
r~~ HEWLETT
a:~ PACKARD

Application of a Configurable Custom
Computing Machine for Artery
Extraction Filtering of 3D MRI Data

Alte de Boer*
Computer Systems Laboratory
HPL-95-95
August, 1995

custom computing,
segmentation, MRI

An existing software algorithm for a three
dimensional filter has been converted to a logic
circuit, which was implemented on a configurable
custom computing machine, Teramac. For this
process a program was written that generates the
hardware description of the filter according to
filter parameters.

The implemented algorithm was a three
dimensional filter that will extract the artery
structure from three dimensional medical data
like MRI.

The design is implemented on 1/16 of a Teramac
machine and outperformed the software
algorithm on an HP735 workstation by a factor of
four. Designs for 1/2 Teramac are expected to run
at more than 100 times the speed of a
workstation.

*Universiteit Tuiente, Enschede, The Netherlands. Alte de Boer worked as an intern for
HP Laboratories, 1995.
© Copyright Hewlett-Packard Company 1995

Internal Accession Date Only

Application ofa Configurable Custom
Computing Machine for Artery

Extraction Filtering of 3D MRI Data

Alte de Boer

Internship at Hewlett-Packard Laboratories
February through May 1995

Supervisors: Tom Ma1zbender (HP-Labs)
phil Kuekes (HP-Labs)
MarkBentum (Universityof Twente)

Vakgroep besturlngssystemen en computertechniek
Afdelingnetwerktheorie

Facu1teit der electrotechniek
UniversiteitTwente

Contents

1
1.1
1.2
1.2.1
1.2.2
1.2.3
2
2.1
2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.2
3
4
4.1
4.1.1
4.1.2
4.1.3
4.2
5
6

Introduction
Artery Extraction
Teramac

Hardware
Compiler
Tsutsuji

Artery Extraction on Teramac
Design Overview

TheBasic Structure
TheFilter Operator
TheMemory Structure

Design Details
Design Details of the Filter Operator
Design Details of the Memory Structure

Results
Modifications and Expectations

Modifications
SpeedImprovements
Fitting More Kernels
Other Modifications

Expectations
Conclusions
References
Appendix

2

3
3
5
5
5
5
6
6
6
7
8

10
10
14
17
18
18
18
19
19
20
21
22
23

1. Introduction

Coronary artery blockages and other artery diseases are the number one death cause in the
United States nowadays. It wouldbe extremely helpful to doctors if theywere able to see what
state a patient's arteries are in.
MRI or CT technology can be used to scan the patient's artery structure. Although these scans
give large amounts ofvaluable information, due to the fact that this inevitably comes contained
in huge amounts of irrelevant data the infonnation is hard to use. Currently, most doctors
manually cycle through the printouts of the two dimensional images and mentally construct the
threedimensional structure of the arteries.
Theanalysis will be significantly improved ifa filter canbe applied thatremoves alldataexcept
that containing infonnation about the arteries. Various existing three dimensional visualisation
techniques canthen be applied to showjust the artery structure.
At HP-Iabs an artery extraction filter isunder development, thatallows a three dimensional data
set to be filtered without anyuserinteraction.

1.1 ArteryExtraction

To extract the artery structure contained in a scan, the MRI data is subjected to a three
dimensional filter that delivers a maximum response for bright tubular structures [1]. Blood
shows up brightly (high-valued) in MRI scans because of its high density of hydrogen atoms,
whose resonance frequency MRI scanners are tuned to. Therefore the filter will react to blood
vessels, as these are bright tubular structures, and not, for example, to blood pools like heart

Figure 1.1 -Theartery extraction filter

chambers.
The basic structure of the filter is shown in Figure 1.1. For each point shown, the value of the
MRI data is either added or subtracted (indicated by plus and minus). This filter will respond

3

maximally to bright in-plane circles of radius r in a dark surrounding. The equal number of
points to be added and points to be subtracted ensures that the filter produces a zero result
whenit is applied to an areaofuniform brightness.
Arteries can be detected by placing the forementioned filter at a certain pointin 3D-space and
then rotate and resize it through a specified number of angles and multiplications. Foreach of
these the resulting filter value is stored and when all rotations and resizings have been
performed, the maximum filter value is determined. A high maximum value corresponds to a
high probability that the pointunder observation is part of an artery. The orientation and size
of the potential artery are indicated by which angle andmultiplication produced the maximum.
In order to make the filter more sensitive to differences in orientation two tiers are used, as is

I

Figure 1.2- Twofilter tiers

shown in Figure 1.2. Thegrey areashows an artery thatthe filter responds to maximally.
The process of rotating and resizing (see Figure 1.3) is done for every voxel in the input data
set. Every maximum filter value and corresponding orientation and size that is calculated is
stored in an output data set, which can be further processed. For example a threshold
operation can be applied to the filter values, which will make the arteries show up. More
sophisticated methods canalso use the orientation andsize information to identify arteries.
The algorithm described above is very computationally intensive. However it is also very

CI:::>

Figure 1,3- Rotating and resizing the filter

repetitive, which makes the algorithm ideally suited forparallelisation.

