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1 Introduction

There have been many important developments in which the methods of complex and
algebraic geometry have been used to investigate the eigenfunctions of Hill’s operator in
the context of integrable equations. For example, Bloch eigenfunctions of Hill’s operators,
which are meromorphic on the associated spectral curves play an important role in the
inverse scattering transform method for nonlinear soliton equations. For details see Ablowitz
and Segur [1981] and Newell [1985]. Moser [1980,1981] and Knérrer [1982] established a
connection between one-dimensional Schrédinger equations with finite-band potentials and
the classical C. Neumann and Jacobi problems of mechanics and used Gauss map to find
an isomorphism between these classical problems. Baird [1992] investigated harmonic maps
associated with the solutions of C. Neumann type Hamiltonian systems on n-dimensional
pseudospheres and hyperbolic spaces.

In this paper we build on these results by linking a new class of Hamiltonian systems to
systems of pde’s using Bloch functions for stationary Shrédinger equations with new types
of potentials.

There are different ways of linking quantum mechanical problems to classical ones. One
is the semiclassical limit, a second is the inverse scattering method for nonlinear soliton
equations and a third is the method of complex geometric asymptotics. One of the goals of
this paper is to make some connections between these approaches.

We do this in the following three main steps.

e We link Jacobi geodesic flows on quadrics and the WKB approximation of the eigen-
functions of the associated stationary one-dimensional Schrodinger equation. This
is accomplished by using an asymptotic analysis of the Bloch functions. A similar
asymptotic analysis can be done for a new two potential Dym system; we discuss this
below.

e We introduce a new class of geodesic flows in the presence of potential fields on
n-dimensional pseudospheres. A correspondence with the Schrodinger equation is
established. The potential depends on two functions z and v and an integrable system
for u and v is found.

e Collapsing one of the cuts on the associated Riemann surface, we get a system with
monodromy. Then we proceed to construct complex semiclassical solutions on the
covering space of the Riemann surface.

With regard to the second item, recall that for the C. Neumann problem, one has the
special situation in which the potentials are quadratic and the spectral parameter in the
Schrédinger equation appears linearly in the potential (see Moser [1980,1981]). In our cases,
the potential also has poles in the spectral parameter. As an example we consider a potential
with one pole. Correspodengly, the potential depends on two functions » and v and so we
call these potentials two-potentials. Using the general approach of Alber, Camassa, Holm
and Marsden [1994a,b], we establish a connection between geodesics in the presence of the
above two-potentials and an integrable system, namely the following system of two coupled



pde’s for v and v:
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We apply special limiting procedures (involving the coalescence of roots of the basic polyno-
mial of the spectral curve) to quasiperiodic solutions to obtain billiard and umbilic geodesic
flows (in the presence of potentials) on associated limiting Riemann surfaces. In Alber, Ca-
massa, Holm and Marsden [1995] we will uncouple the system of pde’s (1.1) and investigate
phase space geometry.

Regarding the third point above, our approach to integrable systems with monodromy
is demonstrated for classes of solutions of the preceding system of coupled pde’s. Thus,
this provides an example of a system of pde’s with monodromy. Prior to this, such effects
were related to mechanical systems. Then we proceed to investigate monodromy of the
semiclassical approximation of the spectrum of the corresponding Schrodinger operator, as
in Alber and Marsden [1995].

2 The Stationary Schrodinger Equation, Bloch functions
and Generating Equations

In this section we set up stationary Schrodinger equations with potentials that, as usual,
depend on a complex parameter. However, our potentials will be more general in that
we allow poles in the parameter dependence. Using the Bloch function for the stationary
Schrodinger equation, and generating equations, one gets a system of Euler-Lagrange equa-
tions for an associated classical mechanical system. We illustrate the procedure with the
two known cases of the C. Neumann problem and the Jacobi problem of geodesics.

In the next section we consider five new examples of these potentials. Following this,
we investigate WKB asymptotics of a variety of Bloch eigenfunctions that are constructed
using associated dynamics of particles moving on n-dimensional complex pseudospheres in
the presence of certain potentials.

