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ABSTRACT 
This paper promotes a new task for supervised machine learning 
research: quantification—the pursuit of learning methods for 
accurately estimating the class distribution of a test set, with no 
concern for predictions on individual cases. A variant for cost 
quantification addresses the need to total up costs according to 
categories predicted by imperfect classifiers. These tasks cover a 
large and important family of applications that measure trends 
over time. 

The paper establishes a research methodology, and uses it to 
evaluate several proposed methods that involve selecting the 
classification threshold in a way that would spoil the accuracy of 
individual classifications.  In empirical tests, Median Sweep 
methods show outstanding ability to estimate the class 
distribution, despite wide disparity in testing and training 
conditions.  The paper addresses shifting class priors and costs, 
but not concept drift in general. 

Categories and Subject Descriptors 
H.4 [Information Systems Applications]: decision support.  
I.5 [Pattern Recognition]: Design Methodology, classifier design 
and evaluation 

General Terms 
Algorithms, Measurement, Design. 

Keywords 
classification, quantification, cost quantification, text mining. 

1. INTRODUCTION 
Tracking trends over time constitutes a very large family of 
business and scientific applications, e.g. monitoring the 
prevalence of hepatitis B.  If the cases are labeled accurately, 
either by humans or by supervised machine learning, then a 
simple histogram of the class labels gives accurate counts.  But 
commonly such classifiers have some degree of error that leads, 
perhaps surprisingly, to a large and systematic bias in the counts. 
There is a tremendous literature in machine learning that focuses 

on optimizing the correctness of individual predictions (accuracy, 
F-measure, etc.).  While useful, it is not sufficient for this large 
family of applications whose objective is different:  accurate 
estimation of the histogram counts.  Interestingly, it does not 
matter that the count may involve both false positives and false 
negatives, as long as they balance one another well to cancel each 
other out.  This brings about two challenging and valuable tasks 
for ongoing research: 
1. The quantification task for machine learning:  given a 

labeled training set, induce a quantifier that takes an 
unlabeled test set as input and returns its best estimate of 
the class distribution. 

At first, this task may seem almost trivial, but experience proves 
otherwise.  The ubiquitous practices of random sampling and 
cross-validation in machine learning research completely hide the 
problem, since the training class distribution is chosen to match 
that of testing.  This has perhaps suppressed recognition of this 
important research setting, as well as its more complicated testing 
methodology, which we address in Section 3 to evaluate the 
quantification methods proposed in Section 2. 
2. The cost quantification task for machine learning:  given 

a labeled training set, induce a cost quantifier that takes 
an unlabeled test set as input and returns its best estimate 
of the total cost associated with each class, as determined 
by a cost attribute on each record (which in some settings 
may have missing values). 

For example, consider the task of estimating the total time spent 
(labor cost) by technical support agents dealing with calls related 
to problem X each month.  One solution is to train a binary 
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Table 1. Parameters varied in the experimental comparison 

P = 10...100 Positives in training set 
N = 100...1000 Negatives in training set 
p  = 1...95% Percent positives in test set 
Benchmark =  25 binary text classification tasks, x 10 splits 
Learning Algorithms: 
SVM linear Support Vector Machine 
NB multinomial Naive Bayes 
Performance Metrics: 
Abs.Err  |estimated p  –  actual p| 
Bias   estimated p  –  actual p 
CE   normalized Cross-Entropy 
Methods: 
CC Classify & Count 
AC Adjusted CC, plus variants with selected thresholds 
MS Median Sweep of AC at all thresholds 
MM Mixture Model 
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classifier to recognize problem X, and for each monthly batch of 
call logs, return the sum of the cost values of all cases predicted 
positive.  Partly due to reasons stated above, this is a poor 
approach.  We address this and propose methods in Section 6.3. 
A flip-side benefit of quantification technology is that to obtain an 
equivalent accuracy of the count, a much less accurate classifier 
can be used. This enables some applications of machine learning 
where otherwise its classification accuracy would be 
unacceptable. This can also result in savings in the labor cost to 
develop labeled datasets to train classifiers.  At first blush, this 
savings may not seem substantial.  However, at Hewlett-Packard 
we train thousands of classifiers to analyze technical support logs 
to track the many different types of support issues that arise for 
our many different product lines [3]. As a concrete example: 
monitoring for an increase in the incidence rate of cracked screens 
on HP iPAQ handheld products.  Further, the training needs are 
ongoing because of concept drift, as well as the introduction of 
product lines and new support issues.  So labor savings from 
quantification technology continues to accumulate over time. 
We finish this section with a discussion of related work, before 
we introduce and then test methods for quantification in the 
subsequent sections.  In this paper, without much loss of 
generality, we primarily focus on two-class tasks in order to 
simplify the exposition and resolve a key sub-problem for the 
multi-class setting (Section 6.2).  In this binary setting we can 
speak of estimating the number of positives in a test set. 

1.1 Related Work 
Most supervised machine learning research attempts to optimize 
the correctness of individual classifications in one way or another.  
Hence, each classification can be judged independently, and the 
success of a method can be judged by its accuracy, error rate or F-
measure averaged over a large benchmark of tasks.  In contrast, 
quantification produces a single output for a whole batch of items.  
These outputs must be aggregated over many batches in a large 
benchmark to evaluate methods. Hence, the research methodology 
is unusual. 
It bears a superficial resemblance to the batching used in research 
for probability estimating classifiers.  For example, if a 
meteorologist predicts the chance of rain at 20% on certain days 
of the year, we would like it to rain on 20% of those days.  The 
correctness of a prediction on a single day cannot be judged.  
Some methods even require examination of the entire test set 
before producing any output. However, probability estimation, 
like traditional classification, continues to make individual 
predictions on each item, and judge them in aggregate.  By 
contrast, quantification makes a single prediction based on an 
entire batch—a single scalar for two-class tasks.  This batching 
requirement calls for a different research methodology (section 3). 
Intuitively, not having to make individual predictions should 
make the estimation task easier.  An insurance company can 
estimate how many cars will have accidents next year, but cannot 
predict which ones.  The nature of the uncertainty is shifted from 
the individual cases to the aggregate count.   
Regarding probability estimation:  one obvious idea for a 
quantification method is to induce a classifier that outputs 
calibrated probability estimates, and then to sum these 
probabilities over the test set to estimate the count for each class.  
This has an intuitive advantage over simply counting discrete 

