Jump to content United States-English
HP.com Home Products and Services Support and Drivers Solutions How to Buy
» Contact HP

HP.com home


Technical Reports



» 

HP Labs

» Research
» News and events
» Technical reports
» About HP Labs
» Careers @ HP Labs
» People
» Worldwide sites
» Downloads
Content starts here

 
Click here for full text: PDF

Decision Making with Side Information and Unbounded Loss Functions

Fozunbal, Majid; Kalker, Ton

HPL-2006-17

Keyword(s): decision; learning; risk; loss; convergence; identification; estimation

Abstract: We consider the problem of decision-making with side information and unbounded loss functions. Inspired by probably approximately correct learning model, we use a slightly different model that incorporates the notion of side information in a more generic form to make it applicable to a broader class of applications including parameter estimation and system identification. We address sufficient conditions for consistent decision-making with exponential convergence behavior. In this regard, besides a certain condition on the growth function of the class of loss functions, it suffices that the class of loss functions be dominated by a measurable function whose exponential Orlicz expectation is uniformly bounded over the probabilistic model. Decay exponent, decay constant, and sample complexity are discussed. Example applications to method of moments, maximum likelihood estimation, and system identification are illustrated, as well.

17 Pages

Back to Index

»Technical Reports

» 2009
» 2008
» 2007
» 2006
» 2005
» 2004
» 2003
» 2002
» 2001
» 2000
» 1990 - 1999

Heritage Technical Reports

» Compaq & DEC Technical Reports
» Tandem Technical Reports
Printable version
Privacy statement Using this site means you accept its terms Feedback to HP Labs
© 2009 Hewlett-Packard Development Company, L.P.