We start with the one-dimensional stationary Schrédinger equation

h? 8%y
- .2—1'7—7.——3—2:—2 + (V(.’B) - E)’t/) =0 (2.1)
and rewrite it as follows
—a—zlp—+W(zAE)¢—0 (2.2)
dz? > - )
Where
W(z,\ E)= M, U(z,E)=2m(V(z)-E) and A=Ah%

As usual, the WKB approximation is concerned with small values of the parameter A.



In what follows we will use the fact that equation (2.2) is associated with the Jacobi
problem of geodesics on quadrics and with the Dym equation. We will also investigate
asymptotics of the Bloch eigenfunctions used in the inverse scattering transform theory
(see Ablowitz and Segur [1981]) for small A and show that it coincides with the WKB
approximation for the usual Schrédinger equation (2.1).

Then we will establish a link between equations of the form (2.2) but determined by
more general class of potentials W(z, A, E) and associated mechanical systems of particles
moving on n-dimensional complex pseudospheres in the presence of certain potentials.

Then we will consider the asymptotics of the associated Bloch functions. In our notations
A will be the complex parameter, and we will treat it independently from the energy F.

We start by looking for a solution of (2.2) in the form of a Bloch function

/B =/C
’(,[) = "B—o exp (:i: /Io —F dz) y (23)
where B = B(z, ) is a function of z and A and C = C(A) is a function of A. This gives a
solution of (2.2) if and only if

" B,2 2
- B"B+ —+2B°W = C, (2.4)

as can be checked by direct substitution. In particular, it will be interesting for us to choose
B(z, A) in the form of a polynomial of A and C(A) to be a polynomial or rational function
with constant coefficients. As we will see, special choices of W(z, A, E), B(z,A) and C(A)
related to each other through equation (2.4) will enable us to establish a link with special
integrable systems on Riemann surfaces.

A first step in establishing this link is the observation that equation (2.4), remarkably
enough, coincides with a generating equation for integrable systems. It is called a generat-
ing equation because, for particular choices of W, it generates systems of Euler-Lagrange
equations for some well-known mechanical problems and establishes a link between these
systems and stationary Hamiltonian flows for classes of solutions of integrable nonlinear
pde’s. See Alber, Camassa, Holm and Marsden [1994a,b] for an exposition of how this link
works.

Following the method of generating equations, we obtain Euler-Lagrange equations by
first choosing the functions B(z,A) and C(A) to have the form

n+l n+l N _
Ben=3 11 0-0de, o - iy 25)
J=1r=1,r#j 7=1 J

where the integers N and M are related to n, in a way described below. Substituting this
into (2.4) and setting A = [, one by one, we obtain a system of ode’s for the functions g;(z).
Notice that for different choices of the function W(z, A, E) one obtains different integrable
systems.

In what follows, we are going to use the Lagrange multiplier approach to problems with
constraints (see for example, Marsden and Ratiu [1994] for an account). However, for the



following integrable systems, something special happens, namely, the Lagrange multiplier
turns out to be the negative of the Lagrangian itself. We demonstrate this in the case of
some well known systems, and then introduce a new class of potentials in which it is also
satisfied.

First we recall (from Moser [1981]) the Lagrangians for the classical C. Neumann and
Jacobi problems. We start with the C. Neumann problem for the motion of a particle on
the n-sphere in the field of a quadratic potential. Here, W = u(z) ~ A and the associated
Euler-Lagrange equations are

q}' - qj(u — lj) = 0.

The Lagrangian and the function u are as follows
n+1 9 n41 n+1 n+41 n+41 9
L= ¢ +u|d g’ =1| =D Lig? wu(®)= L’ - d
i=1 7=1 1=1 j=1 i=1

For the Jacobi problem of geodesics on n-dimensional quadrics (free motion on quadrics),
we take

u(z)
W=——
A
and the Euler-Lagrange equations are
u
ﬂ—%r=a
i

Here the Lagrangian is as follows

n+41 ) n+1 n;}-ll q/.2
L:leq;- +u quz—l , u(z)= =2,

— o n+1 95

i=1 =1 3=1T;
Notice that in terms of the g-variables, this problem may be thought of as a problem of
geodesics on the n-dimensional pseudosphere in the presence of the potential u(z). All of
the systems considered in the next section are of this same type. Notice that they can be
linked to harmonic maps in a way similar to an approach used in Baird [1992].