predictions made by a traditional classifier, which loses 
information about the uncertainty of individual predictions.  
Nonetheless, this obvious method is ill-posed: the calibration 
depends critically on the class distribution of the training set, 
which does not generally match that of the test set in 
quantification (cf. it always matches under cross-validation). 
Estimating the class distribution of a target dataset is not new.  
But existing work in machine learning estimates the test class 
distribution in order to adjust the classification threshold [e.g. 
1,9,10]. Again, the objective metric in such research has been the 
correctness of the individual classifications.  To our knowledge, 
ours is the first work to empirically compare and determine 
machine learning methods that excel in estimating the class 
distribution.  This paper extends our recent publication [4] with 
superior methods, as well as a more focused experiment protocol.   
Of course, once accurate and robust methods are established for 
estimating the distribution, they can be used as a subroutine for 
the traditional purposes of calibrating probability estimating 
classifiers, or optimizing the classification decision threshold to 
minimize cost, e.g. in ROC analysis [1]. 
As a side note, there is unsupervised work in tracking shifting 
topic distributions [e.g. 7,8]. It naturally has uncalibrated cluster 
boundaries, having no bearing on supervised quantification. 

2. QUANTIFICATION METHODS 
As a strawman method, consider simply learning a state-of-the-art 
binary classifier from the training set, and counting the number of 
items of the test set for which it predicts positive. We call this 
simple method Classify & Count (CC). The observed count of 
positives from the classifier will include true positives TP and 
false positives FP.  Ideally, we would like to adjust the observed 
count somehow for the false positives and false negatives. By the 
following characterization, we derive such a quantifier, the 
Adjusted Count (AC) method [4]: 

       Classifier Prediction: 
Actual Class:   Pos Neg 

Positives  TP = tpr * Positives FN 

 Negatives  FP = fpr * Negatives 
  = fpr * (total - Positives) TN 

where tpr is the true positive rate of the classifier, 
P(predict + | actual pos), and fpr is its false positive rate, 
P(predict + | actual neg).  The observed count of positives is then: 
 Pos   = tpr * Positives  +  fpr * (total – Positives) 
  = (tpr – fpr) * Positives  +  fpr * total  
Solving for the actual number of Positives, we get: 

Positives =  (Pos –  fpr * total)  /  (tpr – fpr) 
Finally, dividing both sides by the total, we express the equation 
in terms of percentages of positives: 

adjusted estimate p’  =  (observed % positives) – fpr   
                           tpr – fpr 

(1)

It remains only to estimate the fpr and tpr characteristics of the 
classifier, which is accomplished via standard cross-validation on 
the training set. These characteristics are independent of the 
training class distribution because they treat positives and 
negatives separately. Since these estimates may deviate somewhat 
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from the actual tpr,fpr rates in testing, we must clip the output of 
formula (1) to the range 0% to 100% in order to avoid occasional 
infeasible estimates.  In summary, the AC method trains a binary 
classifier, estimates its tpr,fpr characteristics via cross-validation 
on the training set, and then when applied to a given test set, 
adjusts its quantification estimate by formula (1). 

2.1 Class Imbalance Problem 
The AC method estimates the true class distribution well in many 
situations, but its performance degrades severely if the training 
class distribution is highly imbalanced (e.g. Figure 8 in [4]).  For 
example, with P=50 positive training cases and N=1000 negative 
training cases, the induced classifier is very conservative about 
voting positive.  If the positive class is rare enough, it will simply 
vote negative always, i.e. tpr=0%.  While this may result in 
optimal classification accuracy (for the distribution in the training 
set), it is useless for estimating the distribution of the test set.  
Backing off from this extreme, consider a classifier that is very 
conservative but not entirely negative.  Its true positive rate tpr 
would be very low, and its false positive rate fpr would be non-
zero.  This forces the denominator (tpr – fpr) of formula (1) to a 
small range, making the quotient highly sensitive to any error in 
the estimate of tpr and fpr, giving bad estimates under imbalance. 
Unfortunately, high class imbalance is pandemic, esp. to our 
business applications, and so the need to operate well under these 
conditions is important.  A well known workaround is simply to 
disregard many cases in the majority class of the training set to 
bring it back into balance.  But this throws away information. We 
can do better. Having investigated the reason for the degradation, 
we have devised new methods that are resilient under class 
imbalance and take advantage of any surfeit of negative training 
cases, which are often freely available. 

2.2 Imbalance Tolerant Methods 
The solution to the class imbalance problem lies in recognizing 
that accuracy on individual classifications is not important to our 
objective.  We will select a different decision threshold for the 
classifier that will provide better estimates via formula (1), 
although the threshold may be completely inappropriate for 
maximizing classification accuracy. Specifically, we will admit 
many more false positives to avoid a threshold in the tails of the 
curve, where estimates of tpr,fpr are poorer. 
The remaining question is what policy to use for selecting a 
threshold.  To consider the possibilities, we use the illustration in 

Figure 1.  The x-axis represents the spectrum of thresholds, i.e. 
the scores generated by the raw classifier.  They are uncalibrated 
and may take any range, e.g. the probability output by Naïve 
Bayes, which is notorious for its poor probability calibration, or 
the signed distance from the separating hyperplane of an SVM 
(calibrating the SVM output via a fitted logistic regression model 
would have no effect on the methods, since they do not use the 
magnitude of the x-axis except as a decision threshold).   
The descending curve shows the false positive rate fpr and the 
ascending curve shows the inverse of the true positive rate (false 
negative rate = 1 – tpr).  The inversion of tpr is visually useful to 
see the tradeoff with fpr.  For a perfect classifier, there would be 
perfect separation between these two curves (this never occurred 
in our benchmark tasks).  These example curves represent an 
SVM classifier whose natural threshold of zero delivers 92% 
classification accuracy for an imbalanced training set having 50 
positives and 1000 negatives.  Because negatives abound, SVM 
naturally optimized for a very low false positive rate, even at the 
cost of a ‘few’ misclassified positives (28 of 50). This explains its 
poor F-measure of 50%. 
The basic AC method uses the classifier’s default threshold, 
which will be far in the fpr tail if positives are rare in training. An 
intuitively better threshold policy is where the two curves cross, 
where fpr = 1-tpr (labeled X in Figure 1).  This “X” method 
nicely avoids the tails of both curves.  Considering the earlier 
discussion of small denominators, another likely policy is where 
the denominator is maximized: method Max = argmax(tpr-fpr).  
More traditionally, a Neyman-Pearson criterion would select the 
threshold at a particular true positive rate (method T90 = 90%, 
T50 = 50%), or false positive rate (F5 = 5%). We tested all these 
threshold policies and others. 

