Jump to content United States-English
HP.com Home Products and Services Support and Drivers Solutions How to Buy
» Contact HP

hp.com home

Technical Reports

printable version

HP Labs

» Research
» News and events
» Technical reports
» About HP Labs
» Careers @ HP Labs
» People
» Worldwide sites
» Downloads
Content starts here

  Click here for full text: PDF

Violation of Multi-particle Bell Inequalities for Low and High Flux Parametric Amplification using both Vacuum and Entangled Input States

Reid, Margaret; Munro, William; De Martini, Francesco


Keyword(s): quantum information; coherent pulses; quantum gate

Abstract: We show how polarisation measurements on the output fields generated by parametric down conversion will reveal a violation of multi-particle Bell inequalities, in the regime of both low and high output intensity. In this case each spatially separated system, upon which a measurement is performed, is comprised of more than one particle. In view of the formal analogy with spin systems, the proposal provides an opportunity to test the predictions of quantum mechanics for spatially separated higher spin states. Here the quantum behaviour possible even where measurements are performed on systems of large quantum (particle) number may be demonstrated. Our proposal applies to both vacuum-state signal and idler inputs, and also to the quantum-injected parametric amplifier as studied by De Martini et al. The effect of detector inefficiencies is included. Notes: Margaret Reid, Physics Department, University of Queensland, Brisbane, Queensland 4072, Australia Francesco De Martini, Dipartimento di Fisica and INFM, Universita di Roma 'La Sapienza,' Roma 00185, Italy

11 Pages

Back to Index

»Technical Reports

» 2009
» 2008
» 2007
» 2006
» 2005
» 2004
» 2003
» 2002
» 2001
» 2000
» 1990 - 1999

Heritage Technical Reports

» Compaq & DEC Technical Reports
» Tandem Technical Reports
Privacy statement Using this site means you accept its terms Feedback to HP Labs
© 2009 Hewlett-Packard Development Company, L.P.