3 New Potentials and WKB Theory for the Associated
Hamiltonian Systems

In what follows we will generalize the method described above to a class of “inverse” po-
tentials W, which have poles, of the following form:

W(z,\E) = f: wj(z, E)M. (3.1)

=l

As a specific example, we will consider a combination of the potentials for the C. Neumann
and Jacobi problems. (Mechanical systems associated with this potential were discussed



in Braden [1982]). Here we investigate corresponding spectral problem and establish a
connection between this problem and the spatial flow for a particular system of coupled
pde’s. We will show that this system has umbilic soliton solutions as well as weak billiard
solutions. At the same time, an associated spectral problem is a natural development of the
approach taken for a family of two-potential systems of coupled KdV equations discussed
in Alber [1987] in connection with discrete systems such as the Toda and relativistic Toda
lattices. (Discrete systems which correspond to the class of potentials discussed in this paper
will be described in forthcoming paper Alber et al. [1995]). Two other known examples of
two potential systems are the nonlinear Schrédinger equation and the sine-Gordon equation;
see, for example, Ablowitz and Segur [1981] and Alber and Alber [1985].

1. (The two-potential Dym system). This example uses a combination of the potentials
for the C. Neumann and Jacobi problems. This may also be regarded as a combina-
tion of KdV and Dym potentials in view of the association of the C. Neumann and
Jacobi problems with the KdV and Dym equations. (For details see Moser [1981]
and Alber et al. [1994a,b].) We call such systems two-potential systems. In the next
section we will use such systems to demonstrate the phenomena of monodromy. Here

=u(z)+ A+ —— ( ) and the Euler-Lagrange equations are

4 — g (u+lj+%) =0
2

and the Lagrangian and potential are as follows

n+1 n+1 n+1 1
L:Zg +u(ij -1 +Zl]q1 - 'n.+lq2’

1=1 Zj:l -IJJ-
n+1 n+1 1 -
u(z) = "qu Zl]q.? il e
1=1 Zj:l _Ij_

Here we are using an expression for the function v(z), namely

v(z) = ———(Z;‘;ll ig'-)z

which is obtained from a recurrence chain generated by (2.4). Using the dynamical
recurrence chain for coefficients b; obtained from the generating equation
BII/ BW

- BW' 3.2
5 T 2B'W + BW' = = (3.2)

by setting B(z,A) = bo(z)A + b1(z) and equating coefficients of the same power of A,
one obtains the system of coupled pde’s given in the introduction. Notice that the
choice of a polynomial B(z,)) = b,(z)A™ + ... + b, of n-th order yields an integrable
system of evolution equations from the same hierarchy.



2. (The spatial flow for the two-potential KdV system.) The discrete version of this

system corresponds to the Toda and relativistic Toda lattices. (For details see Alber
[1987].) Here
W = A2 + v(z)A + u(z)

and the Euler-Lagrange equations are
qj — q; (u-i- vl; + Ijz) = 0.

The Lagrangian and potential are as follows

n+1 9 n+1 n+1 2 n+1
L=) g +u (Z 6" - 1) - (lequ) - g
i=1

j=1 j=1 j=1

n+1 9 n+1 n+1 2 n+41
u(z) == ¢+ 3 Lg?+ | Y et | + 3 Bet.
i=1 1=1 1=1

j=1
Here we are using the expression

n+1
v(z) =27 Z qu]?,
i=1

which is obtained from the recurrence chain generated by (2.4). Using the recurrence
chain generated by the dynamical generating equation (3.2) and and setting B(z, ) =
bo(z)A + b1(z) one obtains the following integrable system of coupled pde’s of KdV

type:
Ou _ l mo_ 1 1

5= 1 v'u = Svu

(3.3)
?3 u — §v'v'
ot 2

3. The spatial flow for the shallow water equation (see Alber et al. [1994b]). Here

W=1+

u(z)
A ?