2.3 Median Sweep (MS) 
All the threshold selection methods above run the risk that the 
tpr,fpr estimates from cross-validation at their chosen threshold 
do not happen to match the actual rates encountered on the test 
set.  For this reason, we consider an additional approach: obtain 
an estimate at every threshold, and return a mean or median of 
these estimates. Median is preferred, as it is less sensitive to 
outliers. Specifically, the Median Sweep (MS) method computes 
the distribution estimate via formula (1) for all thresholds, and 
returns the median.  Considering the earlier discussion about high 
sensitivity when the denominator becomes small, we also evaluate 
a variant (MS2) that considers only thresholds where the 
denominator (tpr-fpr) is greater than ¼. 

2.4 Mixture Model (MM) 
For comparison, we also include a robust quantification method 
from our earlier work, which is based on completely different 
principles.  Due to space limitations, we cannot describe the 
method fully here, but we refer readers to [4].  In short, it models 
the distribution of raw classifier scores generated on the test set as 
a mixture of two distributions: the classifier scores on the training 
negatives, and those on the training positives—as determined by 
cross-validation.  An optimization step determines the mixture 
that results in the best fit, and then it returns this as the estimated 
% positive.  This method is surprisingly robust with even as few 
as 10 training positives (!).  While it does not apparently suffer 
from the class imbalance problem, we shall see that the Median 
Sweep methods often surpass it. 
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Figure 1.  Various threshold selection policies. 
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3. EXPERIMENT METHODOLOGY 
As mentioned in the introduction, quantification research 
necessitates a substantially different experiment methodology.  In 
particular, the class distribution must be varied independently and 
dramatically between the training and testing sets.  Further, since 
each batch produces only a single estimate, we must test on many 
batches and aggregate measurements to identify trends. The ideal 
quantification method will generate accurate estimates, despite 
wide variation in training and testing conditions. 
To vary the training conditions, we randomly select P=10…100 
positive training cases, and N=100 or 1000 negative training cases 
from the benchmark dataset at hand.  These sizes are selected to 
cover common operating ranges of interest to our business 
applications, and are reasonable for many other situations.  The 
larger number of negatives represents a common multi-class case 
where we consider one class at a time against many others that 
each has 10…100 example cases.     
To vary the testing conditions, we select as many positives and 
negatives from the remaining benchmark dataset such that the 
percent positives matches our target p.  For a specific dataset 
having 864 positives and 10298 negatives, we first take 100 
positives and 1000 negatives out for training (subsetting these for 
varied training situations), leaving 764 positives and 9298 
negatives.  When targeting p=20% positive, we test with all 764 
positives and a random subset of 3056 negatives; for p=1%, we 
use a random subset of 94 positives against all 9298 negatives.  
Our business datasets often have >100,000 cases to quantify, but 
are not publishable and rarely labeled with ground truth. 
Our prior study measured performance on test sets ranging from 
p=5%…95% positive, stepping by 5%.  While reasonable 
scientifically, this does not focus on the area of interest for the 
business problems we face: 1…20% positives is a more 
challenging and more important range in which to estimate well.  
Furthermore, we speculate that this range is preferable to study in 
general.  Four loose arguments:  (a) For >50% positive, one might 
simply reverse the meaning of positive and negative.  (b) A 
common type of quantification task has many mutually exclusive 
classes, therefore most classes are moderately rare in order to sum 
to 100%.  (c) For ~20…80% positive, class imbalance is not a 
problem, and classifiers tend to operate better in this region.  
(d) Finally, to get tight confidence intervals when estimating the 
percent positive, e.g. by manual testing, many more cases must be 
examined if positives are rare—so, the labor savings of automatic 
quantification is much greater in the tails.  

3.1 Error Metrics 
A natural error metric is the estimated percent positives minus the 
actual percent positives. By averaging across conditions, we can 
determine whether a method has a positive or negative bias.  But 
even a method that guesses 5 percentage points too high or too 
low equally often will have zero bias. For this reason, absolute 
error is a more useful measure. But it is unsatisfactory in this way: 
estimating 41% when the ground truth is 45% is not nearly as 
‘bad’ as estimating 1% when the ground truth is 5%.  For this 
reason, cross-entropy is often used as an error measure. To be 
able to average across different test class distributions, however, it 
needs to be normalized so that a perfect estimate always yields 
zero error.  Hence, we use normalized cross-entropy, defined as: 

normCE(p,q)  =  CE(p,q) – CE(p,p)     (2) 
CE(p,q)  =  -p log2(q)  –  (1-p) log2(1-q) 

where q is the estimate of the actual percent positives p in testing.  
Since cross-entropy goes to infinity as q goes to 0% or 100%, we 
back off any estimate in these situations by half a count out of the 
entire test set.  Matching our intuition, this back-off will 
increasingly penalize a method for estimating zero positives for 
larger test sets: it is worse to mistakenly estimate zero positives 
among thousands of test cases than among ten. 

3.2 Datasets 
The benchmark text classification tasks are drawn from 
OHSUMED abstracts (ohscal), the Los Angeles Times (la), and 
the Foreign Broadcast Information Service (fbis) [6]; the feature 
vectors are publicly available for download from the Journal of 
Machine Learning Research [5]. See Table 2. For this suite of 
experiments, we consider the binary classification task of one 
class vs. all others. Only 25 of the 229 potential binary tasks 
suited our needs, because we required a large number of positives 
and negatives for this study. (Our prior study went up to 2000 
training negatives, but this depletes the supply of negatives for 
testing, leaving only 21 suitable binary tasks.)  F-measure for 
these tasks averages in the mid-70’s. 