4

1.2 Teramac

Teramac is a prototype realized byan HP-Labs research project [2]. It is a configurable custom
computing machine capable of executing synchronous designs of up to one million gates at
rates up to one megahertz. Amassively-parallel computer like Teramac is verywell suited to do
the highly parallel artery extraction filtering on.

1.2.1 Hardware
A fully configured Teramac consists of sixteen boards, but currently an eight-board system is
the largest possible configuration. Every board consists of 108 custom designed FPGAs called
PLASMA (Programmable Logic And Switch MAtrix) and 32megabytes of RAM.
Every PLASMA-chip consists of 256 logic units called PALEs. Every PALE has a six bit wide
inputand a twobitwide outputand is capable of performing anylogic function betweenthem
by using an internal look-up table. Every outputbit has a register bit associated with it, that it
maybeconnected with.
The32megabytes of RAM on eachboard are arranged as fourbankswith a 32bit wide output
each. It is possible to doa readand a write action at the same time, using different addresses.

1.2.2 Compiler
The Teramac compiler convert a user's circuit description into a structure of PALEs. The first
partof the compilation is a filter thattransfonns an inputfile intoan internal format used by the
restof the compiler. Afilter exists for the hardware development package Tsutsuji. Thesecond
part is a merger, that tries to rearrange the logic gates in groups that repect the 6-input,
2-output limitation of the PALEs. Next, the logic circuit is Partitioned such that the
interconnections between parts are minimal. These parts are then assigned to specific PLASMA
chips. The interconnections between these chips are done by the global router. The next step
is the local placing and routing of the individual PLASMA chips, after which the configuration
canbe mappedto a bitstream that is compatible withthe Teramac hardware. Atiming analysis
is performed thatcalculates the maximum possible clock speedforthe user's circuit.

1.2.3 Tsutsuji
Tsutsuji is a gate array development package, that allows the user to design a circuit with
flexible logic elements using a graphical environment [3]. Designs mayalso be defined using
Logic Description Format (IDF), a hardware description language. Asimulator is available that
allows the userto ensure the design works according to specification.
Tsutsuji converts the user's circuit into a netlist, that can be further converted to a gate array
mapping. Thenetlist can also beused by the Teramac compiler, which makes Tsutsuji an ideal
development package forTeramac designs.

5

2. Artery Extraction on Teramac

This chapter explains the Teramac artery extraction design. First an overview of the design is
given, thenthe design details ofeachpart of the structure areexplained in full.

2.1 Design Overview

In this section the basics of the structure are outlined, after which the two key elements in the
design, the filter operator and thememory interface, arediscussed seperately.

2.1.1 The Basic Structure
Thetube filter canbe seen as a convolution, which yields a result forone filter orientation and
radius. In the following textthe calculation of the maximum of all convolutions is called a filter
operation. This operation canbe applied to anypoint(X; y, z) in the dataset and produces for
that point the output: the maximum filter value and the orientation and radius that produced
thatmaximum.
The basic structure of the design is rather straightforward (see Figure 2.1). The calculation of

-
-@

filter
operator

input data set output data set
Figure 2.1- calculating a filter value forthepointeX; y, z)

local
environment--

minimum cube con­
taining environment

(x, y, z)

the maximum filter value for a point (X; y, z) in the data set is an operation on a number of
points. All thesepoints are in a local spherical environment, the details ofwhich have been laid
downby the definition of the filter, around the point(X; y, z), Now a cubecanbe defined that
is the smallest possible cube containing the local environment whilst having the point(X; y, z)
as its middle point. All points of this cube are fed into the filter operator, that produces the
maximum filter output and the corresponding orientation and radius forthe point(X; y, z).
The filter operation is now successively applied to all points in the inputdata set. The results
arestored in an output dataset.

6

The next two sections will address the filter operator and the memory structure that supplies
theoperator withthe necessary data.