u
g - (7 + 1)=0.
7

and the Lagrangian and potential are as follows

n+1 9 n+1 1 n+1 2 1
LzZQ_,; +u ZQJ'z—l - 2 u(z)z_ZQ_;' +

. . 19 . H
i=1 =1 Z;l:l Tj- =1 ;‘:} TJL



4. (The spatial flow for a generalization of the shallow water equation). Calogero and
Degasperis [1982] studied an interesting new class of integrable mechanical systems.
We generalize this class by considering a two potential case whose associated system
of coupled pde’s has the form of a coupled system of equations of shallow water type.
Here,

W = u(z) + _v_,\g:l
and v
g g+ ) =0
J
The Lagrangian and potential are as follows

n+1 9 n+1 9 u n+l 9 1
L:leq;- +v qu -1} - —7, u(z) = - q; +———7.
= = > pDad

n+l 9 = <
1=1 1 =1 J=1 1

5. A generalization of the spherical pendulum is described by the following system of
Euler-Lagrange equations
¢i —gju—1; =0.

with Lagrangian and potential of the form

n+1 2 n+1 n+41 n+t1 2 n+1
L= g’ +u|{d q* 1) =Y lig;, u(z)=-> d"+)_ lig.
Jj=1 i=1 Jj=1

j=1 =1

The usual spherical pendulum corresponds to the special case when {y,...,I, = 0 and
l‘n+l = 1.

To obtain an example of a WKB solution, one starts by considering particular forms of
the functions C(A) and B(z, M)

2n n n
CO) = % S B, =Y b = [[ (- i) (34)
k=0 =0 =1

The equation (2.4) with potential (3.4) coincides with the generating equation for the
geodesic flow on an n-dimensional quadric. It was shown (see Cewen [1990] and Alber
et al. [1994a,b]) to provide an z-flow for a partial differential equation of Dym type. The
equation (2.4) yields a chain of recurrence relations between the coefficients b; and cx. (for
details see Alber et al. [1994a,b}). In particular we have

Can
W=g

b = Can
" 2m(V - E)’

7

and therefore



. C(A n
As A — 0, the functions g‘ ) and B()) are asymptotic to 21 and b,. This yields the

A

following asymptotics for the Bloch function

Y= (—V-—:/Jgﬁexp (:t% _/: V2m(V - E)dx) (3.5)

0

which is precisely a well-known WKB solution of the the one-dimensional Schrodinger equa-
tion (2.1).

Asymptotics for the Bloch functions which correspond to the “inverse” potentials (3.1)
can be found using recurrence relations and geodesic flows on the associated Riemann
surfaces. For example, a WKB solution in the case of the 2-potential Dym system described
above has the form .

Y= ib—;— exp (:t\/Lx 5 v2mv dz) . (3.6)

A different approach to the semiclassical solutions using a Riemannian metric associated
with the complex Hamiltonian system will be described in Section 6.

4 Homoclinic Hamiltonian Flows on Riemann Surfaces

Here we first recall from Alber and Marsden [1994a] a representation of homoclinic flows
as flows on noncompact invariant varieties. This representation enables one to treat the
homoclinic case in the same manner as the soliton case (see Alber and Marsden {1992,1994b]
for the soliton case) and and leads to new exponential Hamiltonians and complex angle
representations. Our approach is first elucidated for the C. Neumann problem. Then we
describe homoclinic flows for new Hamiltonian systems, which correspond to the class of
potentials described above.

Devaney [1978] investigated homoclinic orbits of the C. Neumann problem using a system
of first integrals. Moser [1981] studied equilibrium solutions possessing stable and unstable
manifolds for this mechanical problem in connection with the spectral theory of Bargmann
potentials and soliton z-flows for the KdV equation. In particular, it was shown that
equilibrium solutions are associated with the reflectionless potentials which correspond to
a set of negative double points of discrete spectrum.

