
1

 Abstract

Design, performance management, and capacity planning
of client/server applications in the commercial enterprise
depends on the ability to model these distributed
applications at design time as well as during normal
operations. This paper specifies the functional
requirements of performance modeling of the class of
applications based on Remote Procedure Calls (RPC).
These specifications include the need to model transactions
consisting of multiple, nested, synchronous and concurrent
RPC’s using tractable techniques. Examples of distributed

application models are presented based on discrete event
simulations. Suggestions for future work are included.

1. Introduction

Designing and operating distributed applications is a
risky assignment without a modeling environment. The
techniques used in the past to design and manage
monolithic applications are inadequate in the era of open
distributed systems. A system model is no longer optional.
This paper highlights a critical need for performance
modeling in the area of client/server application design and
management. It defines the functionality required in these
models.

The use of system modeling tools is essential to
understand the trade-offs in application design, capacity
configuration, and scalability of a client/server application.
Modeling is the most cost-efficient way to project the
performance of an new application beyond the geographical
limits of a test network. Failing to understand the effects of
operational network latencies and compute times on the
application before deployment risks expensive failures or
delays of a poorly-designed conversion. Performance
engineering in all phases of an application’s life cycle is
crucial for lower-risk, cost-effective solutions.

Advocates of performance modeling early in the design
cycle support the notion of decompositional techniques,
especially applicable with the increasing role that
middleware components play in newer applications.
Vetland [11] generates a multi-level representation of an
application based on its (reusable) devolved constituent
demands on a system resource. A series of operations using

linking complexity matrices yields resource
parameterizations for a Stochastic Petri Net (SPN) or other
model. Hillston’s work [4] creates a compositional
approach to performance modeling based on a stochastic
process algebra. Franken and Haverkort [2] describe a
performance model-based “Performability Manager” that
uses a SPN solution to analyze the performance
components of a QoS specification in a distributed
environment, guaranteeing user-requested QoS, including
reliability. There is other work as well with similar goals.

A simulation approach to understand distributed
database scheduling deadlines (maximum desired response
times) was presented in [10] but lacked the client/server
generality described here. Petriu describes an approximate
Mean Value Analysis (MVA) approach called Stochastic
Rendezvous Networks which has better solution times than
SPN’s. It was extended to multi-threaded clients [7], but
still assumes exponential client and server service times.

Many researchers and practitioners have recognized the
critical need for modeling and instrumentation integration.
The instrumentation in distributed systems to support these
models and tools is in its infancy or not available.
Commercial modeling environments for client/server
applications are not ready for general use. Thus, there is an
unmet need to support large-scale client/server
applications.

2. Client-Server Model Requirements

Several factors compound the performance challenge
when modeling a distributed application over a monolithic
application. Foremost is the injection of LAN or WAN
network latencies into the application delay paths which
directly affects the user-perceived Quality of Service
(QoS).

Secondly, system boundaries for the model extend past
the conventional analysis for a single server queueing
model where the focus is node-based performance. For the
solution to be tractable, the performance model of a
distributed system must raise its abstraction level, limited
only by the set of design questions of the model. This
abstraction level is higher than many prevalent modeling
tools, techniques and parameterizations.

Requirements for Client/Server Performance Modeling
Joseph J. Martinka

Hewlett-Packard Laboratories
Palo Alto, California

martinka@hpl.hp.com

Internal Accession Date Only

2

2.1 Design Questions for Modeling

Design questions of a new or existing distributed
application can be addressed by a general modeling
approach to distributed systems. Some of the questions
befuddle today’s designers of even simple distributed
systems. In general: What design parameters affect good
performance (i.e. achieve the service agreement or response
time targets) for this distributed application? In particular,
some critical design questions are:
• How does geographical dispersion of compute nodes or

dataset locations, and the attendant network latencies
affect response times and throughput?

• How does the speed or capacity of any of the participat-
ing node’s CPU have on response time and throughput?

• What are the software bottlenecks due to congestion or
RPC nesting?