2.1.2 The Fllter Operator
Thefilter is built up asshown inFigure 2.2. All the points of one minimum cubearefedintoan
interconnection module, which contains onlywiring andno logic. Thenextelement is the filter
kernel, which calculates the filter value for one orientation and radius. Its inputs are all the
points that form the circles of one tube filter. The first Y2n points are added together, the
second Y2n points are also added together and the two results are subtracted from eachother.
Theinterconnection module connects eachkernel with the right points in the minimum cube.
It happens thatpoints in the cube are used more than once and that some are not used at all.
Every filter kernel produces an output value for a certain filter orientation and size. All these
output values arewired to the laststage in the filter operator: the maximizer. This unitoutputs
the largest filter value and a signal that contains the number of the kernel that produced that
maximum.

()

interconnect

()

kernel kernel kernel kernel

()

maximum

()

allpoints ofa-----
minimum cube

filterpointsfor
----- one orientation

and radius

filter valuefor
----- one orientation

and radius

maximumfilter
value and-----
identification of
kernel

Figure 2.2- Parallel filter calculation

7

2.1.3 The Memory Stmcture
The bandwidth of the available memories is far insufficient to provide the data for the
interconnector directly from the memories. Toreduce the dataflow from the memories a cache
in the x direction is used (see Figure 2.3).

z

J-y
x ,/"" ----

---- ----

Figure 2.3- Acachein the x direction, consisting of register planes

Theminimum cube of the filter operator is successively applied to all points in the dataset. To
do this it moves mainly in the x direction. When it has done allx points it does one step in the
y direction and when the highest y coordinate is reached a step in the z direction is done. A
cache is constructed thatbuffers movements in the x direction. It consists of register planes that
are connected to eachother in the x direction. Every cycle all planes shift one placefurther, one
new plane of data arrives at the input and the last plane of data is discarded. The resulting
cache cubecanbe abstracted as shownin Figure 2.4.

2D
plane cache

cube

3D
cube

Figure 2.4- Inputand outputof the cachecube

In addition to the x cache a cache in the y direction is used. In order to understand why this
cache is necessary, suppose there would not be one. The cache cube requires a plane of data
(size n x n) each cycle. This data needs to be available in parallel, so n2 memories are used
and the dataset (size m x m x m) is evenly distributed betweenthesememories. SeeFigure 2.5

8

for an example where n =3. When reading a planewhere 0 S Y S 2 all inputs from the cache
cube can be connected directly to the corresponding memories. Whenreading the next plane
in the y direction, 1 S YS 3, the data at y = 1 and y = 2 will of course be delivered bythe same

output of
memories

input of
cachecube

output of
memories

input of
cachecube

Figure 2.5 - Shift effect at the outputofparal1ely addressed memories

memories as in the previous plane. The data at y =3 is in the memory where y =0 was in the
previous plane, but at the next address (some addressing logic takes care of this). It can be
seen that all the required data items can be read from memory, but that they appear in the
wrongorder and will haveto be rolled back beforebeingfed into the cachecube.This roll (or
translator) unitwouldhaveto handlean arbitrary numberof rolls in both dimensions (the same
problem occurs when zis incremented by one).Such a unitcould, forexample, be constructed
with n2 times a n2..to-lmultiplexer, but this wouldresult in a hugestructure.
A more feasible, though also more complicated, way to solve this problem is to cache in
another dimension. In addition to the n3 sized cache cube a n2x m-sized cache bar is

ID
line cache

bar

2D
plane cache

cube

3D
cube

Figure 2.6- Data complexity before and after caches

constructed (see Figures 2.6 and 2.7). The cacheworks by using the fact that when reading a
nxn-plane at any location (X; y, z), most of the data of that plane (n-l x n) will be needed
again when the filter operator comes to location (X; y+1, z). Therefore the cachebar stores the
planesthat are fed into the cachecube for all x coordinates. Whenthe filter operatormoves to

9

data previously read new data

Figure 2.7 - Asecondary cache delivers previously readdata

the nexty coordinate, itwill read a n-1 x n-plane from the cache bar and add to it a 1x n-line,
readfrom the dataset memory. Theresulting nxn-plane is fed intothe cache cube,and part of
it Cn-1 x n) is written back to the cache bar foruse on location Cot; y+2, z), Thearbitrary plane
shift is thus converted to a fixed plane shift, which can be implemented with just wires. A
translator is still necessary, but its complexity has been reduced. The 1xn-line coming from
the data set will have to be roll-adjusted because of movement in the z direction. This can for
example be donewith n times a n-to-1 multiplexer, whichis feasible.

