
1

Abstract

Design, management, and capacity planning of application
performance becomes more demanding as the client/server
paradigm is used in commercial enterprise applications.
The ability to model distributed applications is crucial, and
the modeling capability has to be available to larger
populations of application designers and capacity
planners. This paper motivates the need for modeling
capabilities for these applications, and specifies the
functional requirements of performance modeling of
commercial OLTP client/server applications based on
Remote Procedure Calls (RPC). These requirements
include the ability to model transactions consisting of
multiple, nested, synchronous and concurrent RPC’s, as
well as techniques to make such model solutions tractable.
We show how we employed modeling techniques using
discrete event simulation. Several examples of distributed
application models are presented as results of our research
to validate our approach and evaluate the modeling’s
tractability for typical problems. Suggestions for future
work concludes the paper.

1. Introduction

Designing and building distributed applications is a
risky assignment without a modeling environment. The
techniques used in the past to design and manage mono-
lithic applications are inadequate in the new wave of open
distributed systems. A system model is no longer optional.
This paper highlights a critical need for performance mod-
eling in the area of client/server application design and
management. It defines the functionality required in these
models.

After discussing the motivation for simulation models
and related research in section 2, a compilation of client/
server model requirements follows in section 3. Section 4
describes our modelling approach and technology. Valida-
tions of our prototype model using RPC instrumentation is
summarized in section 5, while in section 6, an example of
a medium-sized modelling experiment to demonstrate scal-
ability is shown. Section 7 concludes with observations for
future work.

2. Motivation
The use of system modeling tools is essential to under-

stand the trade-offs in application design, capacity configu-
ration, and scalability of a client/server application.
Modeling is the most cost-efficient way to project the per-
formance of an new application beyond the geographical
limits of a test network. Failing to understand the effects of
operational network latencies and compute times on the
application before deployment risks expensive failures or
delays of a poorly-designed conversion. Performance engi-
neering in all phases of an application’s life cycle is crucial
for lower-risk, cost-effective solutions [23].

Traditionally, thecomputer system vendor used mod-
eling expertise to design, test, evaluate and produce com-
puter boxes as an integrated system. These computers were
developed around a design center based on “typical”
monolithic customer applications. These efforts focused on
the need for the hardware design to balance the customer’s
typical application use of the system’s internal compute
resources and communication paths (e.g. system buses,
caches, and I/O channels). Sophisticated simulations and
models were usually necessary to create price and perfor-
mance competitive systems to solve customers’ needs.

The customer then designed and built an application
residing on a single compute node. Rules of thumb or
straight-forward node analysis based on prototype tests
could often project the system size needed for release to
production. The processing power of the computer and
number of disk drives were the primary hardware capacity
planning decisions. These methods often carried over into
management of these applications.

The advent of client/server applications has changed the
situation from the scenario above. The overall system
design role that computer vendors played in the past is no
longer solely the vendor’s responsibility. In the brave, new
world of distributed computing, the distributed application
designer is compelled to enter the world of system design
and configuration. The designer who builds a distributed
application faces many of the same design issues that ven-
dors confront when designing a computer node. This anal-
ysis is conducted in a larger context, and without the tools
or experience that computer vendors have accumulated.

Functional Requirements for Client/Server Performance Modeling:
An Implementation using Discrete Event Simulation

Joseph J. Martinka

Hewlett Packard Laboratories
Hewlett-Packard Company, Palo Alto, CA 94304-1126

Internal Accession Date Only

2

The analogy is striking. The enterprise backbone or
WAN network of a distributed system functions for the
application as the single computer node’s back-plane mem-
ory bus does for a node. The application’s use of LAN net-
works are analogous to the single computer node’s I/O
channels. The application design decisions about where to
partition and locate the compute and the storage require-
ments of the application, the use of caching, and the
latency of network communications have their analogy in
the memory controller, I/O controller, and memory bus
design of a computer node. Today, these computer nodes in
a distributed system are merely part of the solution, a col-
lection of resources which the customer intends to harness
together into a larger system. The enterprise risks disaster
when configuring balanced system solutions without a
modeling methodology addressing the design and manage-
ment issues inherent in such a task.

Commercial modeling environments for client/server
applications are not ready for general use. Thus, there is an
unmet need to support large-scale client/server applica-
tions. However, without modeling, designing effective
applications and quantifying tradeoffs in the design is akin
more to astrology than engineering.

