

Quantifying Trends Accurately Despite Classifier Error and
Class Imbalance

George Forman
Information Services and Process Innovation Laboratory
HP Laboratories Palo Alto
HPL-2006-48(R.1)
June 16, 2006*

classification,
quantification, cost
quantification, text
mining

This paper promotes a new task for supervised machine learning
research: quantification—the pursuit of learning methods for accurately
estimating the class distribution of a test set, with no concern for
predictions on individual cases. A variant for cost quantification
addresses the need to total up costs according to categories predicted by
imperfect classifiers. These tasks cover a large and important family of
applications that measure trends over time.

The paper establishes a research methodology, and uses it to evaluate
several proposed methods that involve selecting the classification
threshold in a way that would spoil the accuracy of individual
classifications. In empirical tests, Median Sweep methods show
outstanding ability to estimate the class distribution, despite wide
disparity in testing and training conditions. The paper addresses shifting
class priors and costs, but not concept drift in general.

* Internal Accession Date Only
Published in KDD’06, 20-23 August 2006, Philadelphia, Pennsylvania, USA
© Copyright 2006 ACM Approved for External Publication

Quantifying Trends Accurately
Despite Classifier Error and Class Imbalance

George Forman
Hewlett-Packard Labs
1501 Page Mill Road
Palo Alto, CA 94304

ghforman@hpl.hp.com

ABSTRACT
This paper promotes a new task for supervised machine learning
research: quantification—the pursuit of learning methods for
accurately estimating the class distribution of a test set, with no
concern for predictions on individual cases. A variant for cost
quantification addresses the need to total up costs according to
categories predicted by imperfect classifiers. These tasks cover a
large and important family of applications that measure trends
over time.

The paper establishes a research methodology, and uses it to
evaluate several proposed methods that involve selecting the
classification threshold in a way that would spoil the accuracy of
individual classifications. In empirical tests, Median Sweep
methods show outstanding ability to estimate the class
distribution, despite wide disparity in testing and training
conditions. The paper addresses shifting class priors and costs,
but not concept drift in general.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: decision support.
I.5 [Pattern Recognition]: Design Methodology, classifier design
and evaluation

General Terms
Algorithms, Measurement, Design.

Keywords
classification, quantification, cost quantification, text mining.

1. INTRODUCTION
Tracking trends over time constitutes a very large family of
business and scientific applications, e.g. monitoring the
prevalence of hepatitis B. If the cases are labeled accurately,
either by humans or by supervised machine learning, then a
simple histogram of the class labels gives accurate counts. But
commonly such classifiers have some degree of error that leads,
perhaps surprisingly, to a large and systematic bias in the counts.
There is a tremendous literature in machine learning that focuses

on optimizing the correctness of individual predictions (accuracy,
F-measure, etc.). While useful, it is not sufficient for this large
family of applications whose objective is different: accurate
estimation of the histogram counts. Interestingly, it does not
matter that the count may involve both false positives and false
negatives, as long as they balance one another well to cancel each
other out. This brings about two challenging and valuable tasks
for ongoing research:
1. The quantification task for machine learning: given a

labeled training set, induce a quantifier that takes an
unlabeled test set as input and returns its best estimate of
the class distribution.

At first, this task may seem almost trivial, but experience proves
otherwise. The ubiquitous practices of random sampling and
cross-validation in machine learning research completely hide the
problem, since the training class distribution is chosen to match
that of testing. This has perhaps suppressed recognition of this
important research setting, as well as its more complicated testing
methodology, which we address in Section 3 to evaluate the
quantification methods proposed in Section 2.
2. The cost quantification task for machine learning: given

a labeled training set, induce a cost quantifier that takes
an unlabeled test set as input and returns its best estimate
of the total cost associated with each class, as determined
by a cost attribute on each record (which in some settings
may have missing values).

For example, consider the task of estimating the total time spent
(labor cost) by technical support agents dealing with calls related
to problem X each month. One solution is to train a binary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD'06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008...$5.00.

Table 1. Parameters varied in the experimental comparison

P = 10...100 Positives in training set
N = 100...1000 Negatives in training set
p = 1...95% Percent positives in test set
Benchmark = 25 binary text classification tasks, x 10 splits
Learning Algorithms:
SVM linear Support Vector Machine
NB multinomial Naive Bayes
Performance Metrics:
Abs.Err |estimated p – actual p|
Bias estimated p – actual p
CE normalized Cross-Entropy
Methods:
CC Classify & Count
AC Adjusted CC, plus variants with selected thresholds
MS Median Sweep of AC at all thresholds
MM Mixture Model

 2

classifier to recognize problem X, and for each monthly batch of
call logs, return the sum of the cost values of all cases predicted
positive. Partly due to reasons stated above, this is a poor
approach. We address this and propose methods in Section 6.3.
A flip-side benefit of quantification technology is that to obtain an
equivalent accuracy of the count, a much less accurate classifier
can be used. This enables some applications of machine learning
where otherwise its classification accuracy would be
unacceptable. This can also result in savings in the labor cost to
develop labeled datasets to train classifiers. At first blush, this
savings may not seem substantial. However, at Hewlett-Packard
we train thousands of classifiers to analyze technical support logs
to track the many different types of support issues that arise for
our many different product lines [3]. As a concrete example:
monitoring for an increase in the incidence rate of cracked screens
on HP iPAQ handheld products. Further, the training needs are
ongoing because of concept drift, as well as the introduction of
product lines and new support issues. So labor savings from
quantification technology continues to accumulate over time.
We finish this section with a discussion of related work, before
we introduce and then test methods for quantification in the
subsequent sections. In this paper, without much loss of
generality, we primarily focus on two-class tasks in order to
simplify the exposition and resolve a key sub-problem for the
multi-class setting (Section 6.2). In this binary setting we can
speak of estimating the number of positives in a test set.

1.1 Related Work
Most supervised machine learning research attempts to optimize
the correctness of individual classifications in one way or another.
Hence, each classification can be judged independently, and the
success of a method can be judged by its accuracy, error rate or F-
measure averaged over a large benchmark of tasks. In contrast,
quantification produces a single output for a whole batch of items.
These outputs must be aggregated over many batches in a large
benchmark to evaluate methods. Hence, the research methodology
is unusual.
It bears a superficial resemblance to the batching used in research
for probability estimating classifiers. For example, if a
meteorologist predicts the chance of rain at 20% on certain days
of the year, we would like it to rain on 20% of those days. The
correctness of a prediction on a single day cannot be judged.
Some methods even require examination of the entire test set
before producing any output. However, probability estimation,
like traditional classification, continues to make individual
predictions on each item, and judge them in aggregate. By
contrast, quantification makes a single prediction based on an
entire batch—a single scalar for two-class tasks. This batching
requirement calls for a different research methodology (section 3).
Intuitively, not having to make individual predictions should
make the estimation task easier. An insurance company can
estimate how many cars will have accidents next year, but cannot
predict which ones. The nature of the uncertainty is shifted from
the individual cases to the aggregate count.
Regarding probability estimation: one obvious idea for a
quantification method is to induce a classifier that outputs
calibrated probability estimates, and then to sum these
probabilities over the test set to estimate the count for each class.
This has an intuitive advantage over simply counting discrete

