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We consider functions F: Rn~ R" which are homogenous
and nonexpansive in the 100 norm. We refer to these as
topical functions. We study the existence of the cycle time
vector X(F) = limk~oo pc (x)/k, which, if it exists, is
independant of x ERn. For a restricted class of topical
functions, the cycle time is known to be implicated in the
existence of fixed points and this provides the motivation
for the present paper. We give a characterisation of topical
functions which extends an earlier result of Crandall and
Tartar. We show that the sequence P(x)/k converges
weakly, in the sense that its images under the functions t(XI,
... , Xn) = maxlxr, ... ,Xn} and b(xI, ... , Xn) = min {x}, ..., Xn}
always converge. We show that under suitable conditions,
weak convergence may be realised by the convergence of
components of the vector sequence P(O)/k. We show
further that when n=2, X itself exists. When n = 3, it may
not, as we give a family of examples which show the extent
of the departure from convergence. We discuss the problem
characterising those topical functions for which X does
exist.
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1 Elementary properties

We begin by collecting together some of the notation that we shall use. We then characterise
the class of functions which we shall study.

Vectors in R" will be denoted by X, Y, etc and Xi will denote the i-th component of x. We use
the notation x ~ y for the partial order on R n corning from the product of the partial orders
on each component: Xi ~ Yi for 1 ~ i ~ n.

The notation a V b and a 1\ b will stand for maximum (least upper bound) and minimum
(greatest lower bound) respectively of real numbers: a V b = max (a,b) and a 1\ b= min (a,b).
Note that addition distributes over both maximum and minimum:

h + (a V b) = h + a V h + b, h + (a 1\ b) = h + a 1\ h + b. (1)

The same symbols will also be used for the corresponding operations on vectors. Since the
ordering is the product ordering, it is easy to see that

(x V Y)i = Xi V Yi

(x 1\ Y)i Xi 1\ Yi

It will be convenient to use the following convention for formulae involving both vectors and
scalars. When scalars and vectors appear in the same formula, the scalar operation or relation
is performed on each component of the vector. So, for instance, x = h means Xi = h for
each 1 ~ i ~ n. Similarly, x+ h is x with h added to each component. This "vector-scalar"
convention keeps additional notation to a minimum.

If x ERn, then the top of x, t(x), and the bottom of x, b(x), are defined as follows:

t(x) XIV,,,VXn

b(x) Xl 1\ ···I\xn .

The following trivial formulae involving t and b will be helpful:

b(x) = -t(-x)
x < t(x)

t(Ax) At(x) if A2: 0
t(x) < t(Y) ifx~y

t(x+h) = t(x)+h
t(x+Y) < t(x)+t(Y)
t(x V Y) t(x) V t(Y)
t(x 1\ Y) < t(x) 1\ t(Y)

IIxII t(x) V -b(x)

where IIxll denotes the £00 norm on R": IIxll = IIxIII V··· V IIxnll.
If A ~ R" is a finite set of vectors let D(A) denote the rectangularistion of A:

D(A) = {it ERn I \t'ui,3x E A, such that Ui = xd.

We can then note that
t(xl\Y) = 1\ it.

t1eD{x,y}
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We shall be interested in functions F : R n -+ R n with the properties below, which we shall
denote by the associated letters. Universal quantification over variables is to be understood in
each of the statements.

• F(x +h) = F(x) +h

• e s y => F(x) s F(Y)

• IIF(x) - F(y)11 ~ IIx - Y11

• b(F(x) - F(Y)) ~ b(x - y)

• t(F(x) - F(Y)) ~ t(x - fj)

(homogeneity) H

(monotonicity) M

(nonexpansiveness in lOO) N

(noncontractiveness in b) B

(nonexpansiveness in t) T

Note that t is not even a seminorm, since t(x) may be negative. However, it is helpful to think
of it in this way, as we shall see.

We can now describe the functions which we shall study in a number of different ways.

Proposition 1.1 The following statements are equivalent.

1. F satisfies Hand M.

2. F satisfies Hand N.

3. F satisfies B.

4. F satisfies T.

Proof: We shall show that the first three statements are each equivalent to the fourth.

(3 <=> 4) Choose x, fj E R": By the first formula in (2),

b(F(x) - F(Y))

b(x - Y)

-t(F(fj) - F(x))

= -t(fj - x)

The equivalence of statements 3 and 4 is now evident.

(1 <=> 4) Suppose statement 4 holds. Let fj = x + h. Since b(fj - x) = t(fj - x) = h, it follows
from T and B that h ~ F(x+ h) - F(x) ~ h, from which H follows immediately. Now suppose
that x s fj. It follows that 0 s b(fj-x) and so, by B, 0 s b(F(fj)- F(x)). Hence F(x) s F(fj),
which demonstrates M. Hence statement 1 holds.