2.2 Design Details

2.2.1 Design Details ofthe Fll.terOperator
The filter kernels are connected to the interconnector, which is is a wire-only unit that routes
the kernels to the data they need to calculate their particular filter value. The total numberof
wires in the interconnector is equal to the multiplication of the numberof kernels, the number
of filter points per kernel and the number of bits per filter point. This rapidly addsup to tens of

filter
generation
program

parameter

file

- IDF hardware Teramac
C description netlist hardware

compiler
TSutsuJi

file Teramac descrlp

- memory structure _ compiler
(block diagram)

Figure 2.8 - Interaction between compilers

10

thousands of wires. It is desirable that the filter definition can be easily, quickly and reliably
changed in order to study the performances of different filter definitions. Therefore a filter
generator program was written in C that produced a circuit description in LDF for the inter­
connector using several parameters. To allow the number of kernels to change automatically
too, the program was later expanded to produce a circuit description for the combination of
the cache cube, the interconnector, the kernels and the maximizer. Figure 2.8 shows how the
different compilers communicate.

Design Details of the Interconnector
Theinterconnector links the n3 cache cuberegisters to the kernels and consists solely ofwires.
It has n3 byte-sized inputs (some of which will be unused since the local environment is
spherical) and as many outputs as thereare orientations and radii. Therouting is performed by
the filter generator program. Forevery radius and orientation the byte registers thatcorrespond
to the filter ring points arerouted to a kernel.
Asimple optimization is performed. Ifone pointwill be bothaddedandsubtracted, it need not
be routed. Instead, the two kernel inputs are grounded. The Tsutsuji-eompiler will then
optimize the carry-save adder, so that it uses less hardware. The effect that a filter point from
the outerring and one from the innerring come from the same cache cuberegister happens at
small radii. However, it turned out that the amount of hardware that is saved by this
optimization is rather insignificant.
Adifferent interconnection algorithm has been implemented thatis aimed at a reduction of the
number ofwires in the interconnector. When the cache cuberegisters takeup a significant Part
of the hardware (which is the case, for example, for the implemented 7x7x7 design on one

I~~==========~ +

Figure 2.9- Sectioning the cachecubeand performing local calculation

11

Teramac board) the wiring gets extra difficult for the Teramac router. The cache cuberegisters
will most probably have been placed all over the available hardware, whereas the separate
kernels are likely to be locally concentrated. Because the interconnector has to route the
registers to the kernels, each wire is routed from a global location to a local one, which
requires long wires. Using a different algorithm, in which the kernels are split up and become
part of the interconnector, it has been tried to reduce this wire length. The cache cube has
been divided into eight sections, asshown in Figure 2.9. All points for one filter orientation and
radius that are in the same section are locally processed witha section kernel, which has the
same architecture asa full kernel. From eachsection the result from the section kernel is routed
to the main adder. Only this laststep is a routing from global to local. Dueto the reduction in
the number of wires, caused by the additions in the section kernels, there are less long wires.
The price to payfor thisis the increased use ofhardware, as thesumofthe section kernels and
the main adderare less space efficient thana single kernel. Therefore this strategy is expected
to be useful onlyfor designs inwhich the routing of the hardware is a bigger problem thanthe
amount of hardware (this is usually the case). Please notethatthisalgorithm onlyprovides the
possibility for cubedivision. It is left to the Teramac compiler to actually place local units close
together.

Design Details ofthe Kernel
The most straightforward wayto create a filter kernel is shown in Figure 2.10. Thetwo adders
at the top are carry-save adders, which are efficient structures for adding many numbers
together. The minus element is a two's complementer. The filter at the end of the kernel
prevents negative filter values from being output. These
values exist, but give no extra infonnation as a zero filter input bus A input bus B
value is not better than a negative filter value. Making all
negative values zero allows the use ofa simpler maximizer
that need not distinguish between negative and positive +
values.
A different kernel structure is shown in Figure 2.11. It
consists of only one carry-save adder. The inverters in
input bus B will not occupy any Teramac hardware,
because the compiler can adjust the PALE lookup table so +
that the PALE cantake the uninverted signal as input. The
inverters are a one's complement replacement of the two's
complementer in the previous design. Theinverted signals
are added to the uninverted signals from bus A. This will
leadto an output signal whereto inputs from busAmake a
positive contribution, and signals from bus B a negative Figure 2.10 -The basic filter kernel

12

Figure 2.11
Filter kernel consisting ofonlya carry-save adder

inputbusB

+

input bus Aone. The difference with the previous filter
kernel however is an offset of the zerovalue.
Each input in bus B causes an offset of 2b-1,

where b is the number ofbits eachinputhas.
An offset in the zero value has no effect on
the rest of the circuit, so it need not be
adjusted. It could be readjusted at the end of
the maximizer, or this task could be left to
the computer that processes the resulting
filter values.
Because the filter kernels take up most of the hardware that is required for a filter design, the
second kernel, which hasthe smallest size, was chosen.