• How do interfaces and dependencies on legacy applica-
tions (and their behavior) impact the design and perfor-
mance of the distributed application?

• What is the effect of adding other applications or users
to the environment of the modeled application?

• What is the cost for different levels of security: authen-
tication, authorization, data integrity, or encryption?

• What is the effect of using distributed or replicated ser-
vices? (e.g., database, binding, security)

• What is the effect of upgrading low bandwidth net-
works on response times and throughputs?

• How susceptible is performance to network utilization,
bandwidth, packet loss, congestion, and distance?

• How does asynchronous overhead related to replicas
and distributed update algorithms increase with work-
load, and impact scalability of the application?

Functional Specifications for Modelling

The framework presented in [2] will be used to organize
the C/S applications performance model’s functionality
requirements that a successful model allows.

Task specification
• identifies user-level tasks that need to complete to

accomplish useful work
• determines the rate at which these tasks are introduced
• permits stochastically generated arrival rate of tasks to

the system, from specific nodes or a set of nodes
• identifies how applications are invoked, distinguished

by sequential or concurrent order to complete a task.

Application specification
• supports RPC’s with deterministic (constant) or with a

specified load-dependent service times
• contains one or more concurrent threads of execution

which can generate RPC’s to distributed nodes or other
processes,

• generate sets of RPC’s which execute concurrently.
These sets can in turn be executed serially (the next set
starts only after the slowest RPC of the previous set has
completed) or concurrently with other sets.

• capability to send an RPC to the same node used by the
client (local RPC). RPC’s that are local to the compute
node do not access the network.

• allow RPC’s to invoke another server. Thisnesting of
RPC’s within applications is often a critical part of
most applications, creating software congestion.

• multi-class workloads, transactions and applications
must be supported in the same model

• allow transactions which create asynchronous RPC’s or
other applications. This requirement is due to the impli-
cations of replication and record-keeping. Overhead
work may be asynchronously completed (some mes-
saging paradigms can be modeled with this require-
ment). Overhead is a part of a workload which
determines scalability of an application.

System Node Specification
• specifies the instruction processing speed of the node,
• allows a capability for multi-processors at a compute

node including the specification of non-linear scalabil-
ity. This permits lightly loaded MP’s to execute threads
at uni-processor speeds, but degrade more quickly as
the load builds.

• memory utilization shows characteristics such as work-
ing set size and disk statistics to indicate device utiliza-
tions and delays

• CPU degradation from other non-modeled applications
is accommodated in resource contention delay

Network Specification
• provide a workable performance abstraction for various

network types which accommodate a parameterized
delay based on distance between notes for speed-of-
light based LAN, MAN and WAN delays

• provide a capability to model multi-packet transfer size
buffers and an abstraction of multi-packet windowing
flow control in the network delay model

• model protocols applicable to legacy applications (peer
to peer and messaging protocols)

• retry and sanity check operations for long-lived RPC’s.

2.2 Simulation Environment for the Tool

The mechanics of performing a series of simulation runs
should be automated to the extent possible by the tool. This
includes assistance to the modeler in making and
understanding experimental design of simulation runs for
scenario and sensitivity exploration of the experimental
space[1]. Minimally, the environment should eliminate
manual reconstructing and recompiling of the model for
each run for GUI-specified models. The simulation engine
should sense and terminate a run when a problem like
monotonically increasing queue lengths is detected due to
resource saturation, similar to termination on automatic
detection of specified confidence interval of key simulation
statistics. Incorporate hybrid modeling techniques in larger
models [7] (e.g., building MVA elements which extend the
other submodels), or with modeled or real distributed
agents contributing to a hierarchial solution.

3

3. Modeling Experiments

Based on the complexity of distributed systems and the
uncertainty in treating them analytically, we began this
research using a general discrete simulation engine. The
remaining sections of this paper are brief, but are presented
more fully in [6], the extended version of this paper.