2.1 Related Research

Advocates of performance modeling early in the design
cycle support the notion of decompositional techniques,
especially applicable with the increasing role that middle-
ware components play in newer applications. Vetland [22]
generates a multi-level representation of an application
based on its (reusable) devolved constituent demands on a
system resource. A series of operations using linking com-
plexity matrices yields resource parameterizations for a
Stochastic Petri Net (SPN) or other model. Hillston’s work
[10] creates a compositional approach to performance
modeling based on a stochastic algebra called PEPA. A
series of equivalence relations using weak isomorphism
model simplifications yields more tractable solutions of the
underlying Markov model state space. Libraries of compo-
nents in either effort can make performance analysis acces-
sible to the non-expert.

Andleigh and Gretzinger [1] address how abstraction
models can be used to structure a distributed database
design. A hierarchial series of design models is described
comprising a system design methodology. This technique
requires evaluation of design choices through transaction,
structural and behavioral models. For cost effective imple-
mentations, these evaluations should be completed before
coding takes place, and simulations of the application are
indispensable in the technology assessment phase. The
simulation evaluates choices in the behavioral and struc-
tural models, a part of their overall object model. Franken
and Haverkort [6] describe a performance model-based

“Performability Manager” that uses a SPN solution to ana-
lyze the performance components of a QoS specification in
a distributed environment, guaranteeing user-requested
QoS, including reliability. They show how it can be used in
an ANSAware-based environment for performability man-
agement, but recognize the complexity involved in the
mapping of SPN components to alternative configurations.

A simulation approach to understand distributed data-
base scheduling deadlines (maximum desired response
times) was presented in [21] but lacked the client/server
functionality described here. Its parameterization required
a (too) detailed understanding of the application data local-
ity not available to us in the more general case. Several
efforts to characterize client-server distributed applications
using SPN’s have been reported [6][11][12][22] with the
attendant state explosion problem which limits model scal-
ability. Petriu describes an approximate Mean Value Anal-
ysis (MVA) approach called Stochastic Rendezvous
Networks which has better solution times than SPN’s [16].
This impressive work is extended to multi-threaded clients
more recently in [17] but still assumes exponential client
and server service times. The results in the paper were
evaluating abstraction and analytic assumptions comparing
to discrete and SPN simulations, but using the same service
time distribution assumptions, not experimental results
from actual systems.

Many researchers and practitioners have recognized the
critical need for modeling and instrumentation integra-
tion[11][13][20]. Others note the current lack of these
capabilities in distributed client/server systems [4][18][22].
The instrumentation in distributed systems to support these
models and tools is in its infancy or not available [22].

3. Client-Server Model Requirements

Several factors compound the performance challenge
when modeling a distributed application versus a mono-
lithic application. Foremost is the injection of LAN or
WAN network latencies into the application delay paths,
which directly affects the user-perceived Quality of Service
(QoS).

Secondly, system boundaries for the model extend past
the conventional analysis for a single server queueing
model where the focus is node-based performance [14].
For the solution to be tractable, the performance model of a
distributed system must raise its abstraction level, limited
only by the set of design questions of the model [4]. This
abstraction level is higher than many prevalent modeling
tools, techniques and parameterizations.

3.1 Design Questions for Modeling

Design questions of a new or existing distributed appli-
cation can be addressed by a general modeling approach to
distributed systems. Some of the questions befuddle

3

today’s designers of even simple distributed systems. In
general: What design parameters affect good performance
(i.e. achieve the service agreement or response time tar-
gets) for this distributed application? In particular, some
critical design questions are:
• How does geographical dispersion of compute nodes or

dataset locations, and the attendant network latencies
affect response times and throughput?

• How does the speed or capacity of any of the participat-
ing node’s CPU have on response time and throughput?

• What are the software bottlenecks due to congestion or
RPC nesting?

• How do interfaces and dependencies on legacy applica-
tions (and their behavior) impact the design and perfor-
mance of the distributed application?

• What is the effect of adding other applications or users
to the environment of the modeled application?

• What is the cost for different levels of security: authen-
tication, authorization, data integrity, or encryption?