predictions made by a traditional classifier, which loses
information about the uncertainty of individual predictions.
Nonetheless, this obvious method is ill-posed: the calibration
depends critically on the class distribution of the training set,
which does not generally match that of the test set in
quantification (cf. it always matches under cross-validation).
Estimating the class distribution of a target dataset is not new.
But existing work in machine learning estimates the test class
distribution in order to adjust the classification threshold [e.g.
1,9,10]. Again, the objective metric in such research has been the
correctness of the individual classifications. To our knowledge,
ours is the first work to empirically compare and determine
machine learning methods that excel in estimating the class
distribution. This paper extends our recent publication [4] with
superior methods, as well as a more focused experiment protocol.
Of course, once accurate and robust methods are established for
estimating the distribution, they can be used as a subroutine for
the traditional purposes of calibrating probability estimating
classifiers, or optimizing the classification decision threshold to
minimize cost, e.g. in ROC analysis [1].
As a side note, there is unsupervised work in tracking shifting
topic distributions [e.g. 7,8]. It naturally has uncalibrated cluster
boundaries, having no bearing on supervised quantification.

2. QUANTIFICATION METHODS
As a strawman method, consider simply learning a state-of-the-art
binary classifier from the training set, and counting the number of
items of the test set for which it predicts positive. We call this
simple method Classify & Count (CC). The observed count of
positives from the classifier will include true positives TP and
false positives FP. Ideally, we would like to adjust the observed
count somehow for the false positives and false negatives. By the
following characterization, we derive such a quantifier, the
Adjusted Count (AC) method [4]:

 Classifier Prediction:
Actual Class: Pos Neg

Positives TP = tpr * Positives FN

 Negatives FP = fpr * Negatives
 = fpr * (total - Positives) TN

where tpr is the true positive rate of the classifier,
P(predict + | actual pos), and fpr is its false positive rate,
P(predict + | actual neg). The observed count of positives is then:
 Pos = tpr * Positives + fpr * (total – Positives)
 = (tpr – fpr) * Positives + fpr * total
Solving for the actual number of Positives, we get:

Positives = (Pos – fpr * total) / (tpr – fpr)
Finally, dividing both sides by the total, we express the equation
in terms of percentages of positives:

adjusted estimate p’ = (observed % positives) – fpr
 tpr – fpr

(1)

It remains only to estimate the fpr and tpr characteristics of the
classifier, which is accomplished via standard cross-validation on
the training set. These characteristics are independent of the
training class distribution because they treat positives and
negatives separately. Since these estimates may deviate somewhat

 3

from the actual tpr,fpr rates in testing, we must clip the output of
formula (1) to the range 0% to 100% in order to avoid occasional
infeasible estimates. In summary, the AC method trains a binary
classifier, estimates its tpr,fpr characteristics via cross-validation
on the training set, and then when applied to a given test set,
adjusts its quantification estimate by formula (1).

2.1 Class Imbalance Problem
The AC method estimates the true class distribution well in many
situations, but its performance degrades severely if the training
class distribution is highly imbalanced (e.g. Figure 8 in [4]). For
example, with P=50 positive training cases and N=1000 negative
training cases, the induced classifier is very conservative about
voting positive. If the positive class is rare enough, it will simply
vote negative always, i.e. tpr=0%. While this may result in
optimal classification accuracy (for the distribution in the training
set), it is useless for estimating the distribution of the test set.
Backing off from this extreme, consider a classifier that is very
conservative but not entirely negative. Its true positive rate tpr
would be very low, and its false positive rate fpr would be non-
zero. This forces the denominator (tpr – fpr) of formula (1) to a
small range, making the quotient highly sensitive to any error in
the estimate of tpr and fpr, giving bad estimates under imbalance.
Unfortunately, high class imbalance is pandemic, esp. to our
business applications, and so the need to operate well under these
conditions is important. A well known workaround is simply to
disregard many cases in the majority class of the training set to
bring it back into balance. But this throws away information. We
can do better. Having investigated the reason for the degradation,
we have devised new methods that are resilient under class
imbalance and take advantage of any surfeit of negative training
cases, which are often freely available.

2.2 Imbalance Tolerant Methods
The solution to the class imbalance problem lies in recognizing
that accuracy on individual classifications is not important to our
objective. We will select a different decision threshold for the
classifier that will provide better estimates via formula (1),
although the threshold may be completely inappropriate for
maximizing classification accuracy. Specifically, we will admit
many more false positives to avoid a threshold in the tails of the
curve, where estimates of tpr,fpr are poorer.
The remaining question is what policy to use for selecting a
threshold. To consider the possibilities, we use the illustration in

Figure 1. The x-axis represents the spectrum of thresholds, i.e.
the scores generated by the raw classifier. They are uncalibrated
and may take any range, e.g. the probability output by Naïve
Bayes, which is notorious for its poor probability calibration, or
the signed distance from the separating hyperplane of an SVM
(calibrating the SVM output via a fitted logistic regression model
would have no effect on the methods, since they do not use the
magnitude of the x-axis except as a decision threshold).
The descending curve shows the false positive rate fpr and the
ascending curve shows the inverse of the true positive rate (false
negative rate = 1 – tpr). The inversion of tpr is visually useful to
see the tradeoff with fpr. For a perfect classifier, there would be
perfect separation between these two curves (this never occurred
in our benchmark tasks). These example curves represent an
SVM classifier whose natural threshold of zero delivers 92%
classification accuracy for an imbalanced training set having 50
positives and 1000 negatives. Because negatives abound, SVM
naturally optimized for a very low false positive rate, even at the
cost of a ‘few’ misclassified positives (28 of 50). This explains its
poor F-measure of 50%.
The basic AC method uses the classifier’s default threshold,
which will be far in the fpr tail if positives are rare in training. An
intuitively better threshold policy is where the two curves cross,
where fpr = 1-tpr (labeled X in Figure 1). This “X” method
nicely avoids the tails of both curves. Considering the earlier
discussion of small denominators, another likely policy is where
the denominator is maximized: method Max = argmax(tpr-fpr).
More traditionally, a Neyman-Pearson criterion would select the
threshold at a particular true positive rate (method T90 = 90%,
T50 = 50%), or false positive rate (F5 = 5%). We tested all these
threshold policies and others.