Figure 2.12 -Threemaximizer units

/D. (a>b: O'L:=­
. b>a: 1;-

max(a, b) -------

Design Details of theMaximizer
Themaximizer is structured as a tree, as is shown in Figure 2.12. Every maximizer unithasfour
inputs, two of them contain the filter values that need to be compared and the other two
contain an identification number. The maximum of the two filter values is output, as is the
identification number that belongs to this a b d
maximum. In the topmost level the identification
nwnbers are hard-wired, on the lower levels the
nwnbers are taken from the maximizer one level
higher.
If the total number of values on anylevel is odd, a
buffer is added that passes its input value and
identification number through to the output. This is
done to make the structure pipelinable. The
current design uses a pipeline register after every
level, not because the separate maximizer units
have such a long propagation time, but because this was an easy way to implement the
maximizer, the pipeline registers are "free" (theyexist in every PALE) and a longpipeline has
fewdisadvantages.
An alternative maximizer unitwas developed thatprovided automatic identification generation.
It works as follows: Alayer receives an ID of b bits, adds one bit to it in the most significant
position, and outputs b+1 bits. Thevalue of the added bit is determined by which of the two
inputvalues was the maximum. Buffers always add a zerobit and are placed at the "high" end
of a level only, l.e. at the end wherethe kernel thatwill produce the highest ID-nwnber also is.
The advantage of automatic ID generation is a reduction in size of the multiplexers that select
between the twoIDs. Dueto confusion aboutan assumed design errorthis unitwasnotused.

13

Afundamentally different maximizer structure was designed that wasnot based on a tree, but
compared all inputs in parallel. It hasbeen testedandworked, but turnedout to havethe same
complexity as the tree structure. The amount of logic consumed was slightly less, but in the
sameorderofmagnitude as thatforthe tree structure. Thetreestructure waseventually chosen
because of itssimplicity.

2.2.2 DesJgn Details ofthe Memory StnJcture
Thememory structure hasbeen implemented fora 7x7x7-filter meantfor a single board. It has
been designed with blockdiagrams in Tsutsuji, whichcan be found in the appendix. The top
level of the design (thefirst pagein the appendix) will be discussed here.

Filter module
The key element in the design is the filter module (middle right in the circuit diagram), of
which the LDF-description has been generated by the filter generator program. The filter
module already includes the cache cube registers, so the input to the module consists of a
plane of 7x7 bytes C392 bits). Its outputs are the maximum filter value and corresponding
identification forone voxel in the dataset.

Cache bar
The top three memory banks (top left) hold the cache bar. Teramac does not have enough
registers to store the entire cache bar, so the data is held in memories. The fourth (bottom)
memory bank in the diagram contains the complete MRI dataset and alsoholdsthe results (in a
different part). From the results (13 filter value bitsand 5 identification bits) onlythe top 8 filter
value bits are written to memory. This was done for compatibility with existing volume
visualisation tools thatexpect one byteofdataper location.
Due to the limited memory bandwidth, four memory cycles need to be performed to get the
necessary data. Forthe cachebar this means that the bytes are fetched from the memories two
bitsat a time forfourtimes. These bitsare joined together to bytes in the module sertopar: After
the fourth memory cycle the complete 6x7 plane of bytes can be read from theparous output.
This is merged withthe newly read lx7line from the main memory and fed intothe filter. The
senoparmodule alsohas a serial output that contains a delayed copyof the data thatwasread
at the serial input. This serial data is joined with the serialised lx7 line data, so that a serial
version of a 7x7 plane is created. This plane is shiftocl in the negative y direction and the
resulting 6x7 plane is written back to the cache bar at the addres that is four less than the read
address.

14

memory:

z

~Y
x

2

1

o
layers

rr
10

I ~
memory address (bytes)

Figure 2.13 - Dataformat forTeramac memories

Main DataSetMemory
The adjuster is a one dimensional
translator (or roll) unit, needed to
undo the shift effect generally
occuring at the output of parallely
used memories containing
distributed data (described in 'The
Memory Structure'). The y cache
needs seven data bytes that are
organised in the z direction in the
data set. Because only four read
cycles are available, it is not
possible to do a read action for
every required byte. Therefore, the
data has to be arranged in such a
way that a 32 bit read operation
yields more than one usable byte,
which means that bytes that are
likely to be needed at the sametime
should be grouped. A data format

n

n =zdiv 7

14 bytes

multiplexers

zmod7>---------~...................