• What is the effect of using distributed or replicated ser-
vices? (e.g., database, binding, security)

• What is the effect of upgrading low bandwidth net-
works on response times and throughputs?

• How susceptible is performance to network utilization,
bandwidth, packet loss, congestion, and distance?

• How does asynchronous overhead related to replicas
and distributed update algorithms increase with work-
load, and impact scalability of the application?

3.2 Functional Specifications for Modelling

The framework presented in [6] will be used to organize
the C/S applications performance model’s functionality
requirements that a successful model allows.

Task specification
• identifies user-level tasks that need to complete to

accomplish useful work
• determines the rate at which these tasks are introduced
• permits stochastically generated arrival rate of tasks to

the system, from specific nodes or a set of nodes
• identifies how applications are invoked, distinguished

by sequential or concurrent order to complete a task.

Application specification
• supports RPC’s with deterministic (constant) or with a

specified load-dependent service times
• contains one or more concurrent threads of execution

which can generate RPC’s to distributed nodes or other
processes,

• generate sets of RPC’s which execute concurrently.
These sets can in turn be executed serially (the next set
starts only after the slowest RPC of the previous set has
completed) or concurrently with other sets.

• capability to send an RPC to the same node used by the
client (local RPC). RPC’s that are local to the compute
node do not access the network.

• allow RPC’s to invoke another server. Thisnesting of
RPC’s within applications is often a critical part of
most applications, creating software congestion.

• multi-class workloads, transactions and applications
must be supported in the same model

• allow transactions which create asynchronous RPC’s or
other applications. This requirement is due to the impli-
cations of replication and record-keeping. Overhead
work may be asynchronously completed (some mes-
saging paradigms can be modeled with this require-
ment). Overhead is a part of a workload which
determines scalability of an application.

System Node Specification
• specifies the instruction processing speed of the node,
• allows a capability for multi-processors at a compute

node including the specification of non-linear scalabil-
ity. This permits lightly loaded MP’s to execute threads
at uni-processor speeds, but degrade more quickly as
the load builds.

• memory utilization shows characteristics such as work-
ing set size and disk statistics to indicate device utiliza-
tions and delays

• CPU degradation from other non-modeled applications
is accommodated in resource contention delay

Network Specification
• provides a workable performance abstraction for vari-

ous network types which accommodate a parameter-
ized delay based on distance between notes for speed-
of-light based LAN, MAN and WAN delays

• provides a capability to model multi-packet transfer
size buffers and an abstraction of multi-packet window-
ing flow control in the network delay model

• model protocols applicable to legacy applications (peer
to peer and messaging protocols)

• retry and sanity check operations for long-lived RPC’s.

3.3 Simulation Environment for the Tool

The mechanics of performing a series of simulation runs
should be automated to the extent possible by the tool for
scenario and sensitivity exploration of the experimental
space. The tool should offer built-in assistance to the mod-
eler in making and understanding experimental design of
simulation runs [2][3]. Minimally, eliminate manual recon-
structing and recompiling of the model for each run for
GUI-based graphic models. The simulation engine should
sense and terminate a run on monotonically increasing
queue lengths due to resource saturation as well as auto-
matic detection of specified confidence interval of key sim-
ulation statistics [13]. Incorporate hybrid modeling
techniques in larger models [17] (e.g., building MVA ele-
ments which extend the other sub-models), or with mod-
eled or real distributed agents contributing to a hierarchial
solution [9].

4. Modeling Methodology
Based on the complexity of distributed systems and the

uncertainty in treating them analytically, we opted to begin
this research using a general discrete simulation engine.
We used SES/Workbench from Scientific and Engineering

4

Software (SES), Inc. [19]. Our prototype model described
in this paper is based on 1993 source from SES’s C/S Com-
poser [5], but heavily modified to meet most of the func-
tional requirements described in Section 3. The actual
enhancements made to the source and model creation
details are in [15] and briefly described here. These
enhancements focused primarily on the requirements for
flexible topology specifications, nested and asynchronous
RPC’s, automatic model termination, and a network
abstraction with realistic latencies.