2.3 Median Sweep (MS)
All the threshold selection methods above run the risk that the
tpr,fpr estimates from cross-validation at their chosen threshold
do not happen to match the actual rates encountered on the test
set. For this reason, we consider an additional approach: obtain
an estimate at every threshold, and return a mean or median of
these estimates. Median is preferred, as it is less sensitive to
outliers. Specifically, the Median Sweep (MS) method computes
the distribution estimate via formula (1) for all thresholds, and
returns the median. Considering the earlier discussion about high
sensitivity when the denominator becomes small, we also evaluate
a variant (MS2) that considers only thresholds where the
denominator (tpr-fpr) is greater than ¼.

2.4 Mixture Model (MM)
For comparison, we also include a robust quantification method
from our earlier work, which is based on completely different
principles. Due to space limitations, we cannot describe the
method fully here, but we refer readers to [4]. In short, it models
the distribution of raw classifier scores generated on the test set as
a mixture of two distributions: the classifier scores on the training
negatives, and those on the training positives—as determined by
cross-validation. An optimization step determines the mixture
that results in the best fit, and then it returns this as the estimated
% positive. This method is surprisingly robust with even as few
as 10 training positives (!). While it does not apparently suffer
from the class imbalance problem, we shall see that the Median
Sweep methods often surpass it.

0%

20%

40%

60%

80%

100%

raw classifier scores (uncalibrated)

 X

 A
C

de
fa

ul
t

 M
ax

 T
50

T
90

F
5

fpr of
1000 negatives

(1 - tpr) of
50 positives

Figure 1. Various threshold selection policies.

 4

3. EXPERIMENT METHODOLOGY
As mentioned in the introduction, quantification research
necessitates a substantially different experiment methodology. In
particular, the class distribution must be varied independently and
dramatically between the training and testing sets. Further, since
each batch produces only a single estimate, we must test on many
batches and aggregate measurements to identify trends. The ideal
quantification method will generate accurate estimates, despite
wide variation in training and testing conditions.
To vary the training conditions, we randomly select P=10…100
positive training cases, and N=100 or 1000 negative training cases
from the benchmark dataset at hand. These sizes are selected to
cover common operating ranges of interest to our business
applications, and are reasonable for many other situations. The
larger number of negatives represents a common multi-class case
where we consider one class at a time against many others that
each has 10…100 example cases.
To vary the testing conditions, we select as many positives and
negatives from the remaining benchmark dataset such that the
percent positives matches our target p. For a specific dataset
having 864 positives and 10298 negatives, we first take 100
positives and 1000 negatives out for training (subsetting these for
varied training situations), leaving 764 positives and 9298
negatives. When targeting p=20% positive, we test with all 764
positives and a random subset of 3056 negatives; for p=1%, we
use a random subset of 94 positives against all 9298 negatives.
Our business datasets often have >100,000 cases to quantify, but
are not publishable and rarely labeled with ground truth.
Our prior study measured performance on test sets ranging from
p=5%…95% positive, stepping by 5%. While reasonable
scientifically, this does not focus on the area of interest for the
business problems we face: 1…20% positives is a more
challenging and more important range in which to estimate well.
Furthermore, we speculate that this range is preferable to study in
general. Four loose arguments: (a) For >50% positive, one might
simply reverse the meaning of positive and negative. (b) A
common type of quantification task has many mutually exclusive
classes, therefore most classes are moderately rare in order to sum
to 100%. (c) For ~20…80% positive, class imbalance is not a
problem, and classifiers tend to operate better in this region.
(d) Finally, to get tight confidence intervals when estimating the
percent positive, e.g. by manual testing, many more cases must be
examined if positives are rare—so, the labor savings of automatic
quantification is much greater in the tails.

3.1 Error Metrics
A natural error metric is the estimated percent positives minus the
actual percent positives. By averaging across conditions, we can
determine whether a method has a positive or negative bias. But
even a method that guesses 5 percentage points too high or too
low equally often will have zero bias. For this reason, absolute
error is a more useful measure. But it is unsatisfactory in this way:
estimating 41% when the ground truth is 45% is not nearly as
‘bad’ as estimating 1% when the ground truth is 5%. For this
reason, cross-entropy is often used as an error measure. To be
able to average across different test class distributions, however, it
needs to be normalized so that a perfect estimate always yields
zero error. Hence, we use normalized cross-entropy, defined as:

normCE(p,q) = CE(p,q) – CE(p,p) (2)
CE(p,q) = -p log2(q) – (1-p) log2(1-q)

where q is the estimate of the actual percent positives p in testing.
Since cross-entropy goes to infinity as q goes to 0% or 100%, we
back off any estimate in these situations by half a count out of the
entire test set. Matching our intuition, this back-off will
increasingly penalize a method for estimating zero positives for
larger test sets: it is worse to mistakenly estimate zero positives
among thousands of test cases than among ten.

3.2 Datasets
The benchmark text classification tasks are drawn from
OHSUMED abstracts (ohscal), the Los Angeles Times (la), and
the Foreign Broadcast Information Service (fbis) [6]; the feature
vectors are publicly available for download from the Journal of
Machine Learning Research [5]. See Table 2. For this suite of
experiments, we consider the binary classification task of one
class vs. all others. Only 25 of the 229 potential binary tasks
suited our needs, because we required a large number of positives
and negatives for this study. (Our prior study went up to 2000
training negatives, but this depletes the supply of negatives for
testing, leaving only 21 suitable binary tasks.) F-measure for
these tasks averages in the mid-70’s.

3.3 Learning Algorithms
We use the linear Support Vector Machine (SVM)
implementation provided by the WEKA library v3.4 [11]. We
also repeated the experiment with the multinomial Naïve Bayes
classifier, which has respectable performance in the text domain.
The adjusted count methods and the mixture model all require
cross-validation on the training set to generate the distribution of
scores for positives and negatives, in order to characterize tpr and
fpr. We chose 50-fold stratified cross-validation. (Note that if
there are fewer than 50 positives in the training set, it feels

Table 2. Benchmark classification tasks.
Dataset Class Positives Negatives Total
1 fbis 3 387 2076 2463
2 fbis 7 506 1957 2463
3 fbis 10 358 2105 2463
4 la1 0 354 2850 3204
5 la1 1 555 2649 3204
6 la1 2 341 2863 3204
7 la1 3 943 2261 3204
8 la1 4 273 2931 3204
9 la1 5 738 2466 3204

10 la2 0 375 2700 3075
11 la2 1 487 2588 3075
12 la2 2 301 2774 3075
13 la2 3 905 2170 3075
14 la2 4 248 2827 3075
15 la2 5 759 2316 3075
16 ohscal 0 1159 10003 11162
17 ohscal 1 709 10453 11162
18 ohscal 2 764 10398 11162
19 ohscal 3 1001 10161 11162
20 ohscal 4 864 10298 11162
21 ohscal 5 1621 9541 11162
22 ohscal 6 1037 10125 11162
23 ohscal 7 1297 9865 11162
24 ohscal 8 1450 9712 11162
25 ohscal 9 1260 9902 11162

 5

undesirable that some test folds will contain no positives. But we
found only degradation trying 10- or min(50,P,N)-folds instead.)
A great deal of computer time can be saved by sharing the
computation that is common to all methods: (a) the 50-fold cross
validation on the training set, (b) training the final classifier on
the training set, and (c) applying that classifier to the test set to
generate scores for the positives and for the negatives. Different
subsets of these scores can then be used to evaluate various
quantification methods under different test class distributions.
Sharing steps 1–3 reduced the overall computational load of this
experiment by a factor of ~200. As it was, the experiment
consumed several days on hundreds of fast 64-bit CPUs in the HP
Labs Utility Datacenter. The complete experiment protocol is
listed in pseudo-code in the online appendix.

