Jump to content United States-English
HP.com Home Products and Services Support and Drivers Solutions How to Buy
» Contact HP

HP.com home


Technical Reports



» 

HP Labs

» Research
» News and events
» Technical reports
» About HP Labs
» Careers @ HP Labs
» People
» Worldwide sites
» Downloads
Content starts here

 
Click here for full text: PDF

Quantifying Trends Accurately Despite Classifier Error and Class Imbalance

Forman, George

HPL-2006-48R1

Keyword(s): classification; quantification; cost quantification; text mining

Abstract: This paper promotes a new task for supervised machine learning research: quantification--the pursuit of learning methods for accurately estimating the class distribution of a test set, with no concern for predictions on individual cases. A variant for cost quantification addresses the need to total up costs according to categories predicted by imperfect classifiers. These tasks cover a large and important family of applications that measure trends over time. The paper establishes a research methodology, and uses it to evaluate several proposed methods that involve selecting the classification threshold in a way that would spoil the accuracy of individual classifications. In empirical tests, Median Sweep methods show outstanding ability to estimate the class distribution, despite wide disparity in testing and training conditions. The paper addresses shifting class priors and costs, but not concept drift in general.

15 Pages

Back to Index

»Technical Reports

» 2009
» 2008
» 2007
» 2006
» 2005
» 2004
» 2003
» 2002
» 2001
» 2000
» 1990 - 1999

Heritage Technical Reports

» Compaq & DEC Technical Reports
» Tandem Technical Reports
Printable version
Privacy statement Using this site means you accept its terms Feedback to HP Labs
© 2009 Hewlett-Packard Development Company, L.P.