The simulation modeling software is based on a
resource-centered event which has favorable simulation
run-time advantages compared to an RPC-centered event
principally since there are fewer queued events in the latter.
In addition, this choice lends significant flexibility to the
specification of the model itself. The model binaries need
not be recompiled when changing the modeling topology
or parameters. A large variety of distributed applications
and topologies including all those described in this paper
are specified using ASCII input files. This method allows
the modeler to easily specify the number and type of com-
pute nodes, application transactions, users, networks, rout-
ers and routing technology. It also activates a variable
degree of statistical reporting functions based on the mod-
elers needs. Scripts were used to create this input file, or a
GUI to simplify interactive modifications of the model
through this configuration file.

(editor’s note: this section can be expanded if reviewers
identify cuts elsewhere.)

5. Model Validation Experiments

Our group had a contemporaneous effort with other
industry partners to specify a heterogenous distributed
instrumentation architecture integrated into the Distributed
Computing Environment (DCE) [7]. A client/server perfor-
mance metric collection system [8] supported the model-
ling experiments described below.

5.1 Phone Database Application

The sample DCE application calledPhone DB supplied
with HP’s DCE product is a client/server in-memory data-
base application implementing many of the features of the
DCE infrastructure. We modeledPhone DB as a multi-
class client/server application running two kinds of trans-
actions characterized by their server’s CPU consumption.
Parameterization of the model was made using response
times and RPC counts provided by the prototype RPC
instrumentation. Data was collected for each class of trans-
action in isolation at a low throughput rate (to minimize
queueing and contention) so that response time could be
substituted as CPU service times.

In Figure 1, the average of the two classes of transaction
response time is plotted with increasing load showing that

the modeled results corresponds within 10% of the instru-
mented application below the knee of the curve which
starts at 10 TPS.

5.2 OLTP Monitor Application

In a more challenging environment, we modeled an
OLTP transaction using Encina, a DCE-based middleware
product offering transactional semantics. Encina ships with
a sample application calledtelshop which was instru-
mented in a similar fashion as thePhone DB described ear-
lier. We discovered its behavior using event-tracing1, and
modeled it using simulation. In Figure 2, we plot the mod-
eled and measured results of a transaction consisting of five
read queries to an inventory database for a range of work-
load levels. The agreement with the measured results was
satisfactory.

Simulation of update transactions shown in Figure 3, the
initial model did not validate the measurements of a batch
of entry (update) transactions at higher transaction rates.
Investigation revealed that the Encina log server process
which ensures the durability of the transaction was imple-
mented with a load dependent service time. At a threshold
arrival rate, RPC’s are held for 300 ms in the expectation
that some logging requests can be combined, thereby con-

1. Event tracing at the RPC interface is provided by the instrumented
IDL compiler (I2DL) in HP’s DCE product offering.

Figure 1 Phone Database Model Validation

0 2 4 6 8 10 12 14
Transaction TPS for each search

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Combined Client Response Times

Modeled
Measurement

Figure 2 Encina’s Telshop Read Task

10.0 20.0 30.0 40.0 50.0 60.
TPS

0.020

0.040

0.060

0.080

0.100

R
es

po
ns

e
T

im
e

(s
ec

s)

pp

Telshop 5 Query Transaction (Toolkit)

Model Prediction
Actual Measurements

5

solidating disk I/O’s and amortizing the CPU time. This
experience brought us face to face with a probable behav-
ior in tuned servers: load-dependant service times. Once
the simulation was changed to model this behavior, the
results yielded a satisfactory match compared to measured
response times (omitted due to space limitations). The les-
son is that models must be validated with real systems, not
simply with other models to uncover abstraction pitfalls
such as this.

6. Model Scalability Experiment
An experiment was conducted to exercise most of the

modeling functionality discussed in section 3. Our goals
were to demonstrate the capabilities of the simulation for
sensitivity analysis in the application design phase, and to
show how nested, asynchronous RPC’s are essential to be
integrated into the model functionality.

6.1 R.P.C. Corporation System Description

A hypothetical corporation’s distributed application is
used as an example to illustrate some distributed applica-
tion design tradeoffs. Raincoat Ponchos Company (R.P.C.)
contemplates the design of a distributed Order Processing
system. This system is being designed as a client-server
distributed system across the enterprise.

R.P.C. is an international enterprise which has a corpo-
rate headquarters and four regional offices, each with five
branch offices. User workstations used for sales activities
in every branch office are connected through LANs to the
branch office computer. The legacy corporate information
data center is in New York City. New York, Dallas and San
Francisco comprise the three domestic sales regions. Each
region has several branch offices, one co-located, the others
at more remote locations. The international regional sales
office is in Singapore, with its branches in Hong Kong and
Japan.