3.3 Learning Algorithms 
We use the linear Support Vector Machine (SVM) 
implementation provided by the WEKA library v3.4 [11].  We 
also repeated the experiment with the multinomial Naïve Bayes 
classifier, which has respectable performance in the text domain.  
The adjusted count methods and the mixture model all require 
cross-validation on the training set to generate the distribution of 
scores for positives and negatives, in order to characterize tpr and 
fpr.  We chose 50-fold stratified cross-validation.  (Note that if 
there are fewer than 50 positives in the training set, it feels 

Table 2.  Benchmark classification tasks. 
# Dataset Class Positives Negatives Total 
1 fbis 3 387 2076 2463 
2 fbis 7 506 1957 2463 
3 fbis 10 358 2105 2463 
4 la1 0 354 2850 3204 
5 la1 1 555 2649 3204 
6 la1 2 341 2863 3204 
7 la1 3 943 2261 3204 
8 la1 4 273 2931 3204 
9 la1 5 738 2466 3204 

10 la2 0 375 2700 3075 
11 la2 1 487 2588 3075 
12 la2 2 301 2774 3075 
13 la2 3 905 2170 3075 
14 la2 4 248 2827 3075 
15 la2 5 759 2316 3075 
16 ohscal 0 1159 10003 11162 
17 ohscal 1 709 10453 11162 
18 ohscal 2 764 10398 11162 
19 ohscal 3 1001 10161 11162 
20 ohscal 4 864 10298 11162 
21 ohscal 5 1621 9541 11162 
22 ohscal 6 1037 10125 11162 
23 ohscal 7 1297 9865 11162 
24 ohscal 8 1450 9712 11162 
25 ohscal 9 1260 9902 11162 
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undesirable that some test folds will contain no positives. But we 
found only degradation trying 10- or min(50,P,N)-folds instead.) 
A great deal of computer time can be saved by sharing the 
computation that is common to all methods: (a) the 50-fold cross 
validation on the training set, (b) training the final classifier on 
the training set, and (c) applying that classifier to the test set to 
generate scores for the positives and for the negatives.  Different 
subsets of these scores can then be used to evaluate various 
quantification methods under different test class distributions.  
Sharing steps 1–3 reduced the overall computational load of this 
experiment by a factor of ~200. As it was, the experiment 
consumed several days on hundreds of fast 64-bit CPUs in the HP 
Labs Utility Datacenter. The complete experiment protocol is 
listed in pseudo-code in the online appendix.  

4. EXPERIMENT RESULTS 
Given the large number of parameters in this experiment, we 
break down the results into sections where we hold some 
conditions constant as we vary others.  For each figure, we will 
have a pair of graphs: N=100 training negatives on the left, and 
N=1000 training negatives on the right; we take care that the y-
axis range is identical for easy comparison. Every data point 
represents an average performance over the 25 benchmark text 
classification tasks times 10 random splits. Except where stated 
otherwise, we focus on the SVM base classifier. 

4.1 Varied training,  fixed target p=5%  
We begin by examining how resilient the various quantification 
methods are to wide variations in the training set, while we hold 
the test conditions fixed at p=5% positive.  Figure 2 shows the 
accuracy of the quantifications, as measured by absolute error 
from the 5% target. Overall we see the Median Sweep methods 
dominate (MS and MS2, bold lines).  Note the absolute scale: the 
MS methods estimated on average within two percent given only 
P=30 positives and N=100 negatives, or within one percent given 
P=30 & N=1000 (e.g. estimating 6% positive when the ground 
truth is 5%).  Note the performance with P=50 is nearly as good 
as at P=100. When labor costs are involved to manually label 
training cases, this can amount to significant savings. 
In the graph for N=100 training negatives (left), the simple 
Classify & Count (CC) method achieved the lowest absolute 
error, but only for very specific training conditions. We seek 
methods with consistently good predictions, despite training 
variations.  
Next consider N=1000 negatives (right): CC appears competitive 
when given a large enough set of training positives, but this is 
illusory. Deeper examination reveals that for smaller P it 
underestimates and for greater P it progressively overestimates. 
The training class prior is simply moving the decision threshold, 
resulting in more positive predictions, not better quantification. 
By contrast, the basic Adjusted Count (AC) method does 
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converge to better quantification once sufficient training positives 
are available. With P<40 & N=1000, however, the class 
imbalance is so great that the AC method gets severe error.  Our 
prior work highlighted the remarkable stability of the Mixture 
Model (MM) method even with great imbalance. MM is 
dominated, however, by many of the methods in this paper 
designed to address the class imbalance problem. Interestingly, 
even without class imbalance (P≈N=100 at left), the MS and T50 
(tpr=50%) methods surpass prior methods. We return to this point 
in the discussion. 
(A few mediocre methods were omitted from the graphs to 
improve readability. The online version of this paper has a color 
appendix containing all the results.) 

4.2 Varied training,  varied target 
The analysis above was for a single target of p=5% positives. 
Does the strong result for Median Sweep generalize for 
p=1…20% positives?  To check this, we average the performance 
over this whole range.  As discussed in the methodology section, 
to average different targets together, we must not simply use 
absolute error, but rather normalized cross-entropy. See Figure 3 
for these results. Though the y-axis scale is now different than 
Figure 2, the rankings are qualitatively similar.  Median Sweep 
continues to dominate on average. 
To determine whether Median Sweep dominates for all target 
distributions, we expanded the study up to 95% test positives.  