7bytes

Figure 2.14 -The adjuster

15

hasbeenchosen (seeFigure 2.13) thatstores sevenpoints in the z direction in two consecutive
32 bit words (eight bits remain unused). Most of the times data will be needed from two
different layers. To allow this all four memory cycles are used; two to read the seven points
from the layer thatcontains the points withthe lowest z coordinates and two to readthe seven
points from the layer above. The adjustermodule selects from the set of fourteen the required
seven bytes (see Figure 2.14). These bytes are then added to the 6x7-plane of data coming
from the cache bar.

Counters andAddress Calculators
Several counters provide the necessary addressing signals. Thephasecounter counts the four
phases of the memory cycle. In phase three the four memory accesses have been performed
and byte-sized outputs are available at the input of the filter module. The enable input that
allows the registers in the cache cube to change to a new value is therefore connected to the
phase three signal. The xyzcounter, which holds the coordinates of the point in the data set
thatis currently processed, is incremented at the end ofphasethree.
Thecoordinates oX; yand z and the current memory phaseareusedby the module zadrproc,
whichcalculates the readaddress for the main data set memory. This memory usesa z address
that is divided by seven, because the data format contains chunks of seven bytes in the
z direction. Themodulo sevenof the z address is wiredto the adjuster, which it uses to select
the right seven bytes from the fourteen readfrom memory.
The oX; y and z coordinates are also used to form the write address of the main memory, at
which the filter value results are written. However, the filter contains a delaying pipeline, so
the addressing signals also need to be delayed. This is done witha simple register sequence in
the delayer module. The wadr_calc module splits the byte address into a word address and a
byte enable signal (the byte that carries the filter value result has been copiedso that a 32bit
wordcontains four copies ofthis byte).
The x coordinate and phase signal form the cache bar address at which the 6x7 plane is read.
The x coordinate selects the address, the phase bits select which quarter of the bytes in the
planeis read. The minus4 module ensures that, after a new 6x7planeis calculated, it is written
backat the previous x location.
When the xyzcounterreaches itsfinal value, the rdyoutput is asserted. Toallow the pipeline to
flush, the filter then waits fora specific x coordinate before sending a breakpoint signal which
stops the Teramac clock.

16

3. Results

The 7x7x7 filter design with 18 kernels was implemented on a single Teramac board. Two
12B3-sized inputfiles were created as testmatrices, one synthetic set containing a straight tube
and one MRI set containing authentic data of the head. Both sets where processed by the
Teramac filter and by the original software algorithm. Theresults were compared bit-by-bit by
a comparison program and found to be identical (the integer values that the software program
produced weretreatedthe same wayas the results in theTeramac design, l.e. from thirteen bits
only eight bitswere used in the comparison with the eight bits of the Teramac design). The
least significant five bitsand the identification bitswerenot tested.
The compiler predicted a maximum clock frequency of 600 kHz, which was used for testing
the design. Higher frequencies were tried but the design failed at around 640 kHz, which
shows thatthe frequency prediction bythe compiler wasaccurate.
Thetime to process the 1283 datasetwithTeramac at 600 kHz was 14seconds. Calculation time
for the software algorithm was 55 seconds on an HP735 workstation. The speed difference is
approximately a factor offour.
The time taken to compile the design was approximately a second for the filter generator
program, a minute forthe Tsutsuji compiler and a couple ofminutes fortheTeramac compiler.
The main bottleneck in the design turnedout to be the interconnection. The size of the filter
design was limited by the amount of interconnection available in Teramac, not by the amount
of logic available.

17

4. Modifications and Expectations

This chapter discusses various optimizations that can be done to improve the performance or
reduce the amount of hardware required. Also methods are described thatonlyappearto offer
an improvement as an introduction to methods that really do. Expectations about attainable
speeds aregiven at the end of the chapter.

4.1 Modifications

4.1.1 Speed Improvements

Pipelining the Carry-Save Adders
In the pipelined filter design the wires that cause the longest delays (the ones that pass most
router chips) are probably the onesfrom the cache cubeto the kernels. It is therefore desirable
to place pipeline registers as early in the kernels as possible. Placing registers before the
kernels is inadvisable, because the number ofwires thereis veryhigh. Thebestsolution would
be to create a new carry-save adder that has pipeline registers right after the first stage of its
tree structure and possibly also ones after lower stages. These registers come "free" withevery
PALE, so this requires no extra hardware.