Later sections discuss five representative branch offices.
While each branch is executing a similar transaction load,
they have dissimilar performance characteristics due to net-

Figure 3 Encina’s Telshop Update Task

0.0 10.0 20.0 30.0
TPS

0.00

0.20

0.40

0.60

0.80

R
es

po
ns

e
T

im
e

(s
ec

s)

Application RT
Telshop (Toolkit) : 5 Order Entry transaction

Model Prediction
Actual Measurements

work latencies. These branches are bold ovals in Figure 4.

Network Topology

We depict R.P.C.’s computing and networking topology
in Figure 4. The network is modeled only to a level of
detail which exposes the principal performance concerns of
the modeling goals. If the distance between networks is
significant, it is expressed in miles on the dark thick line
connecting routers. A FDDI fiber backbone connects the
corporate server with other corporation computers and the
networking ports. The U.S. domestic locations are con-
nected internally using LANs (ethernet), and are inter-con-
nected via Asynchronous Transfer Mode (ATM) public
networks. The international nodes are inter-connected by
slower WAN technology (e.g., X.25).

When a router is handling a packet to another router
with a distance specification, a delay is imposed which
relates to the distance traveled. The modeled network
throughput for the different varieties of network types used
by R.P.C. is listed in the following table. Modeled queuing
disciplines are included.

A routing map was built for the model which describes
the network route that messages from each branch must
traverse to communicate with all regional compute centers,

Figure 4 R.P.C. Network/Node Topology

0

21

LAN 4 LAN 5

LAN 0

B0

New York

4 5

B3B2 B5B4

Region 0
NYC

100 400

2

19

LAN 8 LAN 9

LAN 2

B10
Dallas

8 9

B12B11 B14B13

Region 2
Dallas

100 400

1

16

LAN 7LAN 6

LAN 1

B5
San Francisco

76

B8 B9B6 B7

Region 1
San Fran.

400100

U.S.
ATM

13

3

LAN 3 B15
Singapore

Region 3
Singapore

International

12

12

24
25

23

18

17

13

Backbone FDDI
14 20

22

14

Corporate Host 0

LAN 10LAN 11
1011

B17 B16B19 B18

HongKongJapan

1200
2500

9500

3300 1600 miles

Branch
Office

miles

miles
miles

miles

miles miles miles miles

miles miles

WAN

B#

New York Data Center

 WAN

6

as well as with the corporate computer center.

Computer node assumptions

The simulation model accommodates the probability
that compute nodes in distributed systems such as R.P.C.
will have multiprocessors. The compute power for each
computing node assumed in this model is shown below:

The computer processing costs for operating on these
datasets are measured or estimated in CPU instructions.
Disparate compute nodes with an known MIPS rating
which act as clients and servers can be substituted in the
model to determine capacity and scalability.

6.2 Application Workload Characteristics

The Order Processing application uses datasets which
are shared and sometimes replicated. These datasets are
planned to reside at selected compute nodes in the com-
pany. They are implemented in database technologies
using a common transaction management interface (e.g.,
X/Open’s XA). These datasets for the application are listed
below and represent a first-cut partitioning and location of
data. In the initial design, there are four distinct datasets, of
which three are replicated.

Transaction descriptions and dataset operations

A two-class workload was constructed where two trans-
action types were modeled:Order View and Order
Entry . Other transactions such as ship order and cancel

Network type
BW in

MB/sec
Modeled queueing

discipline

ethernet LAN 1.25 resource sharing

domestic ATM 18.7 first come first served

local FDDI LAN 12.5 first come first served

international WAN 0.0009 infinite server

location node CPU MIPS MP count

corporate 90 4

regional 40 2

branch 30 1

Dataset Description Replica?
Initial

Location

Product description & Inventory corp

Branch & Sales Rep totals yes corp

Order Tracking region

Customer Info & Accounts yes region

Product Description &Inventory yes region

Customer Info & Accounts branch

Branch & Sales Rep totals branch

order are considered derivatives of the above transactions.