Now suppose statement 1 holds and choose x, fj E R", Since x ~ y+ t( x - Y), by applying F
to both sides and using H and M, we see that F(x) ~ F(Y) + t(x - Y), from which statement
4 easily follows.

(2 <=> 4) Suppose statement 4 holds. We have already shown that property H must then be
true. By combining statements 3 and 4 using the last formula in (2), it is easy to see that N
must also hold. Hence statement 2 holds.
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Now suppose statement 2 holds and choose X, y ERn. Choose h so large that y'5:. x +h, which
we may always do (take h = t(y - x), for instance), and let z= x+h. Then,

t(F(i) - F(y» + h = t(F(i) +h - F(fj) by (2)

= t(F(Z) - F(Y» by H
'5:. IIF(Z) - F(fj)II by (2)
< II z- Y11 by N
= t(z - Y) by choice of h

= t(x - Y) +h by (2).

Subtracting h from the first and last formulae, we recover property T. Hence statement 4 holds
and we have shown that 2 and 4 are equivalent.

QED

The equivalence of statements 1 and 2 in Proposition 1.1 is due to Crandall and Tartar, [2,
Proposition 2].

Definition 1.1 A function F : R n -+ R n is said to be topical if it satisfies any of the equivalent
conditions of Proposition 1.1.

It is helpful to know how to combine topical functions. If F, G : R" -+ R", then define F'5:. G
if F( x) '5:. G(x) for all x ERn. Functions form a lattice under this ordering, with V and A
defined pointwise. Let F-(x) = -F(-i). The following elementary result follows easily from
Proposition 1.1 and is left to the reader.

Lemma 1.1 Let F,G be topical functions. Let >",/L E R satisfy >",/L ~ 0 and>.. + /L = 1. Let
hER. The functions FG, F V G, FAG, F + h, F- and >..F + /LG, are all topical.

An interesting class of topical functions are min-max functions, [5, 6, 7], which provided the
initial motivation for this study.

2 Weak convergence to the cycle time

In this section we begin the study of the cycle time vector: limk_co Fk(x)/k. Interest in this
first arose in the study of min-max functions, [5], where, in certain applications, [4], it can be
thought of naturally as an "asymptotic average time to the next occurrence":

"k Fi(-) l:'i-l(-)
li

LJi-l X -.r X
m .

k-co k

The cycle time can be defined in greater generality than just for topical functions.

Lemma 2.1 Let F be a nonexpansive function on a normed vector space V. Iflimk_oo F k(x) / k
exists at some point x E V, then it exists everywhere in V and has the same value.
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Proof: By nonexpansiveness, IIFk(x) - F k(y)1I ~ IIx - Yli. The result follows.

QED

The notation X(F) will denote the cycle time vector of F, when it exists. Note that X(F) E V.
The interest in X stems from its connection with fixed points of F. If F( x) = x then, clearly,
X(F) exists and X(F) = O. Hence, if X(F) does not exist, then F can cannot have a fixed
point. Even if X(F) does exist, it must be 0 in each component for F to have any chance of
having a fixed point. Finally, we observe that X(F) always provides a lower bound for how
close F can come to having a fixed point.

Lemma 2.2 Let F be a nonexpansive function on a normed vector space V. If X(F) exists

then IIX(F)II ~ minX'Ev IIF(x) - xII·

Proof: Choose x E V. By nonexpansiveness,

IIFk(x) - xII = II E7:1 Fi(x) - Fi- 1(x)1I ~ kIlF(x) - xII.

Hence, IIX(F)II ~ IIF(x) - xii. Since this holds for any x E V, the result follows.

QED

For topical functions, there is evidence that stronger results may hold. In particular, for min­
max functions it is conjectured that X(F) always exists and that if X(F) =0 then F has a fixed
point, [5]. (Both assertions would follow from the Duality Conjecture for min-max functions;
see [5, 6] for more details.) For max-only functions, a sub-class of min-max functions which
have been studied by many authors, [1, 3, 8, 9], both assertions are known to be true, [5,
Propositions 2.1, 3.1]. It appears worthwhile, therefore, to study the existence of the cycle
time vector in the general setting of topical functions. That is the purpose of the present
paper.

When discussing sequences, we shall use the notation a i rather than the more conventional ai

in order to avoid confusion with the components of a vector.