A client/server performance metric collection system [3]
destined as an OSF standard for DCE supported the
modelling experiments.We modeled an OLTP transaction
using Encina, a DCE-based middleware product offering
transactional semantics. Encina ships with a sample
application calledtelshop which we instrumented. We
discovered its behavior using event-tracing, and modeled it
using a simulation engine SES/Workbench from Scientific
and Engineering Software (SES), Inc. [9]. A detailed
description of the simulation source and model creation are
found in [5]. In Figure 1, we plot the modeled and measured
results of a transaction consisting of five read queries to an
inventory database for a range of workload levels. The
agreement with the measured results was satisfactory.

4. Model Scalability Experiment

An modeling experiment was conducted to exercise most
of the modeling functionality discussed in section 3. Our
goals were, in part, to demonstrate the capabilities of the
simulation for sensitivity analysis in the application design
phase, and to show how nested, asynchronous RPC’s are
essential to be integrated into the model functionality.

A hypothetical corporation’s distributed application is
used as an example to illustrate some distributed application
design tradeoffs. It is an international enterprise with a
corporate headquarters and four regional offices. Each
region has five branch offices. User workstations used for
sales activities in every branch office are connected through
LANs to the branch office computer. The legacy corporate
information data center is in New York. New York, Dallas
and San Francisco comprise the three U.S. sales regions.
Each region has several branch offices, one co-located, the

Figure 1 Encina’s Telshop Read Task

10.0 20.0 30.0 40.0 50.0 60.
TPS

0.020

0.040

0.060

0.080

0.100

R
es

po
ns

e
T

im
e

(s
ec

s)

pp

Telshop 5 Query Transaction (Toolkit)

Model Prediction
Actual Measurements

others at more remote locations. The international regional
sales office is in Singapore, with its branches in Hong Kong
and Japan.

The WAN and LAN network is modeled only to a level
of detail which exposes the principal performance concerns
of the modeling goals. A routing map was built for the
model which describes the network route that messages
from each branch must traverse to communicate with all
regional compute centers, as well as with the corporate
computer center.

The computer processing costs for operating on these
datasets are measured or estimated in CPU instructions.
Disparate compute nodes with known MIPS ratings acting
as clients and servers are used in the model to determine
capacity and scalability.

The Order Processing application uses seven datasets
which are shared and sometimes replicated. In the initial
design, there are four distinct datasets, of which three are
replicated.

A two-class workload was constructed where two
transaction types were modeled. All updates to these
datasets are controlled by a two-phase commit protocol by
participating nodes. The branch office is the focus of the
most interesting order processing transaction behavior. The
response times for each transaction will serve to
differentiate one branch from the other and provide a figure
of merit for database partitioning decisions.

4.1 Model Results

We present an example of simulation results of the initial
design choices for the application. The simulation model
was run for a range of branch office transaction rates from
2 to 18 transactions per second (TPS), the higher level is
beyond saturation of some system resource. Transactions
consisted of similar rates of the two transaction types. The
transactions rates are expressed in terms of the number of
transactions originating at any one branch office.

The response times for five branch offices are shown in
Figure 2. The Order Viewing transaction shows that four
out of the five branch offices presented have under 30 ms
response times. In anOrder View transaction, only the

Dataset Description Replica?
Initial

Location

Product description & Inventory corp

Branch & Sales Rep totals yes corp

Order Tracking region

Customer Info & Accounts yes region

Product Description &Inventory yes region

Customer Info & Accounts branch

Branch & Sales Rep totals branch

4

regional CPU and the branch CPU participate in the
transaction. The Tokyo region has response times of one
second since it is the farthest from its regional office in
Singapore.

The Order Entry transaction shows the effect of
including RPC’s to the corporate CPU. Not only are the
response times a great deal larger, now the Singapore
branch reflects the additional network delay experienced by
communications to the corporate CPU. Branch offices in
cities remote from their regional office have response times
which are twice as long as the branch offices which are in
located the same city as their region.