4. EXPERIMENT RESULTS
Given the large number of parameters in this experiment, we
break down the results into sections where we hold some
conditions constant as we vary others. For each figure, we will
have a pair of graphs: N=100 training negatives on the left, and
N=1000 training negatives on the right; we take care that the y-
axis range is identical for easy comparison. Every data point
represents an average performance over the 25 benchmark text
classification tasks times 10 random splits. Except where stated
otherwise, we focus on the SVM base classifier.

4.1 Varied training, fixed target p=5%
We begin by examining how resilient the various quantification
methods are to wide variations in the training set, while we hold
the test conditions fixed at p=5% positive. Figure 2 shows the
accuracy of the quantifications, as measured by absolute error
from the 5% target. Overall we see the Median Sweep methods
dominate (MS and MS2, bold lines). Note the absolute scale: the
MS methods estimated on average within two percent given only
P=30 positives and N=100 negatives, or within one percent given
P=30 & N=1000 (e.g. estimating 6% positive when the ground
truth is 5%). Note the performance with P=50 is nearly as good
as at P=100. When labor costs are involved to manually label
training cases, this can amount to significant savings.
In the graph for N=100 training negatives (left), the simple
Classify & Count (CC) method achieved the lowest absolute
error, but only for very specific training conditions. We seek
methods with consistently good predictions, despite training
variations.
Next consider N=1000 negatives (right): CC appears competitive
when given a large enough set of training positives, but this is
illusory. Deeper examination reveals that for smaller P it
underestimates and for greater P it progressively overestimates.
The training class prior is simply moving the decision threshold,
resulting in more positive predictions, not better quantification.
By contrast, the basic Adjusted Count (AC) method does

 0

 1

 2

 3

 4

 5

 10 20 30 40 50 60 70 80 90 100

ab
so

lu
te

 e
rr

or

P training positives (N=100 negatives)

CC
AC

MM
X

Max
T50
MS

MS2

 0

 1

 2

 3

 4

 5

 10 20 30 40 50 60 70 80 90 100

ab
so

lu
te

 e
rr

or

P training positives (N=1000 negatives)
Figure 2. Absolute error for target p=5% positives only.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 10 20 30 40 50 60 70 80 90 100

cr
os

s-
en

tr
op

y

P training positives (N=100 negatives)

CC
AC

MM
X

Max
T50
MS

MS2

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 10 20 30 40 50 60 70 80 90 100

cr
os

s-
en

tr
op

y

P training positives (N=1000 negatives)

Figure 3. Cross-entropy for targets p=1…20% averaged.

 6

converge to better quantification once sufficient training positives
are available. With P<40 & N=1000, however, the class
imbalance is so great that the AC method gets severe error. Our
prior work highlighted the remarkable stability of the Mixture
Model (MM) method even with great imbalance. MM is
dominated, however, by many of the methods in this paper
designed to address the class imbalance problem. Interestingly,
even without class imbalance (P≈N=100 at left), the MS and T50
(tpr=50%) methods surpass prior methods. We return to this point
in the discussion.
(A few mediocre methods were omitted from the graphs to
improve readability. The online version of this paper has a color
appendix containing all the results.)

4.2 Varied training, varied target
The analysis above was for a single target of p=5% positives.
Does the strong result for Median Sweep generalize for
p=1…20% positives? To check this, we average the performance
over this whole range. As discussed in the methodology section,
to average different targets together, we must not simply use
absolute error, but rather normalized cross-entropy. See Figure 3
for these results. Though the y-axis scale is now different than
Figure 2, the rankings are qualitatively similar. Median Sweep
continues to dominate on average.
To determine whether Median Sweep dominates for all target
distributions, we expanded the study up to 95% test positives.

Instead of averaging over this range, we spread out p=1..95%
along the x-axis in Figure 4; but to keep the focus on the lower
region, we used a log-scale x-axis. Since we are not averaging
results across different values of p, the y-axis shows absolute
error, which is more intuitive than cross-entropy. To view the
results in two dimensions, we must hold some other variable
constant: we fix P=100 training positives, where performance is
relatively insensitive to changes in P.
In the low p range, Median Sweep methods excel. In the higher
range, two methods excel consistently: Max (maximize tpr - fpr)
or X (where fpr and 1-tpr cross). But in the following analysis we
shall see that the Max method suffers from systematic bias.
Finally, the absolute error grows substantially for all methods as p
approaches 95%. But this is not especially concerning: (a) it is a
rare operating range, (b) if positives are so prevalent, it is more
likely that the classifier would be trained with a positive majority
rather than a negative majority as we have done here, and (c) in
order to experiment at 95% positives, we end up with very few
test negatives, due to the shortage of positive training cases. For
example, if only 380 positives are available for testing, we end up
with merely 20 test negatives in order to achieve p=95%. So, the
experimental results have naturally higher variance in this region.
If one needed to research this region more effectively, larger
benchmark datasets are called for, or else the meaning of positives
and negatives might be reversed.

 0

 1

 2

 3

 100 50 20 10 5 2 1

ab
so

lu
te

 e
rr

or

target p% positives (N=100 negatives)

AC
MM

X
Max
T50
MS

MS2

 0

 1

 2

 3

 100 50 20 10 5 2 1

ab
so

lu
te

 e
rr

or

target p% positives (N=1000 negatives)

Figure 4. Absolute error for targets p=1…90% individually. P=100 training positives.

-2

-1

 0

 1

 2

 0 10 20 30 40 50 60 70 80 90 100

bi
as

 (
av

er
ag

e
si

gn
ed

 e
rr

or
)

target p% positives (N=100 negatives)

CC
AC

MM
X

Max
T50
MS

MS2

-2

-1

 0

 1

 2

 0 10 20 30 40 50 60 70 80 90 100

bi
as

 (
av

er
ag

e
si

gn
ed

 e
rr

or
)

target p% positives (N=1000 negatives)

Figure 5. Bias. Average signed error for targets p=1..90% individually. P=100 training positives.