If a i is a sequence of points in some metric space and f is any continuous function then f(a i
)

will converge, as i -+ 00, whenever a i converges. If, on the other hand, a i does not converge,
it may still happen that f(a i ) converges for certain functions f. We may call this, informally,
"weak convergence".

Proposition 2.1 Let F be a topical function and let x E R". The sequences t(Fk(x)jk) and
b(Fk(x)jk) both converge as k -+ 00 and both limits are independent of x.

Proof: Choose x,y ERn. By (2) and property T, F(x) ~ F(y) + t(x - Y). By properties H
and M, it then follows that Fk(x) ~ Fk(Y) + t(x - yj. Hence, by (2),

t(Fk(x)jk) ~ t(Fk(ff)jk) + t(x - ff)jk.

By interchanging x and y, it is easy to see that if limk-+oo t(Fk(x)jk) exists, then so must
limk_oo t(Fk(Y)jk) and it must have the same value. A dual argument works for b in place of
t. This gives the last assertion. It is now sufficent to consider x= O. By (2) we have that

b(Fi(O)) ~ Fi(O) s t(Fi(O)).
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Applying Fi and using properties M and H, we see that

(3)

Let ti = t(Fi(O)) and lJi = b(Fi(O)). By (2), ti+i ~ t i + ti and bi+i ~ bi +v, Since bi ~ t i for
each i, it follows from the subadditive convergence theorem that t i [i and bi ji both converge.

Definition 2.1 If F ss a topical function then X(F)
limk->oo b(Fk(O)jk).

QED

limk-+oo t(Fk(O)jk) and ~(F) =

If X(F) does exist then, by continuity oft and b, X(F) = t(X(F)) and K(F) = b(X(F)). But X
and K give information even when X does not exist. The following result merely elaborates on
Lemma 2.2 and the proof is left to the reader.

Lemma 2.3 If F is a topical function then

mRa~ b(F(x) - x) s ~(F) < X(F) s mRin
n

t(F(x) - x).
xE xE

It is interesting to ask whether the outermost inequalities are optimal. For certain min-max
functions it can be shown that they collapse to equalities.

The existence of X and K appears to give no hint as to whether the underlying sequence Fk(O)jk
converges; weak convergence does not imply convergence. Nevertheless, tk = t(Fk(O)) must
coincide with some component of the vector Fk(O); similarly for bk = b(Fk(O)). From equation
(3) we see that the r-th component of the vector sequence Fk(O) satisfies

(4)

If Fi(O)r = t i sufficiently often, this suggests that Fi(O)rji should come close to X as i -+ 00.

The question is, how often is "sufficiently often"? Clearly, there is at least one component r

for which Fi(O)r = t i infinitely often. If r is such a component, define the function </> : N -+ N
such that </>(k) gives the next index i, after k, at which that component coincides with t', In
other words,

</>(k) = m~n{i E N I k < i, Fi(O)r = til.
t

Proposition 2.2 With the notation above, if ¢J(k)jk -+ 1 as k -+ 00 then

Iim Fi(O)rji = X(F).
j->OO

A similar statement holds for ~ in place ofX.

Proof: Let ai = Fi(O)r and X = X(F). We then have, using (4)

ai s t i

ai+i < ai + ti

t i+i < t i + t i

5
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and ti/i - X. We are required to show that ai/i _ X. Choose f. > O. Since ai/i ~ ti/i, it
is enough to show that, for all sufficiently large i, X - f. < ai/i. Suppose this is not the case
and that i k is a sequence such that aik/ik ~ X - E. Let Uk = ¢>( i k) - i k and note that by (5),
Uk > O. Since ¢>(i)/i - 1, we may choose k so large that Uk/ik < E/2tl . Note further that, by
(5), af/l(ik) = tf/l(ik). Hence, from equations (6) above, tf/l(ik) ~ aik+tUk. We may rewrite this as

tf/l(ik)
<

< X - f. + t
l
(::)

< X - E/2

where we have used the estimate tUk ~ Uktl, which follows from subadditivity, and the fact
that ik < ¢>(ik). However, we now see that for infinitely many i, ti/i ~ X - f./2. But this is
impossible since t i /i _ X. Hence, a i /i must converge to X.

For the last assertion of the Proposition, let a i = Fi(O)r where r is the component in question,
which coincides with bi sufficiently often. Using (4), we can write a similar set of equations
to (6) above, but with the inequalities reversed. If we now multiply through by -1, we find
ourselves in the situation discussed above and the assertion follows.

QED

This result does not seem to make full use of the fact that t k must coincide with some com­
ponent of Fk(O). In particular, if one component coincides with t very infrequently, the other
components must coincide more frequently in order to compensate. One feels that a stronger
result ought to hold. The following conjecture is consistent with all the evidence at our disposal.