In Alber and Marsden {1994a] we apply a special limiting process to the spectrum
associated with the class of quasiperiodic solutions. This yields a change of the Hamiltonian
system of equations which describe the dynamics of an auxiliary spectrum g; for the finite-
zone potentials. A new Hamiltonian on C?" of exponential type is found for this system,
namely

n 2./—n;iP; _ .
G 7y = Dol Cu)

, (4.1)
Hr#j(l‘j - ﬂr)
where C(g) = []7-, (1 — a). This system has the following logarithmic first integrals
P; = Zk-——l lOg(p.] - a'k) =1 o (4.2)

) 2\/—_7.7 9"



and homoclinic angle representations of the form

1 [# dy;
6, = _/ i =246, r=1,..7n 43
% W V=H;(kj - ar)) “3)

defined on a certain noncompact Jacobi variety J. The variety J is generated by (4.3),
which is a generalized Abel Jacobi map, as in Ercolani [1989]. This map is associated with
the symmetric product R™ of n copies of the Riemann surface

p= 1
2=l (e - ar)

Using the representations (4.3), one can show that as z — oo (or £ — —00), the spectrum
which is associated with the homoclinic orbit splits into complex pairs

R: (4.4)

a; — (iaj,—ia), @; =—af

i, J=1,..,n

Let the double covering of R™ be denoted R, This covering is defined by the following
change of variables

EJ2~ =—p;, j=1,..,n (4.5)

The Hamiltonian H defines a dynamical system on ", which lifts to a dynamical system
on R™. An analysis of the angle representation shows that the system has a homoclinic point
a on R" and, correspondingly, two heteroclinic points a* and a~ on R" associated with
the following values of p;:

p;=a;, j=1,..,n. (4.6)

The stable W* (and unstable W*) manifolds of the point a are coincident and consist of
the orbits in R™ that are forward (and backward) asymptotic to the homoclinic point a.
On the other hand, the unstable manifold of the point at connects it to the point a~ in
R" and similarly for the stable manifold; these heteroclinic manifolds cover the homoclinic
manifold in R™.

5 Homoclinic Orbits and Solutions with Monodromy for
the Two-potential System

In what follows we will introduce a Hamiltonian system for the set of quasiperiodic solutions
of the so-called 2-potential Dym system. Different limiting procedures when applied to this
Hamiltonian system yield new umbilic (and in particular, homoclinic) orbits and billiard
solutions as well as special solutions with monodromy.

Using the method of Alber, Camassa, Holm and Marsden [1994a,b] one obtains u-
representations for this integrable problem after substituting £ = p; into the generating
equation (2.4) with the Dym 2-potential:

[ 1 C ]
W (,“J )

L j=1,..,m. (5.1)

9



Here each of the p-variables is defined on a copy of the Riemann surface

C L2 2n+2
R:P?= —l(li) u" IT (& = me). (5.2)
k=1

Recall that the u variables move along cycles on the corresponding Riemann surface (5.2)
over the prohibited zones (that is, over the basic cuts between my; and mgaj_1 on the
Riemann surface).

The system (5.1) is a Hamiltonian system with the Hamiltonian

H= , J=1,..,n. 5.3
; Hr;e, (u; ur) (53)
and the following set of first integrals
P} = L"j), i=1,..,n. (5.4)
Hj

Here we are dealing with a degenerate system because the genus of the Riemann surface
(5.2) is (n + 1) and yet we have only n p-variables. This produces a degeneracy in the
problem of inversion to be described below—one has a similar situation in the case of the
focusing nonlinear Schrodinger equation.

This degeneracy can be resolved by introducing an additional p,4, variable, solving the
problem of inversion in terms of © functions on the (n + 1)-dimensional Jacobian and then
setting pn41 equal to a constant mgn 42 at the end. This is equivalent to projecting a class
of solutions of the enlarged Hamiltonian system onto a subclass of solutions defined on an
n-dimensional subspace in phase space.

Therefore, we can describe the quasiperiodic Hamiltonian flow in terms of an angle
representation as follows. After adding an equation for the p,4, variable to (5.1), rearrang-
ing the system of equations, summing and using Lagrange-type interpolation formulas, one
obtains the following expressions

+1  k+1 +1 k )

S S g
- S

= fCwimi =1 o (i = ie)

k
n+1 #J+l /"'J 3 n+1l ;;Bz(”j) s s
=67,

J—l \Y} C(ps)n; Jz:l H?;J'l(“j = pr) ]

where § is the Kronecker delta. After integrating (5.5), one obtains an angle representation

s (5.5)

k+1 dﬂ]

n+1
T ;/ v C(i)m;

where af are constants and each p; is defined on a copy of the Riemann surface

R:W? = Clu, (5.7)

62"1x + 6;:_215 +a), k=0,..,n, (5.6)

10



which is a torus of genus ¢ = n + 1. The above integrals are taken along cycles a; over
basic cuts on the Riemann surface. This is equivalent to a problem of inversion associated
with the Jacobi problem of geodesics on (n+ 1)-dimensional quadrics that can be solved for
#j,7 =1,...,n 41 as functions of z in terms of Riemann O-functions. Finally, we obtain
the solution of our Hamiltonian system by setting p,4+1 = man41.