Order View transaction is a read-only transaction. The
dataset operations are:

1. Read customer account information
2. Read product information
3. Read order tracking information

Order Entry is the update transaction. The required
dataset operations are:

1. Read customer account information
2. Read product information
3. Insert order in Tracking database
4. Enter order in customer account
5. Debit customer account
6. Enter order in the branch and sales rep totals
7. Update the branch and sales rep totals replicas
8. Update the Product information
9. Update the Product information replica

Some of these operations that involve a read and a write
to the same dataset are considered to be part of a single
data packet exchange to a remote system in this model. All
updates to these datasets are controlled by a two-phase
commit protocol by participating nodes.

The network traffic for each of the datasets assumes that any
data to be transferred as part of the RPC can be carried with-
in a single 1500 byte Internet Protocol (IP) packet.

Workload constraints

Transactions originate at individual desktop worksta-
tions, however, the modelled load is initiated at the branch
computer. It is assumed that the workstation transmission
times have known and negligible delays to the branch
node.

The branch office is the focus of the most interesting
order processing transaction behavior. It is assumed that
the average rate ofOrder View andOrder Entry transac-
tions will be equal, although other load mixes are possible.
Similarly, branch offices present equal transaction demands
to the system.

Each branch office computer will generate both types of
transactions with an exponentially distributed inter-arrival
time. While no bottlenecks are present, the throughput for
each branch will be roughly equivalent. The response times
for each transaction will serve to differentiate one branch
from the other and provide a figure of merit for database
partitioning decisions.

6.3 Model Results

We present some model results of the initial design
choices for R.P.C.’s application in this section.

Configuration Application Performance

The simulation model was run for a range of branch

7

office transaction rates from 2 to 18 transactions per sec-
ond (TPS), the higher level is beyond saturation of some
system resource1. Transactions consisted of similar rates of
the two transaction types. The transactions rates are
expressed in terms of the number of transactions originat-
ing at any one particular branch office. This load growth
could be generated by more client workstations or by
increased traffic from existing workstations.

The selected five branch offices of R.P.C. Corp. to pro-
vide an interesting spectrum of network delays. In Figure
5, the response times for these branches are plotted. Be

careful to note the response time axis differences between
the two transactions in all of these graphs.

The Order Viewing transaction shows that four out of
the five branch offices presented have under 30 ms
response times. Recall that for aOrder View transaction,
only the regional CPU and the branch CPU participate in
the transaction. Thus the Tokyo region has response times
of nearly one second since it is the farthest from its
regional office in Singapore.

1. 20 branch offices generate 40 to 360 TPS. Do not confuse this TPS
to a different fruit from the Transaction Processing Council (TPC)

Figure 5 Selected Branch Response Times

0 4 8 12 16
Branch TPS

0.0

1.0

2.0

3.0

R
es

po
ns

e
T

im
e

Order Entry

0 4 8 12 16
Branch TPS

0.0

0.5

1.0

1.5

R
es

po
ns

e
T

im
e

Order View

New York
Seattle
Little Rock
Singapore
Tokyo

Figure 6 Expanded Branch Response Times

0 4 8 12 16
Branch TPS

0.00

0.10

0.20

0.30

0.40

R
es

po
ns

e
T

im
e

Order Entry

0 4 8 12 16
Branch TPS

0.00

0.02

0.04

R
es

po
ns

e
T

im
e

Order View

New York
Seattle
Little Rock
Singapore
Tokyo

The Order Entry transaction shows the effect of
including RPC’s to the corporate CPU. Not only are the
response times a great deal larger, now the Singapore
branch reflects the additional network delay experienced
by communications to the corporate CPU. The individual
branch behaviors in Figure 6 show the detail of branches
with lower response times. Branch offices in cities remote
from their regional office have response times which are
twice as long as the branch offices which are in located the
same city as their region.

In theOrder View transactions the branches that are
further away from their regional CPU (Little Rock, Seattle)
have an extra 15 millisecond delay than the branch office
CPUs co-located with their regional CPU (Singapore and
New York). These response time relationships increase by
an order of magnitude for theOrder Entry transaction
since Singapore has a longer delay to get to the corporate
CPU in New York, than does the Seattle office.

Compute Bottleneck

The “knee” of the response time curve is often due to a
resource bottleneck. In this scenario, the regional CPU
node becomes saturated when each of its five branch
offices are generating 15 to 16 TPS. In Figure 7 we plot the
modeled CPU utilizations for the branch, region and the
corporate CPU nodes.