Conjecture 2.1 Let F: R" _ R" be a topical function. There exist components s,r, where
1 ~ s,r ~ n, such that

Iim Fi(O)r/i = X(F)
t-OO

Iim Fi(O)$/i = K(F).
t-OO

3 The cycle time in low dimensions

When n = 1, any function satisfying property H must have the form F(x) = x + a, for some
a. All such functions satisfy property M. Clearly, X(F) = a.

Now suppose n = 2. Property H allows us to reduce the effective dimension of a topical
function by 1. When the initial dimension is 2, this technique can be very effective, [7, §3).

Let F : R n _ R n satisfy property H. Following [7], we introduce the auxiliary function,
H : R n - l _ R n - l, associated to F. Let rr : R" _ R n - l be defined by rr(x!>· .. ,xn ) =
(Xl - X n,'" ,Xn-l - Xn)' It is helpful to think of rr as projection parallel to the diagonal onto
the hyperplane X n = O. Now define H by H(x) = rr(F(x, 0)) for any x ERn-I. The dynamic
behaviour of F is mirrored exactly by H.

Lemma 3.1 (Compare [7, Lemma 3.1].) For any i ERn, Hi(rr(x)) =rr(Fi(i)).
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Proof: Let x ERn. Note that 1I"(x+h) = 1I"(x) and that (1I"(X) , 0) = x-xn . Hence, by property
H, H(1I"(x» = 1I"(F(1I"(x), 0» = 1I"(F(x) - x n ) = 1I"(F(x». In other words, the following diagram
commutes:

Rn

11" 1
R n - 1

F--
H--

The result follows immediately, upon iterating this diagram.

QED

There are other projections and corresponding auxiliary functions which could be defined, for
which an analogous result would hold, but this is sufficient for our purposes here.

Proposition 3.1 If F : R 2
- R 2 is a topical function in dimension 2, then X(F) exists.

Proof: Let H be the auxiliary function of F as above. If Hi(O) is not a montonic sequence then,
by continuity of H, there must exist x E R where H(x) = x. Hence F(x, 0) = (x,O)+ F2(x,0)

and by repeated use of H, we see that X(F) exists with X(F) = F2(x,0). Hence we may assume
that Hi(O) is monotonic. Without loss of generality, assume that Hi(O) ~ H i+1(0) for i ~ 0.
In particular, °~ Hi(O). But then, by Lemma 3.1, Fi(O,0h ~ Fi(O,O)l for all i. In other
words, t(Fi(O, 0» = Fi(O,O)l and b(Fi(O, 0» = Fi(O,Ok The result follows immediately from
Proposition 2.1.

QED

When n = 3, the dynamic behaviour of F is more complicated.

Theorem 3.1 Let {ail, i ~ 1, be any sequence of real numbers drawn from the unit interval
[0,1]. There exists a topical function F : R 3 _ R 3 , such that Fi(O,0,0h = a1 +...+ ai.

The proof requires some preparation. A function F : R" - R" can be decomposed into n

component functions Pi : R" - R. It is easy to see that F satisfies property M if, and only if,
each F; does, and similarly for property H. We will consider functions F : R 3 _ R 3 for which
two of the components have a simple form:

F(x,y,z) = (x,f(x,y,z),z+ 1).

To ease the notation, we use (x, y, z) for coordiantes in R 3
•

Let gz(Y) = g(y,z) = f(O,y,z). It is then easy to see that pi(O,O,O)
ci = gi-1 (ci-1) and cO = 0. We shall construct 9 : R 2

- R so that

(7)

(0, ci , i) where

(8)

We shall then have to show that the corresponding f : R 3
- R satisfies properties M and H.

The following property of functions f : R n - R is crucial.

• If h ~ 0, f (x + h) ~ f (x) + h

7
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Lemma 3.2 Let f : R" ~ R be given and define 9 : R n
-

l ~ R by g(XI,"', Xn-l) =
f( 0, X2, ... , xn). If f satisfies M and H then 9 satisfies M and 5H. Conversely, if9 : R n-l ~ R
is given, define f : R" ~ R by f(xI,"" xn) = g(X2 - XI,'" ,Xn - Xl) + Xl. If 9 satisfies M
and SH then f satisfies M and H.

Proof: Suppose f is given and satisfies Mand H. Since 9 is the restriction of f to the hyperplane
Xl = 0, 9 clearly satisfies M. Choose x E R n

-
l and h ~ O. Evidently, (-h,x) ~ (O,X) in R".