The model yields utilizations of networks and comput-
ers, queueing for software bottlenecks and other concur-
rency estimates. Alternate design scenarios were modeled
to demonstrate flexibility and provide quantitative alterna-
tives for design options.

4.2 Model Runtime Costs

The simulation runs were driven by simple script
programs. This model was run on a 99 MHz HP Series 735
workstation under HP-UX 9.03. Simulation run time
performance is listed below includes a warm-up batch.

The CPU cost was 1.4 to 3.2 msec per simulated RPC
(including network and both client/server compute nodes),
a range which is satisfactory for design analysis.

5. Conclusions

Modeling of distributed client/server applications is a
critical factor in their design, deployment, and later
scalability. The modeling technologies needed in this effort
are not generally available, and not ready for broad
distribution to application designers and planners. This
paper highlights the functionality needs for client/server

TPS Transactions RPC’s CPU time Sim time

4 16,100 257,000 6 min 60 sec

8 32,000 512,000 16.3 min 60 sec

12 47,000 752,000 40 min 110 sec

Figure 2 Selected Branch Response Times

0 4 8 12 16
Branch TPS

0.0

1.0

2.0

3.0

R
es

po
ns

e
T

im
e

Order Entry

0 4 8 12 16
Branch TPS

0.0

0.5

1.0

1.5

R
es

po
ns

e
T

im
e

Order View

New York
Seattle
Little Rock
Singapore
Tokyo

models and describes design questions to be addressed. A
prototype simulation model implemented many of the
requirements listed, and its use was demonstrated in several
real and hypothetical examples.

There is much research and practical work to do in the
user interface to the modeling engine, methodology to
decompose the activities of a middle-ware dependant
application, automatic model parameterization, and further
validation of a simulation approach to modeling client/
server applications. Advances are needed not only in the
models which meet many of the specifications described in
this paper, but also in the modeling methodology and
integration with distributed instrumentation as it makes its
appearance in the middle-ware infrastructure.

References
[1] George E.P. Box, William G. Hunter, J. Stuart Hunter,

Statistics for Experimenters, John Wiley & Sons, New
York, 1978.

[2] Leonard Franken and Boudewign Haverkort,The
Performability Manager, IEEE Network, Jan/Feb 1994,
pp 24-32.

[3] Richard Friedrich, Joe Martinka, Tracy Sienknecht and Steve
Saunders,Integration of Performance Measurement
and Modeling for Open Distributed Processing,
Proceedings of the International Conference on Open
Distributed Processing (ICODP ‘95), February 1995 ,
pp 341-352.

[4] Jane Hillston,A Compositional Approach to Performance
Modeling, PhD Thesis, University of Edinburgh, 1984.

[5] Joseph Martinka,A Performance Model of a Client-Server
OLTP System Using SES/Workbench, Proceedings of
the Fourth Annual SES Users Group, SES, Inc., Austin,
Texas, April 1994.

[6] Joseph Martinka,Functional Requirements for Client/Server
Performance Modeling: An Implementation using
Discrete Event Simulation, HP Laboratories Technical
Report, HPL-95-92, July 1995.

[7] Dorina C. Petriu, et al,Analytic Performance Estimation of
Client-Server Systems with Multi-Threaded Clients,
MASCOTS ‘94: Modeling, Analysis, and Simulation
International Workshop, pp 96-100.

[8] Jerome A. Rolia,Distributed Application Performance
Metrics and Management, Proc. from 2nd International
Conference on Open Distributed Processing ‘93,
Elsevier Science B.V. (North Holland), pp 235-246.

[9] SES/workbench Reference Manual, Scientific and
Engineering Software, Inc., Austin, Texas.

[10] Özgür Ulusoy, Geneva Belford,A Simulation Model for
Distributed Real-Time Database Systems, Proc. of 25th
Annual Simulation Symposium, Orlando, Florida, April
6-9, 1992, pp 232-240.

[11] Vidar Vetland, Measurement-Based Composite
Computational Work Modelling of Software, PhD
Thesis, Norwegian Institute of Technology, The
University of Trondhem, 1993.