Recall from section 6.1 that the regional and corporate
CPUs were multi-processor (MP) machines, whereas the
branch CPU was a uni-processor (UP). The two-way
regional CPU reaches saturation above 15 TPS and is the
primary reason for the knee in the response time curves of
Figure 5 and Figure 6. The branch CPU is not too far
behind however. At nearly 75% utilization of the regional
CPU, it is beginning to contribute to the large queueing
delays of the transactions at 12 TPS per branch. The corpo-
rate CPU is sized so that it is 40% idle, or available for
other application activities.

0.0 5 10 15 20
Branch Transaction Rate (TPS)

0.0

1.0

2.0

3.0

U
til

iz
at

io
n

of
 a

ll
P

ro
ce

ss
or

s

Compute Node Utilizations

(region 0, branch 0)

Corporate (4MP)
Regions (2MP)
Branches (UP)

75% node saturation

100% node saturation

Figure 7 CPU Utilizations

8

6.4 Model Runtime Costs

The simulation runs were driven by simple script pro-
grams. Several model scenarios at different workload fac-
tors could be started and run to conclusion during off-
hours.

We were somewhat pleased in the efficiency of the
model to generate a series of results enabling design
tradeoffs and sensitivity analysis. This model was run on a
99 MHz HP Series 735 workstation under HP-UX 9.03.
For every TPS in the graphs shown earlier, there is one
order and one entry transaction. This model has 16 RPC’s
per TPS. The simulation runs in batches to calculate and
terminate when a 90% confidence interval for user
response times is reached. Simulation run time perfor-
mance is listed below includes a warm-up batch.

The CPU cost was 1.4 to 3.2 msec per simulated RPC
(including network and both client/server compute nodes),
a range which is satisfactory for design analysis. To suc-
ceed at our eventual goals of adaptive distributed systems
during operations, heuristic or analytical techniques will be
necessary.

6.5 Other Model Scenarios

Alternate design scenarios were modeled to demon-
strate flexibility and provide quantitative alternatives for
design options:
• updating of all replica datasets is made asynchronous to

the update transaction (occurs in the background).
• alternate placement of datasets where some datasets are

moved to the branch node, and new replicas are created.
TheOrder View transaction can complete with local
procedure calls, but theOrder Entry transaction
becomes more complex.

• updating of all replica datasets is made asynchronous to
the transaction.

• the instructions and network traffic to update replicas
are considered as a third, asynchronous transaction
which proceeds at the same rate as theOrder Entry
transaction but not necessarily completing as the Entry
transaction finishes.

7. Conclusions
Modeling of distributed client/server applications is a

critical factor in their design, deployment, and later scal-
ability. The modeling technologies needed in this effort are
not generally available, and not ready for broad distribution
to application designers and planners. This paper high-
lights the functionality needs for client/server models and

TPS Transactions RPC’s CPU time Sim time

4 16,100 257,000 6 min 60 sec

8 32,000 512,000 16.3 min 60 sec

12 47,000 752,000 40 min 110 sec

describes design questions to be addressed. A prototype
simulation model implemented many of the requirements
listed, and its use was demonstrated in several real and
hypothetical examples.

There is much research and practical work to do in the
user interface to the modeling engine, methodology to
decompose the activities of a middle-ware dependant
application, automatic model parameterization, and further
validation of a simulation approach to modeling client/
server applications. Strides are needed not only in the mod-
els which meet many of the specifications described in this
paper, but also in the modeling methodology and integra-
tion with distributed instrumentation as it makes its appear-
ance in the middle-ware infrastructure.
Acknowledgments

I am indebted to my colleagues Rich Friedrich, Steve
Saunders and Tracy Sienknecht for their support.
References
[1] Prabhat Andleigh and Michael Gretzinger,Distributed

Object Oriented Data Systems Design, Prentice Hall, Engle-
wood Cliffs, NJ, 1993?.

[2] Robert Berry,Experimental Design and Computer Perfor-
mance Analysis, Proc. of Computer Measurement Group
(CMG) ‘92, Reno, Nevada, 1992, pp 1100-1110.