After applying a limiting procedure similar to that described in Alber, Camassa, Holm
and Marsden [1994b] for the Dym equation and fixing one of the p-variables, the system (5.6)
leads to the so-called umbilic angle representation. Alber, Camassa, Holm and Marsden
[1995] shows that these representations generate a class of umbilic solitons and billiard

- solutions of the coupled system of pde’s that were described in the introduction.

On the other hand, setting man42 = Man41 = b in the initial Hamiltonian system (with-
out the additional p variable) yields a well-defined system of inversion with monodromy.
Namely, moving b along a certain closed loop in the space of parameters can lead to a
nontrivial shift in action angle variables. This phenomenon is caused by a singularity on
the associated Riemann surface and can be demonstrated as follows. In the 1-dimensional
case, the limiting process m3, m4 — b yields the angle representation

H p1dpy 0
o) = / = Loz + . (5.8)
W (5 = b)/—p1(pr — ma)(pr — ma) !

In the case of a genus 3 initial Riemann surface, the limiting angle representation is as
follows

oy = _6_5 = /#1 fdiy + ” padps =a?
0B ul (1 = b)/Cs(u1) W (w2 - b)v/Cs(p2) (5.9)
, 5.9
#opdpy #2 padus Loz + o2
= 2-

=" 3[32 uo \/C's(#l w3 VCs(p2)

where

5= /“‘ VCs(p)dp +/“2 VCs(p2)dps
ud (p1-b) 19 (p2 — b)
is an action function (the generating function of a canonical transformation) and

Cs(p) = —p(Ba(ps — ) + b1 + Ra(p)) = —p(p — m1) (1 — m2)(p — m3)(p — ma).

The variables p; and pz move along cycles a; and ay over the cuts [m;,m3] and [m3, m4) on
the Riemann surface W2 = Cs(u). There is also a singularity at 4 = b. Transport of a system
of canonical action-angle variables, which linearize the Hamiltonian flow, along a certain
loop in the space of parameters (b, m;) in a way similar to the case of the spherical pendulum
and some other integrable systems with monodromy (see, for example, Duistermaat [1980]
and Batés and Zou [1993]) will result in a nontrivial shift, which is a manifestation of the
monodromy phenomenon. This can be demonstrated as follows. Canonical actions are
calculated in the terms of periods of the holomorphic differential

I_fds }{md"

=)

11



along cycles a; on the Riemann surface (a torus); for details see Arnold {1978]. Now suppose
initially that b does not belong to any of the cycles a¢; and a;. Then moving b along a
closed loop on the Riemann surface around one of the branch points m;, one continuously
transforms one of the a-cycles. At some moment b becomes a branch point itself, which
results in the shift of the action variable that is given by the residue of the integrand at
p=b

Lastly, the method of Alber et al. [1994a,b] of associating solutions of nonlinear pde’s
with finite dimensional Hamiltonian systems on Riemann surfaces leads to the construction
of a class of solutions of nonlinear pde’s with monodromy.

6 Complex Semiclassical Solutions

In what follows, we recall from Alber {1989, 1991] and Alber and Marsden [1992], 2 method
of complex geometric asymptotics for integrable Hamiltonian flows on Riemann surfaces. We
will use geometric asymptotics to describe the quantization conditions of Bohr-Sommerfeld-
Keller (BSK) type. Then we will investigate the dependence of these conditions on the
parameters (i.e., the first integrals) of the system. This dependence near singularities
produces effects caused by the classical and semiclassical monodromy.

Let us consider quadratic complex Hamiltonians of the following form:

n
H= %ZQ“PL + V(g pin) (6.1)
i=1
defined on C?". We think of C?" as being the cotangent bundle of C", with configuration
variables pq,...,u, and with canonically conjugate momenta Py,..., P,.