 7

4.3 Bias Analysis
Next we analyze the other component of accuracy—bias—by
presenting the average signed error for each method. Figure 5
shows the bias under varied training (left vs. right) and testing
conditions (p% positives on x-axis). We abandoned the log-scale
here in order to show the strongly linear bias of two methods:
Max and Classify & Count. For the classifier trained with 50%
positives (P=N=100, at left), the CC method progressively
overestimates when p<50%, and underestimates when p>50%, as
expected. When trained with 9% positives (P=100, N=1000, at
right), this balance point is shifted accordingly, but not
proportionately—it is unbiased only at p=3% instead of 9%. We
have seen this behavior consistently: SVM exaggerates the
training class imbalance in testing. Although the ubiquitous
suggestion is to bias the SVM cost penalty C, it proves ineffective
and has been better addressed recently by Wu and Chang [12].
It is surprising that the Max method, being an Adjusted Count
variant, also exhibits a linear bias, albeit to a lesser degree than
CC. This means that the Max method consistently finds thresholds
such that the tpr and fpr characterization does not hold well for
the test set. All the other methods have a relatively stable bias
over a wide range.
We see greatly increasing bias at the tails, which is expected: If a
method’s estimates vary by a few percent and p is close to zero,
any infeasible negative estimates are adjusted up to 0%, resulting
in a positive bias. As we approach p=95% positives, the even
greater negative bias is similarly caused by clipping estimates
which have greater variance, as shown previously.

4.4 Failure Analysis
Although an induced classifier should learn to separate cases well
enough that its true positive rate tpr is greater than its false
positive rate fpr, they nonetheless fail sometimes. This usually
happens under great class imbalance in training. For example, for
one of the ten splits on one of the tasks trained with P=10 and
N=100, the induced classifier’s natural threshold gave tpr=fpr=0.
It learned to classify everything as negative, which results in a
troublesome zero denominator in the adjusted count method. The
commonness of this problem was part of the impetus for this
research: tpr was less than or equal to fpr in 623 of 10,000 cases
for AC. In progressively decreasing occurrence of failure, we
have: AC, T90, F5, F10, T50 and X. The Max method never

experienced a failure, exactly because it seeks to maximize the
denominator. Naturally, this is a non-problem for either CC or
the Mixture Model.

4.5 Naïve Bayes vs. SVM
We do not present graphs for the Naïve Bayes classifier because
every quantification method under every training/testing
condition performed substantially better on average with SVM as
the base classifier. It is well established for text classification that
SVM usually obtains better accuracy than Naïve Bayes. But our
finding further suggests its tpr and fpr characteristics may be
more stable as well.

4.6 Greater Imbalance, Held-Out Dataset
Given the consistent performance of the Median Sweep methods,
we would like to ensure their continued performance in situations
with even greater training class imbalance (~1%), such as we face
in practice. This study so far has been limited to N=1000 training
positives, in order to have 25 benchmark tasks for study.
Although we could increase class imbalance by simply reducing
P, this results in degenerate classifiers. Instead, we would like to
consider a greater number of negatives. In addition, we want to
validate these results against other classification problems.
For these two purposes, we held back a dataset: new3 from [6]. It
has 9558 cases partitioned into 44 classes. We repeated our study
on its 17 classes that have at least 200 positives, setting aside
5000 negatives for training. Figure 6 shows these results for P=50
and N=5000 negatives (~1% positives in training, right) and for a
subset of N=1000 negatives (~5%, left). The log-scale x-axis
shows p, and the y-axis shows average absolute error. Although
perhaps uninteresting for its similar results to Figure 4 with
N=1000, it is encouraging that the conclusions generalize to held-
out tasks and to greater training imbalance. The Median Sweep
methods continue to estimate well for low p; they have <1%
absolute error for p<=10% in both graphs of Figure 6 and for
N=1000 in Figure 4. The competitive methods Max and X have
somewhat improved performance for this hold-out benchmark,
and now slightly beat MS for p as low as ~5%.

5. DISCUSSION
Observe in Figure 4 that the curves cluster into two shapes:
concave upward (MS,MS2,T50) and S-curve (Max,X,MM).
Interestingly, the AC method under high imbalance (N=1000 and

 0

 1

 2

 3

 100 50 20 10 5 2 1

ab
so

lu
te

 e
rr

or

target p% positives (N=1000 negatives)

CC
AC

MM
X

Max
T50
MS

MS2

 0

 1

 2

 3

 100 50 20 10 5 2 1

ab
so

lu
te

 e
rr

or

target p% positives (N=5000 negatives)

Figure 6. Like Figure 4, but for the held-out dataset, and greater training class imbalance. P=50 training positives.

 8

all of Figure 6) belongs to the concave upward group, but under
balanced training (N=100 in Figure 4) belongs to the S-curve
group. As discussed previously, the AC method under high
imbalance uses thresholds with many false negatives, i.e. closer to
T50 in the concave upward group. (Recall that T50 selects the
threshold at tpr=50%.) But under more balanced conditions, AC
uses thresholds closer to the X crossover point in Figure 1, which
results in the S-curve grouping. Looking now at MS, its
consistent grouping with T50 suggests it may be using many
estimates derived from tpr rates nearer to 50% than near the
cross-over point X.
We set out to address a problem that occurred under class
imbalance, and we ended up discovering methods that estimate
substantially better even under balanced training, e.g. Median
Sweep and T50. (See P~N=100 in Figures 2-4.) Since the
adjusted count formula is unchanged from the basic AC method,
this implies T50 selects a threshold for which tpr,fpr
characterization on the training set is more reliable than the
default threshold. This may provide a clue to the separate
problem of estimating tpr,fpr well for other purposes.
We believe the reason that Median Sweep works so well is that
instead of relying on the accuracy of a single tpr,fpr estimate, it
takes in information from all the estimates, of which many are
likely close. In some sense, it has the advantage of bootstrapping,
without the heavy computational cost of repeating the 50-fold
cross-validation for many different random samplings of the
available training set.
Until now we have referred to the Median Sweep methods
together. Overall they perform very similarly, which we should
expect since the median is very insensitive to outlier clipping,
unlike the mean. Even so, the MS2 variant—which only
considers estimates that come from larger, more stable
denominators—shows a slight benefit, particularly in lower bias
and over a broader range. This validates the idea that small
denominators result in poorer estimates. Putting MS2 into
production runs the risk that on some tasks there may no estimates
with a sufficiently large denominator, although this never
happened in our benchmark tasks. At the very least, it could fall
back to MS in such cases. Further research may develop a more
robust outlier clipping method that could improve Median Sweep
methods.
One motivation mentioned in the introduction for quantification
research is reduced training effort to obtain a given level of
accuracy. To illustrate this, note in the right-hand graph of Figure
3 that Median Sweep methods with P=20 positives achieve
similar accuracy to AC with P=50. But for the basic Classify &
Count method, additional training does not lead to an accurate,
unbiased quantifier. Furthermore, in the left-hand graph of Figure
3 we see that additional training examples mislead AC. The point
is this: quantification research is essential because accurate
estimates cannot be achieved by simple methods like CC or AC
just by providing more training data (unlike active learning
research where all methods produce the same classification
accuracy given enough training cases).
Although we are pleased to have reduced the absolute error of the
estimate to less than 1% in many situations, we need to quantify
increasingly rare events, where the bias and the relative error both
grow. To conduct experiments in the tail of the distribution
requires much larger labeled datasets made available for research.