[3] George E.P. Box, William G. Hunter, J. Stuart Hunter,Statis-
tics for Experimenters, John Wiley & Sons, New York, 1978.

[4] Peter Dauphin, et al.,ZM4/Simple: A General Approach to
Performance Measurement and Evaluation of Distributed
Systems, Readings in Distributed Computing Systems, IEEE
Computer Society Press, Los Alamitos, CA, 1994, pp 288-
309.

[5] C/S Composer User’s Guide Release 1.1, Scientific and
Engineering Software, Inc., Austin Texas, 1994.

[6] Leonard Franken and Boudewign Haverkort,The Perform-
ability Manager, IEEE Network, Jan/Feb 1994, pp 24-32.

[7] Richard Friedrich,The Requirements for the Performance
Instrumentation of the DCE RPC and CDS Services, Open
Software Foundation DCE Request for Comment (OSF
DCE-RFC 32.0), June 1993.

[8] Richard Friedrich, Joe Martinka, Tracy Sienknecht and Steve
Saunders,Integration of Performance Measurement and
Modeling for Open Distributed Processing, Proceedings of
the International Conference on Open Distributed Processing
(ICODP ‘95), February 1995 , pp 341-352.

[9] D. Gaïti, Intelligent Distributed Systems: New Trends, Pro-
ceedings of the 4th Workshop on Future Trends of Distrib-
uted Computing Systems, Lisbon, Portugal, Sept 1993, pp
106-111.

[10] Jane Hillston,A Compositional Approach to Performance
Modeling, PhD Thesis, University of Edinburgh, 1984.

[11] Peter Hughes and Dominique Potier,The Integrated Model-
ling Support Environment, Esprit 89 Conference Proceed-
ings, Document IMSE R-1.2-4, STC plc and Thomson CSF,
1989.

[12] Oliver Ibe, Hoon Choi, and Kishor Trivedi,Performance
Evaluation of Client Server Systems, IEEE Transactions on

9

Parallel and Distributed Systems, Nov 1993, pp 1217-1229.

[13] Raj Jain,The Art of Computer Systems Performance Analy-
sis, John Wiley, 1991.

[14] Edward Lazowska, et al.Quantitative System Performance -
Computer System Analysis Using Network Models, Prentice-
Hall, Englewood Cliffs, NJ, 1984.

[15] Joseph Martinka,A Performance Model of a Client-Server
OLTP System Using SES/Workbench, Proceedings of the
Fourth Annual SES Users Group, SES, Inc., Austin, Texas,
April 1994.

[16] D.C. Petriu and C.M. Woodside,Approximate MVA from
Markov Model of Software Client/Server Systems, Proceed-
ings of 3rd IEEE Symposium on Parallel and Distributed
Processing, pp. 322-329, 1991.

[17] Dorina C. Petriu, et al,Analytic Performance Estimation of
Client-Server Systems with Multi-Threaded Clients, MAS-
COTS ‘94: Modeling, Analysis, and Simulation Int’l Work-
shop, pp 96-100.

[18] Jerome A. Rolia,Distributed Application Performance Met-
rics and Management, Proc. from 2nd International Confer-
ence on Open Distributed Processing ‘93, Elsevier Science
B.V. (North Holland), pp 235-246?.

[19] SES/workbench Reference Manual, Scientific and Engineer-
ing Software, Inc., Austin, Texas.

[20] Connie Smith,Performance Engineering of Software Sys-
tems, Addison-Wesley, 1990.

[21] Özgür Ulusoy, Geneva Belford,A Simulation Model for Dis-
tributed Real-Time Database Systems, Proc. of 25th Annual
Simulation Symposium, Orlando, Florida, April 6-9, 1992,
pp 232-240.

[22] Vidar Vetland, Measurement-Based Composite Computa-
tional Work Modelling of Software, PhD Thesis, Norwegian
Institute of Technology, The University of Trondhem, 1993.

[23] Eyal Zimran, David Butchart,Performance Engineering
Through the Product Life Cycle, COMPEURO ‘93 Comput-
ers in Design, Manufacturing, and Production, pp 344-349.

Trademarks: SES, SES/Workbench and C/S Composer are
trademarks of Scientific and Engineering Software, Inc. HP-UX
is a trademark of Hewlett-Packard Co. Encina is a trademark of
International Business Machines, Inc.