Notice that the Hamiltonians for quasiperiodic solutions of the systems considered in
the previous sections are indeed of this form. We consider the functions g7/ as components
of a (diagonal) Riemannian metric, construct the associated Laplace-Beltrami operator, and
then the stationary Schrodinger equation

VIVU + w*(E - V)U =0, (6.2)

defined on the n-dimensional complex Riemannian manifold C*. Here V’ and V; are
covariant and contravariant derivatives defined by the tensor ¢’/ and w (which is the inverse
of Planck’s constant %) and E (the energy eigenvalue) are parameters. Note also that in
general, the metric tensor is not constant, and even may have singularities, so that the
kinetic term in the expression for H is not purely quadratic.

Now we establish a link between equation (6.2) and the Hamiltonian system (6.1) by
means of geometric asymptotics; namely, we consider the following function that is similar
to the well known Ansatz from WKB theory:

U(zt,--y2n) = ) Ak(f1, e, bn) eXp[iwSk (p1, ooy n)]

k
= ST 06w = S MAsw) eelivsu@w)), 63
k j=1 k j=1

12



which is a multivalued function of several complex variables defined on C™*. If, instead, one
considers U to be defined on the covering space of the Jacobi variety of the problem, then
U becomes single valued. The functions present in this expression together with r, which
denotes a vector of Maslov indices, will be determined below. Note that k£ also labels the
classical paths between initial and current points in the configuration space.

Substituting (6.3) in (6.2), equating coefficients for w and w? and integrating, we obtain
the amplitude function A, which is a solution of the transport equation, in the form

Ao

"~ V(Ddetd)’

where D = \/i i?:l gn is the volume element of the metric and J is the Jacobian of the
change of coordinates from the p-representation to the angle a-representation. We also find
that the phase function S is a solution of the Hamilton-Jacobi equation

(6.4)

AISA;S -V = E, (6.5)

so that it coincides with the action function.

Now we can apply the above construction to the case of the special class of solutions of
the 2-potential Dym system. The Hamiltonian and complex geometric asymptotic solution
in this case have the form:

Cs(u1 Cs(p2
g 1ol -l 69
2 (p—p2) 2 (p2—m)

and
U= Ag exp [iwSk (p1) + Sk2(p2)], (6.7)
k:(i?k,) (11 = b)(2 — b))7(Cs(1)(Cs (1)) 1
where
Skl(zl):_/o V(CZSNI )dpy + b Ty + T}_Zr., _ (6.8)
Ky
Sua(za) = /uz N 5dl£2 + Ty + 28 ToT (6.9)
(p2 = b) 2’

and where r = (71, 72) is a vector of Maslov indices and

T, = }[ VCs(p2)dps

#2—b)

}{ \/Clelz )L
T (ma-b)
The amplitude A has singularities at the branch points p; = mj,ma, p2 = m3,m4 and at

an additional singular point b on the associated Riemann surface. Each time a trajectory
approaches one of these singularities, we continue it in complex z and go around a small

(6.10)
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circle in the complex plane enclosing the singularity. This results in a phase shift (+i5) of
the phase function §, which is common in geometric asymptotics. The indices k; and k2
keep track of the number of oriented circuits for y; and p; around a; and a;. The complex
mode (6.7) is defined on the covering space of the complex Jacobi variety. Note that in the
real case, this complex mode is defined on the covering space of a real subtorus. Keeping
this in mind, quantum conditions of BSK type can be imposed as conditions on the number
of sheets of the covering space of the corresponding Riemann surface for each coordinate u,
and po:
%7‘1 + wkiTy = 27Ny
(6.11)

'72E7'2 + wkyTy = 27 N,.

Here N;, N, are integer quantum numbers related to each other and to integer indices &, k9
and ry, 79 as follows

w = 2n Ny 1 (
T kT kT
which is an asymptotic formulae for the eigenvalues of the stationary Schrodinger equation.

Notice that the quantum conditions (6.11) include a monodromy part after transport along
a closed loop in the space of parameters.

27Ny — ——) . (6.12)
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