Duplicating Structures to Prevent Long Wrres
Some addressing and enabling signals are used throughout the design and may therefore
become quite long. It is possible that one of these signals determines the maximum clock
frequency, although the rest of the design could be clocked a lot faster. Also, these long
connections canuse up wires in areas wherethe density ofavailable wires is low. Forexample,
when using a multiboard design, the addressing lines to all the memory banks mayconsume
quite a few of the limited inter-board wires. Duplicating structures can solve both these
problems, at the expense of increased hardware requirements. In the multiboard example each
board can have its own address generator with a separate reset input, which saves having to
wire the addresses overthe interboard busses.

Two Voxels in Parallel
Another way to improve speed is to calculate the filter value for two neighbouring voxels in
parallel, byusing twice as many kernels. Thetwovoxels share most of theirlocal environment,
so only a slight increase in cache cube registers and in memory bandwidth is needed. The
important disadvantage of this method is that the registers in the cache cube are now
connected to morekernels, so thewiring complexity increases.

18

Multiple cache Cubes
Since in most designs the wiring complexity is the most limiting factor, the reverse of the
method mentioned in the previous paragraph can be applied. The cache cube is duplicated
and both copies are fedwiththe same datastream from memory. Each cubehas been wiredto
halfthe necessary number ofkernels. This results in a lowerwiring complexity Percache cube,
at the expense of doubling the number of cache cube registers. The memory bandwidth
remains the same, because bothcache cubesreceive a copyof a single datastream.

4.1.2 Fitting More Kernels

Multiplexing
Toallow the calculation ofmorefilter values thanthereis hardware forkernels, it is possible to
use multiplexing. The interconnector does not connect to the kernels directly, but to a large
2-to-1 multiplexer, that connects to half the number of kernel units. Twocycles are necessary
to compute all filter values. The important disadvantage is that the wiring remains the same. All
wires previously connected to the filter kernels are now connected to the multiplexer. The
hardware saved by using less kernels doesnot come available, as it is neededforrouting.

Bitserial arithmetic
Another method to calculate more filter values than hardware allows is to use bitserial
arithmetic. Instead of the full eight bitsof a byte, onlyone, two or fourbits are wiredfrom the
cache cube to the kernels. To accept the byte fractions the kernels have to be adapted, which
should make them smaller, allowing more kernels to be placed. The kernels produce a single
13bitwide outputso the relatively small maximizer tree can remain the same. The cache cube
has to be adapted slightly, but will not change in size. Basically, this method is another way of
multiplexing, which, however, saves on bothkernel hardware and interconnection wires.

4.1.3 Other Modifications

Removal ofData Set Conversion and Interleaving
Currently the data set needs to be converted and interleaved to a format that the tube filter
uses. By changing the movement direction of the filter through the data set this conversion
becomes unnecessary. Currently the order of movement is x » y » Z (x is the fast moving
variable). Unconverted datasets are organised x»y» z. In the tube filter the first and the second
movements are cached (by the cache cube and cache bar respectively) and multiple points in
the thirddirection (z) need to be fetched from memory. To be able to access these points fast
the dataset has been converted so thatpoints in the z direction are placed next to each other.

19

Conversion becomes unnecessary if the orderof movement of the filter is changed to z» y » x.
The z and y direction are then cached by the cache cube and bar respectively, and the
necessary multiple points in the x direction can immediately be accessed in the data set. The
modifications in the design to implement a change of movement direction are confined to
changing some signal names and swapping some address lines in the module that calculates
the address of the calculated filter values.

Parameterising the Memory Structure
Thedesign of the filter operator is fully parameterised, but the memory structure is specifically
designed for a 7x7x7 cache cube and meant to be run on a single Teramac board. To allow
maximum freedom in the choice of tube filters and the use of Teramac hardware a program
could be written that automatically produced the memory design as a function of several
parameters (size of cache cube, amount of memories available, number of pipeline stages in
the filter), just like the filter design is produced by the filter generator program. This structure
could then be used as a general purpose three dimensional filtering tool, which accepts any
filter module that uses a three dimensinal local environment as input and produces a single
value as output.

4.2 Expectations

Currendy the Teramac design outperforms an HP735 workstation by a factor of four. If the
7x7x7 design is copiedand implemented on eight boards, each board can work on an eighth
of the data set, improving the speed by a factor of eight. Therefore, a factor of 32 times
workstation speed iswithout doubtpossible.
If a new 7x7x7 design is created thatusesalleight boards, the fourmemory cycles, introduced
because of limited memory bandwidth, maybe replaced by one. So, use of the extra memories
that an eight-board system offers will already lead to an improvement factor of four. The
amount of logic that can be implemented is increased with a factor of eight, so theoretically
eight times as many kernels can be calculated, or eight voxels can be processed in parallel. In
the single-board design part of the logic is consumed by the cache cube. In the eight-board
design the cache cube can be distributed across the boards, giving an extra improvement of
approximately 15%. All this wouldleadto a speed thatoutperforms a workstation by a factor of
almost 150.
Implementation hereof is, however, not trivial. In the tube filter the cache cube, distributed
over Teramac, has lots of connections to local units, the kernels. This routing from global to
local units requires a lot of global interconnect in the form of interl:x>ard wires, whichare not
available in large quantities. It is expected that the use of multiple (eight) cache cubes allows
the routing of the biggest and therefore fastest designs.

