
measure of the classifier over a simple bag of words 
representation. Clearly, there are other features—such as n-grams, 
file metadata, file-format-sensitive features (e.g. stripping XML 
before indexing), and domain-specific features—which could 
potentially aid in improving classification performance and can be 

added to the index. On the other hand, there are cases where the 
file needs to be explicitly fetched. Consider a case, where 
someone is searching for articles about XML on their disk, or info 
about a merger with XML Inc. company. The index, being made 
with a generic bag of words parser that does not first strip XML, 
would have XML tags in every single Reuters article. Clearly, a 
query working on the index would do badly in terms of precision 
and this scenario furthers the case for having a second phase 
classifier which operates on file-format specific features, e.g. 
parse the XML and make features from the non-tag text.  
Typical search engines today limit the number of query terms 
allowed to 20 or 30 maximum.  Viewed from their perspective, 
they want to limit the resource consumption of customer queries. 
But as businesses begin to get greater value from their (central or 
someday, federated) search infrastructure via text classification 
queries, there will be business justification to raise term limits 
into the hundreds or thousands.  This leads to a qualitatively 
different operating region for search engines, and we may see a 
substantial increase in computer resources used for text 
classification searches. 

7. RELATED WORK 
There is a single prior work in the literature that is highly 
relevant. Anagnostopoulos, Broder, and Punera [1] considered a 
classifier executed via a weighted search engine query, which 
they refer to as Weak AND (WAND).  This is equivalent to our 
weighted queries of phase 1 alone.  Their concern was with using 
a search engine for classification, with no phase 2 follow-up to 
improve accuracy. Our experiments in section 5.1 found that 
operating entirely on the index took 3x longer than if we included 
a separate phase 2.  Even with respect to phase 1 alone, there are a 
number of dimensions in which our work adds further 
contributions: They only consider a bag-of-words model, where 
we also measure the benefit of phrases, which search engines 
easily facilitate. They only consider up to Q=100 terms, where we 
extend to Q=16,384. They did not consider BNS, which we found 
superior to IG.  Their results are reported in terms of area under 
the ROC curve, which is mainly insensitive to improvements in F-
measure when positives are very rare, e.g. 1%.  And significantly, 
they did not run their experiments with a cold cache, so their 
reported results do not take disk performance into account. 
Additionally, we address the class distribution difference between 
the training set and test set using weighting of training data 
instances and we show significant improvement in F-measure 
performance. They consider the novel angle of biasing the feature 
selection according to the length of the term posting lists, in order 
to reduce processing time. 
There is an older paper by Broder et al [2] that provides 
techniques for speeding up a traditional information retrieval 
query. Their experiments showed substantial speedup for queries 
averaging 2.46 to 7 terms, suffering little loss in precision. 
Coincidentally, they also use two phases, but the similarity is 
superficial.  Their first phase retrieves the posting lists of the 
more important terms (as determined by their method), and the 
second phase retrieves all the remaining terms, but tracking scores 
only for documents that scored well in the first phase.  Note that 
the work does not address classification, but their technique could 
be leveraged to speed up our phase 1 query on the index with 
Q≈1024.  Our current software simply scores every document that 
is mentioned by the posting lists.  
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Figure 8.  Phase 1 F-measure vs. design choices. 
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Figure 9.  Final F-measure vs. design choices. 



8. CONCLUSION AND FUTURE WORK 
Our goal was to make it text classification scalable enough to scan 
distributed enterprise file systems for relevant documents.  Ideally 
such an application would also include infrastructure to efficiently 
federate the search over many full-text indices throughout a 
corporation.  In a real-world deployment, the size of the datasets 
would be much larger than the publicly available Reuters RCV1 
collection, which occupies only 3.5 GB of disk space, and whose 
Lucene index occupies only ~500 MB of disk space.  The index is 
small enough to fit entirely in RAM, although by dropping the file 
cache, we ensured that we were measuring realistic disk delays.  
For real-world usage, the index would be much larger and the 
reverse posting lists would be longer.  While this suggests longer 
query times and perhaps a desire to reduce the query size Q to 
save time, keep in mind that with a larger, distributed 
infrastructure also comes much longer latency and lower 
bandwidth to fetch the actual files for phase 2.  Hence, if 
anything, we anticipate the time and workload savings of our two-
phase technique to be proportionately more important for larger 
environments.  The World Wide Web is an extreme thereof—a 
query to a fast, central index server such as Google can efficiently 
provide a list of relevant documents, but actually fetching them 
for a second phase test will be very slow. Moreover, on a large 
scale it is likely to suffer from web servers being unavailable and 
intermittently poor network performance.  In view of this, text 
classification on the web may best be served by extensive 
computation with the reverse indices and perhaps Google’s large 
file cache.  In the end, it may still be important to fetch and check 
the final list of hits, since URLs often become stale when web 
pages are deleted.  Also, a web page may have changed 
substantially since its indexing, and no longer match the matching 
criterion. 
An interesting direction of future research would be to devise 
schemes for using an index in an active learning setting. In the 
real-world where training data is so scarce, active learning plays a 
crucial part in acquiring labeled data through an oracle who has 
time constraints. In such a time constrained setting, it is crucial 
that the processing to identify useful training examples for 
labeling has to be done quickly. The index can be exploited to 
quicken the processing step, which normally involves identifying 
the most informative instance(s) to be labeled towards improving 
the current classifier.  
In this paper, we excluded the training time from interest, for we 
are targeting settings where it is dwarfed by the volume to 
classify. But with active learning, this training time goes into the 
user’s interactive loop. The rising multi-core revolution can 
decimate this training time, as well as the time to analyze file 
content for text features.  However, it does not address the 
primary bottleneck for this application: disk seek time involved in 
executing queries and fetching files. In fact, the relative speed 
between CPU and disk is becoming larger, so the techniques 
described in this paper should continue to be relevant. 
Considering the enormous interest in ranking problems, a related 
research direction would be to analyze the impact of two-phase 
processing through an index in the context of ranking. In our 
experiments, we noticed a consistent improvement in precision in 
the top 20 from first phase to second phase. It would be 
interesting to analyze the performance of two-phase ranking 
schemes on rigorous ranking accuracy measures.  
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