Jump to content United States-English
HP.com Home Products and Services Support and Drivers Solutions How to Buy
» Contact HP

hp.com home


Technical Reports


printable version
» 

HP Labs

» Research
» News and events
» Technical reports
» About HP Labs
» Careers @ HP Labs
» People
» Worldwide sites
» Downloads
Content starts here

  Click here for full text: PDF

Reliable Video Communication over Lossy Packet Networks using Multiple State Encoding and Path Diversity

Apostolopoulos, John G.

HPL-2001-319

Keyword(s): video compression; multiple description; path diversity; video streaming; error resilience; multimedia networking

Abstract: Video communication over lossy packet networks such as the Internet is hampered by limited bandwidth and packet loss. This paper presents a system for providing reliable video communication over these networks, where the system is composed of two subsystems: (1) multiple state video encoder/decoder and (2) a path diversity transmission system. Multiple state video coding combats the problem of error propagation at the decoder by coding the video into multiple independently decodable streams, each with its own prediction process and state. If one stream is lost the other streams can still be decoded to produce usable video, and furthermore, the correctly received streams provide bidirectional (previous and future) information that enables improved state recovery for the corrupted stream. This video coder is a form of multiple description coding (MDC), and its novelty lies in its use of information from the multiple streams to perform state recovery at the decoder. The path diversity transmission system explicitly sends different subsets of packets over different paths, as opposed to the default scenarios where the packets proceed along a single path, thereby enabling the end- to-end video application to effectively see an average path behavior. We refer to this as path diversity. Generally, seeing this average path behavior provides better performance than seeing the behavior of any individual random path. For example, the probability that all of the multiple paths are simultaneously congested is much less than the probability that a single path is congested. The resulting path diversity provides the multiple stat video decoder with an appropriate virtual channel to assist in recovering from lost packets, and can also simplify system design, e.g. FEC design. We propose two architectures for achieving path diversity, and examine the effectiveness of path diversity in communicating video over a lossy packet network. Notes: Copyright 2001 SPIE. Published in Visual Communications and Image Processing 2001, Volume 4310, 24-26 January 2001, San Jose, CA. Made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

18 Pages

Back to Index

»Technical Reports

» 2009
» 2008
» 2007
» 2006
» 2005
» 2004
» 2003
» 2002
» 2001
» 2000
» 1990 - 1999

Heritage Technical Reports

» Compaq & DEC Technical Reports
» Tandem Technical Reports
Privacy statement Using this site means you accept its terms Feedback to HP Labs
© 2009 Hewlett-Packard Development Company, L.P.