Instead of averaging over this range, we spread out p=1..95% 
along the x-axis in Figure 4; but to keep the focus on the lower 
region, we used a log-scale x-axis.  Since we are not averaging 
results across different values of p, the y-axis shows absolute 
error, which is more intuitive than cross-entropy.  To view the 
results in two dimensions, we must hold some other variable 
constant:  we fix P=100 training positives, where performance is 
relatively insensitive to changes in P.   
In the low p range, Median Sweep methods excel.  In the higher 
range, two methods excel consistently:  Max (maximize tpr - fpr) 
or X (where fpr and 1-tpr cross).  But in the following analysis we 
shall see that the Max method suffers from systematic bias.   
Finally, the absolute error grows substantially for all methods as p 
approaches 95%. But this is not especially concerning:  (a) it is a 
rare operating range, (b) if positives are so prevalent, it is more 
likely that the classifier would be trained with a positive majority 
rather than a negative majority as we have done here, and (c) in 
order to experiment at 95% positives, we end up with very few 
test negatives, due to the shortage of positive training cases.  For 
example, if only 380 positives are available for testing, we end up 
with merely 20 test negatives in order to achieve p=95%.  So, the 
experimental results have naturally higher variance in this region. 
If one needed to research this region more effectively, larger 
benchmark datasets are called for, or else the meaning of positives 
and negatives might be reversed. 
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Figure 4.  Absolute error for targets p=1…90% individually.   P=100 training positives. 
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Figure 5.  Bias. Average signed error for targets p=1..90% individually.   P=100 training positives. 
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4.3 Bias Analysis 
Next we analyze the other component of accuracy—bias—by 
presenting the average signed error for each method.  Figure 5 
shows the bias under varied training (left vs. right) and testing 
conditions (p% positives on x-axis).  We abandoned the log-scale 
here in order to show the strongly linear bias of two methods:  
Max and Classify & Count.  For the classifier trained with 50% 
positives (P=N=100, at left), the CC method progressively 
overestimates when p<50%, and underestimates when p>50%, as 
expected.  When trained with 9% positives (P=100, N=1000, at 
right), this balance point is shifted accordingly, but not 
proportionately—it is unbiased only at p=3% instead of 9%.  We 
have seen this behavior consistently: SVM exaggerates the 
training class imbalance in testing. Although the ubiquitous 
suggestion is to bias the SVM cost penalty C, it proves ineffective 
and has been better addressed recently by Wu and Chang [12]. 
It is surprising that the Max method, being an Adjusted Count 
variant, also exhibits a linear bias, albeit to a lesser degree than 
CC. This means that the Max method consistently finds thresholds 
such that the tpr and fpr characterization does not hold well for 
the test set.  All the other methods have a relatively stable bias 
over a wide range.  
We see greatly increasing bias at the tails, which is expected:  If a 
method’s estimates vary by a few percent and p is close to zero, 
any infeasible negative estimates are adjusted up to 0%, resulting 
in a positive bias.  As we approach p=95% positives, the even 
greater negative bias is similarly caused by clipping estimates 
which have greater variance, as shown previously. 

4.4 Failure Analysis  
Although an induced classifier should learn to separate cases well 
enough that its true positive rate tpr is greater than its false 
positive rate fpr, they nonetheless fail sometimes. This usually 
happens under great class imbalance in training.  For example, for 
one of the ten splits on one of the tasks trained with P=10 and 
N=100, the induced classifier’s natural threshold gave tpr=fpr=0. 
It learned to classify everything as negative, which results in a 
troublesome zero denominator in the adjusted count method. The 
commonness of this problem was part of the impetus for this 
research:  tpr was less than or equal to fpr in 623 of 10,000 cases 
for AC.  In progressively decreasing occurrence of failure, we 
have: AC, T90, F5, F10, T50 and X.   The Max method never 

experienced a failure, exactly because it seeks to maximize the 
denominator.  Naturally, this is a non-problem for either CC or 
the Mixture Model. 

4.5 Naïve Bayes vs. SVM 
We do not present graphs for the Naïve Bayes classifier because 
every quantification method under every training/testing 
condition performed substantially better on average with SVM as 
the base classifier.  It is well established for text classification that 
SVM usually obtains better accuracy than Naïve Bayes.  But our 
finding further suggests its tpr and fpr characteristics may be 
more stable as well.  

4.6 Greater Imbalance,  Held-Out Dataset 
Given the consistent performance of the Median Sweep methods, 
we would like to ensure their continued performance in situations 
with even greater training class imbalance (~1%), such as we face 
in practice.  This study so far has been limited to N=1000 training 
positives, in order to have 25 benchmark tasks for study.  
Although we could increase class imbalance by simply reducing 
P, this results in degenerate classifiers.  Instead, we would like to 
consider a greater number of negatives.  In addition, we want to 
validate these results against other classification problems. 
For these two purposes, we held back a dataset: new3 from [6]. It 
has 9558 cases partitioned into 44 classes. We repeated our study 
on its 17 classes that have at least 200 positives, setting aside 
5000 negatives for training.  Figure 6 shows these results for P=50 
and N=5000 negatives (~1% positives in training, right) and for a 
subset of N=1000 negatives (~5%, left).  The log-scale x-axis 
shows p, and the y-axis shows average absolute error.  Although 
perhaps uninteresting for its similar results to Figure 4 with 
N=1000, it is encouraging that the conclusions generalize to held-
out tasks and to greater training imbalance.  The Median Sweep 
methods continue to estimate well for low p; they have <1% 
absolute error for p<=10% in both graphs of Figure 6 and for 
N=1000 in Figure 4.  The competitive methods Max and X have 
somewhat improved performance for this hold-out benchmark, 
and now slightly beat MS for p as low as ~5%. 