6. EXTENSIONS
The implications of this work extend to trending over time, multi-
class quantification, and quantification of costs, which we
describe in sequence.

6.1 Trending
Measuring trends over time was listed as a primary motivation,
but so far we have only discussed quantifying the class
distribution of a single test set. In order to apply this technology
for trending, the cases are partitioned into discrete bins, e.g. daily
or monthly groupings, and the quantification is performed
independently on each batch to obtain accurate estimates. These
may then be plotted together in one graph, optionally with a fitted
trend line to project into the future where no cases are yet
available. As is typical with such applications, if there are too
many bins for the volume of data, the counts in each bin become
small and noisy. The quantification methods we describe are
intended to work on large batches. They will produce noisy
estimates given only a handful of items. For more accurate
quantification in these situations, we have used a sliding window
technique to aggregate cases from adjacent bins into each batch.
At the same time, this provides smoothing like a moving average,
e.g. to smooth over weekend-effects.
Note that this work addresses changes in the class distribution but
not general concept drift, where the definition of what counts as
positive may gradually or suddenly change arbitrarily [2]. When
trending over time, concept drift is often implicated, and can be
difficult to cope with. Ideally the quantifier used on each bin is
given a training set appropriate to the class concept in effect for
that bin. Naturally this can be hard to determine, and requires
ongoing training data.
Regardless of concept drift, if additional training cases become
available later—e.g. some cases are labeled in a new monthly
batch of data—it is best to redo the trend quantification over all
bins. The additional training data may improve the quantifier’s
estimates on the old bins as well. If instead one applies the
improved quantifier only to the new batch of data, this estimate
should not be appended to pre-existing trend lines. To do so
would compare estimates that are not calibrated to one another.

6.2 Multi-Class Quantification
In our use of quantification, we usually want to track the trends
for many classes, e.g. different types of technical support issues.
Since most customers call with a single problem, these classes are
competing, and therefore may be treated as a 1-of-n multi-class
problem. On the other hand, occasionally multiple issues do apply
to a single case. If there were a rampant trend of coinciding
issues, we would not want to have designed the system to be blind
to it. Hence, we quantify each issue independently, i.e. as an m-
of-n multi-class topic recognition task.
Nonetheless, there are situations where the 1-of-n multi-class
setting is called for. To treat this, one should not simply apply a
multi-class classifier to the dataset. If some classes are much
rarer than others either in the training set or in the test set, the test
set counts predicted for those classes may be very rare. The
adjusted count method applied then to each class will not lead to
good multi-class estimates.
Instead we recommend performing independent quantifications
for each class vs. all others, and then normalizing the estimates so

 9

they sum to 100%. In this way, each independent quantification
compensates for imperfect classification and for class imbalance.

6.3 Cost Quantification
Simply estimating the number of cases belonging to a category
may not correlate with importance. A relatively uncommon issue
having a high cost can be more important to delve into than a
more frequent issue having low cost.
If the average cost per positive case C+ is known in advance, it
can simply be multiplied into the quantifier’s estimate to obtain
the total cost of the positive cases. More commonly C+ is not
known, and we must analyze the cost attribute attached to each
case, e.g. the parts & labor cost to repair each problem. Consider
a rare subclass of repairs whose costs climbed substantially in the
new month of data.

6.3.1 Cost Quantification Methods
Classify & Total: The obvious solution, akin to CC, is to train a
classifier and total the cost attribute associated with all cases
predicted positive. But unless that classifier is perfectly accurate,
it will result in poor and systematically biased cost estimates.

Grossed-Up Total: The next obvious solution is to perform the
total as above, but then to adjust it up or down according to a
factor f determined by quantification. If the binary classifier
predicted 502 positives and the quantifier estimates 598.3
positives, then the cost total would be multiplied by f=598.3/502.
But this method suffers from similar problems as AC: it runs the
risk that the binary classifier may select zero or very few cases to
include in the total, if positives happen to be rare in its training or
test sets. Else if positives were overly common in the training set,
then the induced liberal classifier will include in its total the costs
of many negatives, polluting the result. This pollution occurs
even at the perfect ratio if there are some false positives.

Conservative Average * Quantifier (CAQ): We can reduce the
false-positive pollution by selecting the classifier’s decision
threshold to be more conservative—a classic precision-recall
tradeoff. Using a smaller set of highly precise predictions, we can
average their costs to estimate C+, and then multiply it by the
estimated size of the class from a quantifier. Ideally we would
like a threshold with 100% precision, but often there is no such
threshold. Furthermore, a highly conservative threshold based on
precision may predict only a few cases as positive, esp. if
positives are rare. Given too few items to average over, the
variance of the C+ estimate will be large, giving a poor overall
cost estimate. To avoid this problem, one might instead always
take the top, say, 100 most strongly predicted positives for the
average. But this cannot ensure high precision—some test sets
might have only 60 positives.

Precision-Corrected Average * Quantifier (PCAQ): Despite
decreased precision, there is pressure to use a less conservative
threshold for the reasons above, and also because at high
precision/low recall the classifier’s precision characterization
from cross-validating the training set has high variance. In
perfect analogy to the first part of this paper, we select a
classification threshold with worse precision, but having more
stable characterization as well as providing a sufficient number of
predicted positives to average over. We then adjust the average
according to a simple equation that accounts for the false-positive
pollution:

precision-corrected average C+ = (1-q) Ct – (1-Pt) Call
 Pt – q

(3)

where q is a quantifier’s estimate of the percentage of positives in
the test set, Pt is an estimate of the precision at a given threshold t,
Ct is the average cost of all cases predicted positive up to the
threshold t, and Call is the average cost of all cases. The
derivation is in the appendix, available only online. The
remaining design decision is which threshold to use—for
example, the T50 or X thresholds shown in Figure 1. We suggest
avoiding Max, given our earlier bias discussion about its choosing
thresholds with poor tpr,fpr characterization.

Median Sweep PCAQ: Rather than use a single threshold and
hope that its precision characterization is accurate, we may sweep
over many thresholds and select the median of the many PCAQ
estimates of C+. This has some of the benefit of bootstrapping
without the computational cost. Just as the MS2 method excludes
estimates that are likely to have high variance, a profitable variant
on this method might exclude estimates from thresholds where (a)
the number of predicted positives falls below some minimum, e.g.
30, (b) the confidence interval of the estimated C+ is overly wide,
and/or (c) the precision estimate Pt was calculated from fewer
than, say, 30 training cases predicted positive in cross-validation.

