Click here for full text:
Impact of imperfect OCR on part-of-speech tagging
Lin, Xiaofan
HPL-2002-7R1
Keyword(s): part-of-speech tagging; optical character recognition; natural language processing; system combination; majority voting; sensitivity analysis
Abstract: Part-of-speech (POS) tagging is the foundation of natural language processing (NLP) systems, and thus has been an active area of research for many years. However, one question remains unanswered: How will a POS tagger behave when the input text is not error- free? This issue can be of great importance when the text comes from imperfect sources like Optical Character Recognition (OCR). This paper analyzes the performance of both individual POS taggers and combination systems on imperfect text. Experimental results show that a POS tagger's accuracy will decrease linearly with the character error rate and the slope indicates a tagger's sensitivity to input text errors.
6 Pages
Back to Index
|