5. DISCUSSION 
Observe in Figure 4 that the curves cluster into two shapes: 
concave upward (MS,MS2,T50) and S-curve (Max,X,MM).  
Interestingly, the AC method under high imbalance (N=1000 and 
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Figure 6.  Like Figure 4, but for the held-out dataset, and greater training class imbalance.  P=50 training positives.  
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all of Figure 6) belongs to the concave upward group, but under 
balanced training (N=100 in Figure 4) belongs to the S-curve 
group.  As discussed previously, the AC method under high 
imbalance uses thresholds with many false negatives, i.e. closer to 
T50 in the concave upward group.  (Recall that T50 selects the 
threshold at tpr=50%.)  But under more balanced conditions, AC 
uses thresholds closer to the X crossover point in Figure 1, which 
results in the S-curve grouping.  Looking now at MS, its 
consistent grouping with T50 suggests it may be using many 
estimates derived from tpr rates nearer to 50% than near the 
cross-over point X. 
We set out to address a problem that occurred under class 
imbalance, and we ended up discovering methods that estimate 
substantially better even under balanced training, e.g. Median 
Sweep and T50. (See P~N=100 in Figures 2-4.)  Since the 
adjusted count formula is unchanged from the basic AC method, 
this implies T50 selects a threshold for which tpr,fpr 
characterization on the training set is more reliable than the 
default threshold.  This may provide a clue to the separate 
problem of estimating tpr,fpr well for other purposes. 
We believe the reason that Median Sweep works so well is that 
instead of relying on the accuracy of a single tpr,fpr estimate, it 
takes in information from all the estimates, of which many are 
likely close. In some sense, it has the advantage of bootstrapping, 
without the heavy computational cost of repeating the 50-fold 
cross-validation for many different random samplings of the 
available training set. 
Until now we have referred to the Median Sweep methods 
together.  Overall they perform very similarly, which we should 
expect since the median is very insensitive to outlier clipping, 
unlike the mean.  Even so, the MS2 variant—which only 
considers estimates that come from larger, more stable 
denominators—shows a slight benefit, particularly in lower bias 
and over a broader range. This validates the idea that small 
denominators result in poorer estimates.  Putting MS2 into 
production runs the risk that on some tasks there may no estimates 
with a sufficiently large denominator, although this never 
happened in our benchmark tasks. At the very least, it could fall 
back to MS in such cases.  Further research may develop a more 
robust outlier clipping method that could improve Median Sweep 
methods.  
One motivation mentioned in the introduction for quantification 
research is reduced training effort to obtain a given level of 
accuracy.  To illustrate this, note in the right-hand graph of Figure 
3 that Median Sweep methods with P=20 positives achieve 
similar accuracy to AC with P=50.  But for the basic Classify & 
Count method, additional training does not lead to an accurate, 
unbiased quantifier. Furthermore, in the left-hand graph of Figure 
3 we see that additional training examples mislead AC.  The point 
is this: quantification research is essential because accurate 
estimates cannot be achieved by simple methods like CC or AC 
just by providing more training data (unlike active learning 
research where all methods produce the same classification 
accuracy given enough training cases). 
Although we are pleased to have reduced the absolute error of the 
estimate to less than 1% in many situations, we need to quantify 
increasingly rare events, where the bias and the relative error both 
grow.  To conduct experiments in the tail of the distribution 
requires much larger labeled datasets made available for research.  

6. EXTENSIONS 
The implications of this work extend to trending over time, multi-
class quantification, and quantification of costs, which we 
describe in sequence. 

6.1 Trending 
Measuring trends over time was listed as a primary motivation, 
but so far we have only discussed quantifying the class 
distribution of a single test set.  In order to apply this technology 
for trending, the cases are partitioned into discrete bins, e.g. daily 
or monthly groupings, and the quantification is performed 
independently on each batch to obtain accurate estimates.  These 
may then be plotted together in one graph, optionally with a fitted 
trend line to project into the future where no cases are yet 
available.  As is typical with such applications, if there are too 
many bins for the volume of data, the counts in each bin become 
small and noisy.  The quantification methods we describe are 
intended to work on large batches. They will produce noisy 
estimates given only a handful of items. For more accurate 
quantification in these situations, we have used a sliding window 
technique to aggregate cases from adjacent bins into each batch.  
At the same time, this provides smoothing like a moving average, 
e.g. to smooth over weekend-effects. 
Note that this work addresses changes in the class distribution but 
not general concept drift, where the definition of what counts as 
positive may gradually or suddenly change arbitrarily [2].  When 
trending over time, concept drift is often implicated, and can be 
difficult to cope with. Ideally the quantifier used on each bin is 
given a training set appropriate to the class concept in effect for 
that bin.  Naturally this can be hard to determine, and requires 
ongoing training data.   
Regardless of concept drift, if additional training cases become 
available later—e.g. some cases are labeled in a new monthly 
batch of data—it is best to redo the trend quantification over all 
bins. The additional training data may improve the quantifier’s 
estimates on the old bins as well.  If instead one applies the 
improved quantifier only to the new batch of data, this estimate 
should not be appended to pre-existing trend lines.  To do so 
would compare estimates that are not calibrated to one another. 

6.2 Multi-Class Quantification 
In our use of quantification, we usually want to track the trends 
for many classes, e.g. different types of technical support issues.  
Since most customers call with a single problem, these classes are 
competing, and therefore may be treated as a 1-of-n multi-class 
problem. On the other hand, occasionally multiple issues do apply 
to a single case. If there were a rampant trend of coinciding 
issues, we would not want to have designed the system to be blind 
to it. Hence, we quantify each issue independently, i.e. as an m-
of-n multi-class topic recognition task. 
Nonetheless, there are situations where the 1-of-n multi-class 
setting is called for.  To treat this, one should not simply apply a 
multi-class classifier to the dataset.  If some classes are much 
rarer than others either in the training set or in the test set, the test 
set counts predicted for those classes may be very rare. The 
adjusted count method applied then to each class will not lead to 
good multi-class estimates. 
Instead we recommend performing independent quantifications 
for each class vs. all others, and then normalizing the estimates so 
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they sum to 100%.  In this way, each independent quantification 
compensates for imperfect classification and for class imbalance. 

6.3 Cost Quantification 
Simply estimating the number of cases belonging to a category 
may not correlate with importance.  A relatively uncommon issue 
having a high cost can be more important to delve into than a 
more frequent issue having low cost.   
If the average cost per positive case C+ is known in advance, it 
can simply be multiplied into the quantifier’s estimate to obtain 
the total cost of the positive cases.  More commonly C+ is not 
known, and we must analyze the cost attribute attached to each 
case, e.g. the parts & labor cost to repair each problem.  Consider 
a rare subclass of repairs whose costs climbed substantially in the 
new month of data. 

6.3.1 Cost Quantification Methods 
Classify & Total:  The obvious solution, akin to CC, is to train a 
classifier and total the cost attribute associated with all cases 
predicted positive. But unless that classifier is perfectly accurate, 
it will result in poor and systematically biased cost estimates. 

Grossed-Up Total:  The next obvious solution is to perform the 
total as above, but then to adjust it up or down according to a 
factor f determined by quantification.  If the binary classifier 
predicted 502 positives and the quantifier estimates 598.3 
positives, then the cost total would be multiplied by f=598.3/502.  
But this method suffers from similar problems as AC:  it runs the 
risk that the binary classifier may select zero or very few cases to 
include in the total, if positives happen to be rare in its training or 
test sets.  Else if positives were overly common in the training set, 
then the induced liberal classifier will include in its total the costs 
of many negatives, polluting the result.  This pollution occurs 
even at the perfect ratio if there are some false positives. 