Mixture Model Average * Quantifier (MMAQ): Finally, rather
than try to determine an estimate at each threshold, we can model
the shape of the Ct curve over all thresholds as the mixture

Ct = Pt C+ + (1-Pt) C- (4)

where C- is the average cost of a negative case (which is also
unknown). This method estimates C+ (and C-) via linear
regression of the points generated at many different thresholds.
The same thresholds omitted by Median Sweep can be omitted
here as well, in order to eliminate some outliers that may have a
strong effect on the linear regression. Alternately, one may use
regression techniques that are less sensitive to outliers, e.g. that
optimize for L1-norm instead of mean squared error.

6.3.2 Evaluation
We found MMAQ outperformed CAQ in a small test. The next
logical research step is to evaluate all these methods against one
another. Unfortunately, any such empirical experiment depends
strongly on the cost distribution for positives vs. the cost
distribution for negatives (including their relative variances), in
addition to variation in the training set makeup and the test class
distribution. Besides its being a high dimensional experiment, we
must first have a large publishable benchmark with costs of
reasonable interest to a family of applications. This is an open
invitation to the research community.

6.3.3 Missing Costs
In some settings, especially those in worldwide enterprises, cost
values may be missing or detectably invalid for some cases.
Given that most of the above methods begin by estimating the
average cost for positives C+, such cases with missing cost may
simply be omitted from the analysis. That is, the estimate of C+ is
determined by the subset of cases having valid cost values, and
the count is estimated by a quantifier run over all the cases. This
can be effective if the data are missing at random (MAR).
However, if the MAR-assumption does not hold, the missing
values should first be imputed by a regression predictor.

 10

6.3.4 Cost-Confounded Prediction
The methods above implicitly assume that the cost of positive
cases is not correlated with the prediction strength of the base
classifier. As an assurance, one may check the correlation
between cost and the classifier scores over the positive cases of
the training set. If the classifier predicts the most expensive
positives strongest, then the methods above, esp. CAQ, will
overestimate badly. Negative correlation results in
underestimates. (This problem also arises if the classifier’s scores
have substantial correlation with cost for negative cases.)
To avoid these problems, we recommend the cost attribute not be
given as a predictive feature to the classifier. If the average cost
for the positive class C+ is similar to the overall average, then this
attribute will generally be non-predictive. But in the interesting
case where it is substantially different from the background, this
feature may be strongly predictive, e.g. a rare but relatively
expensive subclass. In this case, it is tempting to provide cost as a
predictive feature to improve the classifier. But it is better not to:
the methods are explicitly designed to function despite imperfect
classifiers.

7. CONCLUSION
It is fortunate that quantification can be made to compensate for
the inaccuracy of a classifier, yielding substantially more precise
and less biased estimates. This requires only small amounts of
training data, which can reduce labor costs compared with having
to train highly accurate classifiers. These factors can lead to
greater acceptance of machine learning technology for business
use. We have been pushing machine learning within our
company for years, but have never before experienced the
business pull we find for quantification [3]. To data mining
researchers who wish to apply and develop advanced prediction
models, this comes as some surprise, since the task seems so
simple—at least on the surface.
Though the Median Sweep, Max and X methods all show great
improvement over prior technology, they are surely not the last
word. Future work will involve research further down the tail
toward greater class imbalance. Chemists easily talk about parts
per million, but machine learning is currently nowhere near up to
the task. To research the tail will require very large benchmark
datasets, ideally publishable ones for repeatability and
experimentation by others. Studying high class imbalance
requires that the data set labels not have mistakes, for the
conclusions are more sensitive to any noise in the answer key.
Ideally, such a dataset would include individual costs to support
research in cost quantification. The most effective methods may
depend strongly on the characteristics of the data, so hopefully
such a dataset would suit a popular family of applications. Other
research directions are in multi-class methods, possibly including
class hierarchies, or quantification under various constraints, such
as having less tolerance for underestimating the size or cost of a
subclass, as motivated by some business applications. Finally,
trending over time naturally introduces concept drift, which is a
challenging but important area for research.

8. ACKNOWLEDGMENTS
I wish to thank my colleagues Jaap Suermondt, Evan
Kirshenbaum, Jim Stinger, Tom Tripp, and Farzana Wyde for
their contributions in conceiving and developing this application.
Thanks also to Bin Zhang for pre-reviewing this paper.

9. REFERENCES
[1] Fawcett, T. ROC graphs: notes and practical considerations

for data mining researchers. Hewlett-Packard Labs, Tech
Report HPL-2003-4, 2003. www.hpl.hp.com/techreports

[2] Fawcett, T. and Flach, P. A response to Webb and Ting’s
‘On the application of ROC analysis to predict classification
performance under varying class distributions.’ Machine
Learning, 58(1):33-38, 2005.

[3] Forman, G., Kirshenbaum, E., and Suermondt, J. Pragmatic
text mining: minimizing human effort to quantify many
issues in call logs. In Proc. of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD, Philadelphia), 2006.

[4] Forman, G. Counting positives accurately despite
inaccurate classification. In Proc. of the 16th European Conf.
on Machine Learning (ECML, Porto):564-575, 2005.

[5] Forman, G. An extensive empirical study of feature
selection metrics for text classification. J. of Machine
Learning Research, 3(Mar):1289-1305, 2003.

[6] Han, E. and Karypis, G. Centroid-based document
classification: analysis & experimental results. In Proc. of
the 4th European Conf. on the Principles of Data Mining and
Knowledge Discovery (PKDD): 424-431, 2000.

[7] Havre, S., Hetzler, E., Whitney, P., and Nowell, L.
ThemeRiver: visualizing thematic changes in large document
collections. IEEE Transactions on Visualization and
Computer Graphics, 8(1):9-20, 2002.

[8] Mei, Q. and Zhai, C. Discovering evolutionary theme
patterns from text: an exploration of temporal text mining.
In Proc. of the 11th ACM SIGKDD Int’l Conf. on Knowledge
Discovery in Data Mining (KDD, Chicago): 198-207, 2005.

[9] Saerens, M., Latinne, P., and Decaestecker, C. Adjusting the
outputs of a classifier to new a priori probabilities: A simple
procedure. Neural Computation, 14(1):21–41, 2002.

[10] Vucetic, S. and Obradovic, Z. Classification on data with
biased class distribution. In Proc. of the 12th European Conf.
on Machine Learning (ECML, Freiburg):527-538, 2001.

[11] Witten, I. and Frank, E., Data mining: Practical machine
learning tools and techniques (2nd edition), Morgan
Kaufmann, San Francisco, CA, 2005.

[12] Wu, G. and Chang, E. KBA: kernel boundary alignment
considering imbalanced data distribution. IEEE Trans. on
Knowledge and Data Engineering, 17(6):786-795, 2005.