By property M for I, f(-h,x) ~ f(O,x). By property H for I, this can be rewritten as
g(x +h) ~ g(x) +h, as required.

Now suppose that 9 is given and satisfies M and SH. By construction, it is immediate that f
satisfies H. So suppose that e ~ yin R n

. Then

(X2- XI,"',Xn-XI) < (Y2- XI,"',Yn- XI)
g(X2- XI,"',Xn-XI) < g(Y2-XI,"',Yn-XI) byM

= g(Y2 - YI + YI - XI, ... ,Yn - YI + YI - xd
< g(Y2-YI,"',Yn-YI)+YI-XI bySH,XI~YI

Hence, g(X2 - Xl,"', Xn - Xl) +Xl ~ g(Y2 - YI,"', Yn - YI)+YI· In other words, f(x) ~ f(Y)
so that f satisfies M.

QED

The proof of Theorem 3.1 is based on the following method of constructing 2-dimensional
functions out of l-dimensional functions. Let f, h : R ~ R. Define 9 : R 2 ~ R by

g(y, z) = f(y - h(z)) +h(z). (9)

The graph of g(y,z) as a function of Y, for fixed z, is obtained from the graph of f by sliding
in a direction parallel to the diagonal. The extent of the "slide" is determined by h(z).

Lemma 3.3 Suppose that f satisfies property SH. Let h(z') - h(z) = u and Y' - Y = v. If
v - u ~ 0, then g(y',z') - g(y,z) ~ v.

Proof:
Y' - h(z')

f(y' - h(z')) =
<

f(y' - h(z')) + h(z') <
g(y', z') <

y-h(z)+v-u
f(y-h(z)+v-u)
fey - h(z)) + v - u by SH
f(y - h(z)) +h(z) + v
g(y,z)+v.

QED

Lemma 3.4 If f, h : R ~ R both satisfy properties M and 5H then so does g.

Proof: If (z,y) ~ (z,y'), then g(z,y) ~ g(z,y') because f satisfies M. If (z,y) ~ (z',y), then
by M for h, h(z) - h(z') ~ O. So, in the notation of Lemma 3.3, u ~ 0 and v = O. Hence,
v - u ~ 0 and by Lemma 3.3, g(z,y) - g(z',y) ~ O. In other words, g(z,y) ~ g(z',y). It now
follows immediately that 9 satisfies property M.
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(10)

(11)

Recall that

Now suppose that (z', y') = (z, y)+h, where h ~ O. By SH for h, h(z')- h(z) ~ h and therefore
v - u ~ O. Hence, by the claim above, g(y',z') ~ g(y,z) + h, so that 9 satisfies SH.

QED

We can now complete the proof of Theorem 3.1.

Proof: Define f by

{

y + 1 if y ~ -1
f(y) = 0 if -1 s y ~ 0

y if y ~ 0

It is easy to see that f satisfies both M and SH.

It will be convenient to use the notation i = a l + '" ai ; by convention, sO = O.
for z E R, z = [z] + {z}, where [z] E Z and 0 ~ {z} < 1. Now define h by

h(z) = { z + 1 if z s -1 .
S[z]+1 + {z }a[z]+2 if z ~ -1

It is clear that both definitions agree that h(-1) = 0, so that h is well defined. To show that
h satisfies M, it is sufficient to deal separately with the cases z ~ z' ~ -1 and -1 ~ z ~ z',
The former is immediate and the latter follows easily from the fact that a i 2: 0 for i 2: 1. As
for property SH, it suffices to observe that the graph of h is piecewise linear and the linear
segments have slopes lying between 0 and 1.

If we now build 9 according to (9) then, by Lemma 3.4, 9 satisfies M and SH.

We claim that gi-l(gi-2( ...(go(0)))) = i for i 2: 1. The proof is by induction on i. For i = 1,
it follows from (11) that h(O) = SI = al . Since, -1 ~ _a l ~ 0, it follows from (10) that
f( -h(O)) = O. Hence, by (9), g(O,O) = SI. Now assume that gk-l(gk-2( ...(go(0)))) = sk for
k > 1. Then, by (9), gk(sk) = g(sk, k) = f(sk - h(k)) + h(k). Now, by (11), h(k) = sk+l.
Since sk - sk+1 = _ak+l and -1 ~ _ak+l ~ 0 by choice of the sequence {a i } , it follows that
f(sk - h(k)) = O. Hence, g(sk, k) = sk+l. The claim follows by induction.

Now construct f : R 3 - R following the prescription in Lemma 3.2. By Lemma 3.2, f satisfies
M and H. Hence the function F given by (7) is a topical function with Fi(O,0, 0h = al +...ai.

QED
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