Conservative Average * Quantifier (CAQ):  We can reduce the 
false-positive pollution by selecting the classifier’s decision 
threshold to be more conservative—a classic precision-recall 
tradeoff.  Using a smaller set of highly precise predictions, we can 
average their costs to estimate C+, and then multiply it by the 
estimated size of the class from a quantifier.  Ideally we would 
like a threshold with 100% precision, but often there is no such 
threshold.  Furthermore, a highly conservative threshold based on 
precision may predict only a few cases as positive, esp. if 
positives are rare.  Given too few items to average over, the 
variance of the C+ estimate will be large, giving a poor overall 
cost estimate. To avoid this problem, one might instead always 
take the top, say, 100 most strongly predicted positives for the 
average. But this cannot ensure high precision—some test sets 
might have only 60 positives. 

Precision-Corrected Average * Quantifier (PCAQ):  Despite 
decreased precision, there is pressure to use a less conservative 
threshold for the reasons above, and also because at high 
precision/low recall the classifier’s precision characterization 
from cross-validating the training set has high variance.  In 
perfect analogy to the first part of this paper, we select a 
classification threshold with worse precision, but having more 
stable characterization as well as providing a sufficient number of 
predicted positives to average over.  We then adjust the average 
according to a simple equation that accounts for the false-positive 
pollution: 

precision-corrected average C+  =  (1-q) Ct  – (1-Pt) Call  
                                                 Pt – q 

(3)

where q is a quantifier’s estimate of the percentage of positives in 
the test set, Pt is an estimate of the precision at a given threshold t, 
Ct is the average cost of all cases predicted positive up to the 
threshold t, and Call is the average cost of all cases.  The 
derivation is in the appendix, available only online. The 
remaining design decision is which threshold to use—for 
example, the T50 or X thresholds shown in Figure 1.  We suggest 
avoiding Max, given our earlier bias discussion about its choosing 
thresholds with poor tpr,fpr characterization. 

Median Sweep PCAQ:  Rather than use a single threshold and 
hope that its precision characterization is accurate, we may sweep 
over many thresholds and select the median of the many PCAQ 
estimates of C+. This has some of the benefit of bootstrapping 
without the computational cost.  Just as the MS2 method excludes 
estimates that are likely to have high variance, a profitable variant 
on this method might exclude estimates from thresholds where (a) 
the number of predicted positives falls below some minimum, e.g. 
30, (b) the confidence interval of the estimated C+ is overly wide, 
and/or (c) the precision estimate Pt was calculated from fewer 
than, say, 30 training cases predicted positive in cross-validation. 

Mixture Model Average * Quantifier (MMAQ):  Finally, rather 
than try to determine an estimate at each threshold, we can model 
the shape of the Ct curve over all thresholds as the mixture  

Ct  = Pt C+ + (1-Pt) C- (4)

where C- is the average cost of a negative case (which is also 
unknown). This method estimates C+ (and C-) via linear 
regression of the points generated at many different thresholds.  
The same thresholds omitted by Median Sweep can be omitted 
here as well, in order to eliminate some outliers that may have a 
strong effect on the linear regression.  Alternately, one may use 
regression techniques that are less sensitive to outliers, e.g. that 
optimize for L1-norm instead of mean squared error. 

6.3.2 Evaluation 
We found MMAQ outperformed CAQ in a small test. The next 
logical research step is to evaluate all these methods against one 
another. Unfortunately, any such empirical experiment depends 
strongly on the cost distribution for positives vs. the cost 
distribution for negatives (including their relative variances), in 
addition to variation in the training set makeup and the test class 
distribution.  Besides its being a high dimensional experiment, we 
must first have a large publishable benchmark with costs of 
reasonable interest to a family of applications. This is an open 
invitation to the research community. 

6.3.3 Missing Costs 
In some settings, especially those in worldwide enterprises, cost 
values may be missing or detectably invalid for some cases. 
Given that most of the above methods begin by estimating the 
average cost for positives C+, such cases with missing cost may 
simply be omitted from the analysis. That is, the estimate of C+ is 
determined by the subset of cases having valid cost values, and 
the count is estimated by a quantifier run over all the cases.  This 
can be effective if the data are missing at random (MAR). 
However, if the MAR-assumption does not hold, the missing 
values should first be imputed by a regression predictor. 
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6.3.4 Cost-Confounded Prediction 
The methods above implicitly assume that the cost of positive 
cases is not correlated with the prediction strength of the base 
classifier.  As an assurance, one may check the correlation 
between cost and the classifier scores over the positive cases of 
the training set. If the classifier predicts the most expensive 
positives strongest, then the methods above, esp. CAQ, will 
overestimate badly.  Negative correlation results in 
underestimates. (This problem also arises if the classifier’s scores 
have substantial correlation with cost for negative cases.) 
To avoid these problems, we recommend the cost attribute not be 
given as a predictive feature to the classifier. If the average cost 
for the positive class C+ is similar to the overall average, then this 
attribute will generally be non-predictive. But in the interesting 
case where it is substantially different from the background, this 
feature may be strongly predictive, e.g. a rare but relatively 
expensive subclass.  In this case, it is tempting to provide cost as a 
predictive feature to improve the classifier.  But it is better not to: 
the methods are explicitly designed to function despite imperfect 
classifiers. 

7. CONCLUSION 
It is fortunate that quantification can be made to compensate for 
the inaccuracy of a classifier, yielding substantially more precise 
and less biased estimates. This requires only small amounts of 
training data, which can reduce labor costs compared with having 
to train highly accurate classifiers. These factors can lead to 
greater acceptance of machine learning technology for business 
use.  We have been pushing machine learning within our 
company for years, but have never before experienced the 
business pull we find for quantification [3].  To data mining 
researchers who wish to apply and develop advanced prediction 
models, this comes as some surprise, since the task seems so 
simple—at least on the surface. 
Though the Median Sweep, Max and X methods all show great 
improvement over prior technology, they are surely not the last 
word.  Future work will involve research further down the tail 
toward greater class imbalance.  Chemists easily talk about parts 
per million, but machine learning is currently nowhere near up to 
the task. To research the tail will require very large benchmark 
datasets, ideally publishable ones for repeatability and 
experimentation by others. Studying high class imbalance 
requires that the data set labels not have mistakes, for the 
conclusions are more sensitive to any noise in the answer key. 
Ideally, such a dataset would include individual costs to support 
research in cost quantification.  The most effective methods may 
depend strongly on the characteristics of the data, so hopefully 
such a dataset would suit a popular family of applications. Other 
research directions are in multi-class methods, possibly including 
class hierarchies, or quantification under various constraints, such 
as having less tolerance for underestimating the size or cost of a 
subclass, as motivated by some business applications. Finally, 
trending over time naturally introduces concept drift, which is a 
challenging but important area for research. 
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APPENDICES 