20

s. Conclusions

Asoftware algoritlun for artery extraction from MRI data has been converted to a logic circuit,
which wasimplemented on a configurable custom computing machine, Teramac.

The filter design was parameterisable, in that a program was created that generated the
hardware description ofthe filter according to certain filter parameters.

The interface between the memories and the filter could not be changed withparameters, but
wasfixed to handle a 7x7x7 design on a single Teramac boardonly.

Thedesign wasimplemented on oneTeramac boardand outperformed the software algoritlun
on an HP735 workstation bya factor offour.

Designs for eight boards are expected to ron at more than 100 times the speed of a
workstation.

21

6. References

[1] D. Vandenneulen, D. Delaere, P. Suetens, H. Bosmans, G. Marchal, "Local Filtering
and Global Optimisation Methods for 3D Magnetic Resonance Angiography (MRA)
Image Enhancement", SPIE Visualization in Biomedical Computing, Volume 1808,
pages 274-288, October 1990.

[2] R Amerson, RJ. Carter, W.B. Culbertson, P. Kuekes, G. Snider, "Teramac ­
Configurable Custom Computing", IEEE Symposium on FPGAs for Custom Computing
Machines, April 1995.

[3] W.B. Culbertson, T. Osame, Y.Otsuru,].B. Shackleford, M. Tanaka, "The HP Tsutsuji
Logic Synthesis System", pages 38-51, Hewlett-Packardjournal, August 1993.

22

Appendix

E~S""'---------...,.---t-I---1>-£I""~-

,--H--r:>--1-'"

!--------4--I---I+-.f>-I,..., ...~ f--t>--
'--r>--l"'~

~+-I---/;>. -E:l---

L..---r>--l"'U
L-t----·D' -£1""'--

I '

~'byte__I
IK:
IV

,; ,;' ,~
vall" "'dn.-va _irL__

....-------------1-1--1---n......-l,....

, .-~

N

7x7x7 - the top level ofthe memory structure

23

sertopar

24

• I 2 2

aerin

a.rout
T

parout

out7x7

--_.. _.......

~1:-~1

sertoparJine

partoser

widemerge

out6x7

shiftmerge

25

.., 10 11 12 13 if, is re

,.

adjuster

out

The output data is valid in PHASE" only.

i 7 is 19 110 111 112

.0

NUl e{xl '" ilx + ••11

~: if ••1"'3
.2 • i5
.... 10

• 1 02 .,

lineshifter7

26

.. .5 .s

IdS08 • -f.

out

ZIIIOd7

in

Delay.r au. with t!w alay
in tlM filtU' .-odul. cau.ecl
by pi~lining. 'l'tw nWlbU' of
r.gbtU'. her. b ~l to
th. a,.)).r of pi~liJM.tag••
in the filter -.oduh.
HBI the whol. r.gi.t.rcuh. i.
to 1M count.s .. on••tag•.

aeo

zyxin

phD

zyxout

doc
tc out

phasecounter

leU ldO

l.,.d

'--+--"'1no

delayer minus4

27

Por the ditterentiators to
initialize properly, the
re.et signal awIt be high
tor '11IRBB cycles, betore
counting starts.

ldO 7dO ldO 7dO ldO 7dO

inc

doc
tc out

Ditterentiator.
OUtp\lt.. a .ingle 1 when
input riae. trom 0 to 1

doc
tc out

xyzcounter

28

N

doc
tc out

rdy

'lbe rely pin will become high
atter the z counter has reached
its maximum value.
It will stay high until the
next reset.

Add hiu to obtain an
oft••t 1n DIllin IIIUIOry.
a.aulu would OWIrwri t.
data if tbb wouldn't
be pr •••ne,

zyx

vaUdator

11
I------------------+-Izyx valid

Xout • Xin - 3
Yout • Yin - 3
Zout • Zin + J

Decoder:
IN 0U'r
dec bin dec

1000
0100
0010
0001

otar
E
~1

waclCcalc

valid

CMP
Y.5

valid

valiclator

29

CMP
X>5