 11

APPENDICES

A. EXPERIMENT PROTOCOL
Here we give the experiment protocol in pseudo-code:

foreach class c of each dataset d, where the binary task “c vs. not c” has >=200 positives and >=1900 negatives: 1

foreach of 10 random trials: 2
 randomly split dataset into Test and MaxTrain, where MaxTrain contains 100 positives and 1000 negatives 3
 foreach P = 10…100 by 10: 4
 foreach N = 100; 1000: 5
 Train := first P positives and first N negatives of MaxTrain, which is ordered randomly 6
 perform 50-fold stratified cross-validation on Train dataset, obtaining XPos and XNeg sets of scores 7

foreach threshold t: record the true positive rate tpr[t] and false positive rate fpr[t] from XPos and XNeg 8
foreach threshold method M: select M’s classification threshold by examining tpr, fpr 9

 train final classifier C on Train dataset 10
 apply C to Test dataset, obtaining Pos and Neg sets of scores 11
 foreach p = 1%...95% (by 5% increments after 20%): 12
 U := the largest random subset of Pos and Neg such that it contains p% positives 13
 foreach quantification method M = MM, CC, AC, X, Max, T90, T50, F10, F5, MS, MS2, AD0, AD1, etc.: 14
 q := estimate by method M given input U. 15
 // Compute error metrics: Note: 0% <= q <= 100% 16
 pp := the exact proportion of positives in U, which may differ slightly from p, depending on the counts 17
 error := q - pp 18
 abs_error := | error | 19
 nce := normCE(pp,q) from equation (2), including back-off by 0.5/||U|| if q is exactly 0% or 100%. 20

Each of the three error metrics is then averaged over the 250 runs (25 tasks x 10 splits) grouped by: P, N, p, and method M. For Figure 3,
we then averaged over p=1..20% as well.

Implementation notes:
We distributed the loops on lines 1, 2, 4 and 5 across many CPUs.
In line 15, the Mixture Model (method MM) needs the additional inputs XPos and XNeg. To lift some re-usable computation out of the
loop, we compute the empirical CDF distributions of these two sets before line 12. Note the CDF of the test scores U must be recomputed
within the loop, since it depends on p.
When computing an empirical CDF, we use linear interpolation between adjacent points. For example, if 53 true positives occurred <= a
particular classifier score threshold t in cross-validation on a training set with 1100 items, then tpr[t] = 53/1100, but it is unlikely that the
exact score t was generated by any of the training negatives. In this case, we determine the closest scores t- and t+ surrounding t that were
generated on the negatives, and perform pair-wise linear interpolation between fpr[t-] and fpr[t+] to estimate fpr[t]. (We later tried applying
Laplace ‘correction’ to the empirical CDF, but we found it generally worsened the estimates compared with the large test set.)
Finally, in the Max method, we seek the threshold where tpr – fpr is maximized. In the rare case where there is a range of thresholds that
have an identical maximum, rather than take the first or last threshold of this range, we take the midpoint of the range. This rarely
occurred, but we include it for completeness. It might be important for a perfect classifier where there is a range of thresholds where tpr=1
and fpr=0.

 12

B. DERIVATION OF PCAQ COST QUANTIFIER: PRECISION-CORRECTED AVERAGE

The cost estimation methods that use the precision-corrected average C+ of equation (3) are derived as follows.
Given:
 Ct = the average cost of all cases predicted positive up to threshold t
 Call = the average cost of all cases
 q = the quantifier’s estimate for the percentage of positives in the test set
we model Ct as the weighted average
 Ct = Pt C+ + (1 – Pt) C-
where Pt is the precision of the classifier at threshold t, and the two new unknowns are
 C+

 = the average cost of positives (the value sought)
 C-

 = the average cost of negatives.
Likewise, if we assume that q is a good estimate for the true percentage of positives:
 Call = q C+ + (1 – q) C-
Solving this for C- we get:
 C- = (Call – q C+) / (1 – q)
Substituting this into the model for Ct above, we get:
 Ct = Pt C+ + (1 – Pt) [(Call – q C+) / (1 – q)]
Toward solving for C+, we first multiply both sides by (1-q) and then simplify:
 (1-q) Ct = (1-q) Pt C+

 + (1-Pt) (Call – q C+)

 = Pt C+ - q Pt C+ + (1-Pt) Call – q C+ + q Pt C+ the terms in bold-face cancel
 = (Pt – q) C+ + (1 - Pt) Call

Finally, solving for C+ we get equation (3):
 C+ = [(1-q) Ct – (1-Pt) Call] / (Pt – q)

 13

C. COLOR GRAPHS
Here we present color graphs that include all the methods, plus two others: F10 selects the threshold where fpr=10%; F2 where fpr=2%.

0

1

2

3

4

5

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

100 1000

av
er

ag
e

ab
so

lu
te

 e
rr

or

AC
MS
MS2
T50
Max
T90
X
F10
F5
F2
CC
MM

TrainN TrainP

Method

Figure 7. Absolute error, averaged over p=1..20% for all 25 tasks x 10 splits. At left N=100, at right N=1000. P=10…100.

0.001

0.01

0.1

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

100 1000

av
er

ag
e

no
rm

al
iz

ed
 c

ro
ss

-e
nt

ro
py AC

MS
MS2
T50
Max
T90
X
F10
F5
F2
CC
MM

g g

TrainN TrainP

Method

Figure 8. Ditto for cross-entropy. The log-scale is to separate the curves visually, but ‘badness’ should be considered linear.

 14

1

10

100

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

100 1000

m
ea

n
sq

ua
re

d
er

ro
r

AC
MS
MS2
T50
Max
T90
X
F10
F5
F2
CC
MM

g

TrainN TrainP

Method

Figure 9. Ditto for mean squared error (MSE). MSE is popular, but inferior to normalized cross-entropy for our purpose.
For example, a -4% error at p=5% is considered equally bad by MSE as at p=20%.

-4

-3

-2

-1

0

1

2

3

4

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

100 1000

av
er

ag
e

bi
as

 (
av

er
ag

e
si

gn
ed

 e
rr

or
)

AC
MS
MS2
T50
Max
T90
X
F10
F5
F2
CC
MM

g g

TrainN TrainP

Method

Figure 10. Ditto for bias (average signed error).

 15

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

100 1000

ab
so

lu
te

 e
rr

or

AC
MS
MS2
T50
Max
T90
X
F10
F5
F2
CC
MM

TrainN TestPP

Method

Figure 11. Absolute error for each value of p=1…20% test positives on the x-axis. We fix P=100 training positives.

0.0001

0.001

0.01

0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

100 1000

av
er

ag
e

no
rm

al
iz

ed
 c

ro
ss

-e
nt

ro
py AC

MS
MS2
T50
Max
T90
X
F10
F5
F2
CC
MM

g g

TrainN TestPP

Method

Figure 12. Ditto for normalized cross-entropy.