A. EXPERIMENT PROTOCOL 
Here we give the experiment protocol in pseudo-code: 
 
foreach class c of each dataset d, where the binary task “c vs. not c” has >=200 positives and >=1900 negatives: 1 

foreach of 10 random trials: 2 
 randomly split dataset into Test and MaxTrain, where MaxTrain contains 100 positives and 1000 negatives 3 
 foreach P = 10…100 by 10: 4 
  foreach N = 100; 1000: 5 
   Train := first P positives and first N negatives of MaxTrain, which is ordered randomly  6 
   perform 50-fold stratified cross-validation on Train dataset, obtaining XPos and XNeg sets of scores 7 

foreach threshold t:  record the true positive rate tpr[t] and false positive rate fpr[t] from XPos and XNeg 8 
foreach threshold method M:  select M’s classification threshold by examining tpr, fpr 9 

   train final classifier C on Train dataset 10 
   apply C to Test dataset, obtaining Pos and Neg sets of scores 11 
   foreach p = 1%...95% (by 5% increments after 20%): 12 
    U := the largest random subset of Pos and Neg such that it contains p% positives 13 
    foreach quantification method M = MM, CC, AC, X, Max, T90, T50, F10, F5, MS, MS2, AD0, AD1, etc.: 14 
     q := estimate by method M given input U.    15 
     // Compute error metrics: Note: 0% <= q <= 100% 16 
     pp := the exact proportion of positives in U, which may differ slightly from p, depending on the counts 17 
     error := q - pp 18 
     abs_error := | error | 19 
     nce := normCE(pp,q) from equation (2), including back-off by 0.5/||U|| if q is exactly 0% or 100%. 20 

 
Each of the three error metrics is then averaged over the 250 runs (25 tasks x 10 splits) grouped by:  P, N, p, and method M.  For Figure 3, 
we then averaged over p=1..20% as well. 

Implementation notes: 
We distributed the loops on lines 1, 2, 4 and 5 across many CPUs. 
In line 15, the Mixture Model (method MM) needs the additional inputs XPos and XNeg.  To lift some re-usable computation out of the 
loop, we compute the empirical CDF distributions of these two sets before line 12.   Note the CDF of the test scores U must be recomputed 
within the loop, since it depends on p.   
When computing an empirical CDF, we use linear interpolation between adjacent points.  For example, if 53 true positives occurred <=  a 
particular classifier score threshold t in cross-validation on a training set with 1100 items, then tpr[t] = 53/1100, but it is unlikely that the 
exact score t was generated by any of the training negatives.  In this case, we determine the closest scores t- and t+ surrounding t that were 
generated on the negatives, and perform pair-wise linear interpolation between fpr[t-] and fpr[t+] to estimate fpr[t].  (We later tried applying 
Laplace ‘correction’ to the empirical CDF, but we found it generally worsened the estimates compared with the large test set.) 
Finally, in the Max method, we seek the threshold where tpr – fpr is maximized.  In the rare case where there is a range of thresholds that 
have an identical maximum, rather than take the first or last threshold of this range, we take the midpoint of the range.  This rarely 
occurred, but we include it for completeness.  It might be important for a perfect classifier where there is a range of thresholds where tpr=1 
and fpr=0. 
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B. DERIVATION OF PCAQ COST QUANTIFIER:  PRECISION-CORRECTED AVERAGE 
 
The cost estimation methods that use the precision-corrected average C+ of equation (3) are derived as follows.    
Given: 
 Ct  = the average cost of all cases predicted positive up to threshold t 
 Call = the average cost of all cases 
 q = the quantifier’s estimate for the percentage of positives in the test set 
we model Ct as the weighted average 
 Ct = Pt  C+  +  (1 – Pt) C-  
where Pt is the precision of the classifier at threshold t, and the two new unknowns are 
 C+ 

 = the average cost of positives (the value sought) 
 C- 

 = the average cost of negatives. 
Likewise, if we assume that q is a good estimate for the true percentage of positives: 
 Call = q  C+ +  (1 – q) C- 
Solving this for C- we get: 
 C- = ( Call – q  C+ ) / (1 – q) 
Substituting this into the model for Ct above, we get: 
 Ct = Pt  C+  +  (1 – Pt) [  ( Call – q  C+ ) / (1 – q) ] 
Toward solving for C+,  we first multiply both sides by (1-q) and then simplify: 
 (1-q) Ct  =  (1-q) Pt C+

  + (1-Pt) ( Call – q  C+ ) 

        =  Pt C+ - q Pt C+  + (1-Pt) Call – q  C+  + q Pt C+      the terms in bold-face cancel 
        =  (Pt – q) C+  +  (1 - Pt) Call 

Finally, solving for C+ we get equation (3): 
 C+  =  [   (1-q) Ct  –  (1-Pt) Call  ]   /   (Pt  – q) 
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C. COLOR GRAPHS 
Here we present color graphs that include all the methods, plus two others:  F10 selects the threshold where fpr=10%; F2 where fpr=2%.   
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Figure 7.  Absolute error, averaged over p=1..20% for all 25 tasks x 10 splits.  At left N=100, at right N=1000.  P=10…100. 
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Figure 8.  Ditto for cross-entropy. The log-scale is to separate the curves visually, but ‘badness’ should be considered linear. 
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Figure 9.  Ditto for mean squared error (MSE).  MSE is popular, but inferior to normalized cross-entropy for our purpose.  
For example, a -4% error at p=5% is considered equally bad by MSE as at p=20%. 
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Figure 10.  Ditto for bias  (average signed error). 
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Figure 11.  Absolute error for each value of p=1…20% test positives on the x-axis.  We fix P=100 training positives.   
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Figure 12.  Ditto for normalized cross-entropy.  


