
1

A research prototype of a networked smart sensor
system is described.

The contributions of this system study are in three
areas:

1) A network interface which defines a common
data model, a set of operations, and the ability to
customize the node operation in a consistent
manner.
2) A transducer interface which supports the
‘electronic data sheet’ for transducers with volt-
age and digital outputs.
3) A set of node behaviors which simplify the
installation and configuration of a group of nodes
to perform a measurement or control applica-
tion.

This paper was presented at Sensors East in Bos-
ton, May 1995.

A Research Prototype of a
Networked Smart Sensor
System
John C. Eidson and Stan P. Woods
Measurement Systems Department
Instruments and Photonics Laboratory
HPL-95-91
August, 1995

Keywords

smart sensors,

distributed systems,

distributed
measurements

electronic data sheets

Copyright 1995 Hewlett-Packard Company

Internal Accession Date Only

1

TABLE OF CONTENTS
I:INTRODUCTION..2
II:BACKGROUND..2
III:OVERVIEW OF DISTRIBUTED MEASUREMENTS....................................3

A: Transducer-related properties of distributed measurement nodes................. 3
B: Measurement-related properties of distributed measurement nodes............... 4
C: System or application-related properties of distributed measurement nodes....4
D: Communication protocol issues.. 4
E: Data management issues.. 5
F: Control protocol and real-time issues... 6

IV:PROTOTYPE SYSTEM..7
A: Design objectives and specifications... 7
B: General description of an application using the prototype system................... 8
C: Smart node architecture... 9
D: Operational aspects of smart nodes.. 11

V:INTERFACE DEFINITIONS..12
A: Transducer interface... 12
B: Network interface... 12

VI:EXPERIENCE USING THE PROTOTYPE SYSTEM......................................13
A: Printed circuit board manufacturing.. 13
B: Laboratory ambient condition monitoring.. 13
C: Miscellaneous systems... 13
D: Observations... 14

VII:TOPICS FOR FUTURE RESEARCH...14
VIII:CONCLUSIONS..15
Appendix A: Detailed description of system models. ...15

A: Network interface... 15
B: Behavioral models... 17
C: Transducer interface... 18

REFERENCES... 20

2

I. INTRODUCTION
This paper discusses the use of distributed systems technology in applications
involving measurement and control, a subject of much recent discussion, see refer-
ences [1],[2],[3]. As part of this investigation we designed and constructed a net-
worked system of smart sensors and actuators. The goal was to evaluate distributed
smart sensor systems with respect to:

1. ease of system configuration
2. ease of system expansion and modification
3. ease of data management
4. ease of application development

V. BACKGROUND
Traditional test and measurement applications have been based on the use of cen-
tralized control and data management. The usual implementation involves a central
controller that directs the actions of instruments, sensors, and actuators; polls for
any results; and manages the resulting data.

Today, distributed measurements usually refers to systems comprising one or more
controllers each with one-to-one connections to instruments, sensors, and actuators.
Supervisory control and data acquisition, SCADA, systems are a typical example of
such a distributed measuring system. Other distributed systems are essentially
autonomous measuring devices such as data loggers or electric meters. In this case
the data is brought manually to a central location or it may be polled over a commu-
nication link.

In both of these previous cases, the essential determination of the system’s behavior
resides in the central controller. Communication is one-to-one between the central
controller and each instrument, sensor, or actuator.

In this prototype system, a more general notion of distributed measurements is used.
Specifically the nodes, i.e., the instruments, actuators, and sensors, determine the
overall behavior of the system, rather than depending on a central controller for con-
trol. In addition, nodes communicate directly with each other or with groups of other
nodes without any restriction to one-to-one communication links. In the rest of this
article, “distributed measurements” refers to this more general notion. “Distributed
measurement systems” as used in this paper, also includes systems with actuators
and more general purpose nodes such as displays.

It is unlikely that distributed measurement technology will be the best solution for
all applications any more than traditional centralized technology is best for all appli-
cations. In general, a mixture of technologies will be the optimum for a given appli-
cation. However, this prototype system and article deal almost exclusively with
distributed measurement technology.

3

VI. OVERVIEW OF DISTRIBUTED MEASUREMENTS
Distributed measurement systems generally require more “intelligence” to be built
into the nodes than a traditional centralized system designed for the same overall
task.

It is useful to consider three aspects of distributed node intelligence: transducer-
related, measurement-related, and system or application-related intelligence. These
aspects might be termed “levels of smartness.”

The following sections discuss some properties of measurements that need to be con-
sidered when designing nodes for a distributed system. In general, the more of these
properties that are managed by the node, the more useful the node will be as a gen-
eral component in distributed measurement systems.

For example, consider the transformation of the voltage output of a thermocouple
into temperature. If this is not handled in the node containing the thermocouple,
then every other node in the system that makes use of the thermocouple output must
either make this transformation itself or obtain the result from a node that does
make the transformation. Either of these choices provides less system design flexibil-
ity than doing the transformation in the node containing the sensor.

A. Transducer-related properties of distributed measurement
nodes

Transducer-related properties include:

1. Physical variable: temperature, stress, etc.
2. Form of transducer input or output: voltage, change in resistance, digital signal
3. Calibration: relationship of transducer output to sensible value, e.g., converting

the value of the voltage from a thermocouple to the measured temperature
4. Identity: transducer serial number, description, etc.
5. Limits of use: maximum and minimum values, acceptable operating

environments, stability of calibrations, repeatability, etc.
In a distributed system, these items will be handled at the nodes containing the sen-
sor or actuator. Current instruments generally manage these properties, while most
available sensors and actuators do not. Many of the “smart sensors” available today
manage only a few of these properties. Examples of such existing smart sensors are:

1. the Analog Devices ADXL50 accelerometer, which has built-in signal
conditioning and self-test

2. the Smartec SMT160-30 temperature sensor with built-in signal conditioning
and digital interface

3. the Omega Engineering PX763 pressure sensor with signal conditioning and an
interface to the HART communications protocol

4

B. Measurement-related properties of distributed measurement
nodes

Measurement-related properties include:

1. Measurement timing management: timed, polled, random, etc.
2. Local data management: store until requested, broadcast upon collection, etc.
3. Local computation: average, peak value, etc.
4. Identity: node identification, description, etc.
5. Location: coordinates or identifier of the measurement point

Instruments manage some but not all of these properties. Management is usually
accomplished via external commands or from front panels. Currently available
transducers generally do not deal with these properties.

For nodes to be generally useful in distributed systems, these sorts of properties
need to be managed within the node.

C. System or application-related properties of distributed mea-
surement nodes

System or application-related properties include:

1. Changing measurement properties in response to application-related messages,
e.g., changing the sample rate in a collection of nodes

2. Defining the communication patterns among nodes, e.g., master/slave, client/
server, peer to peer, etc.

3. Establishing and modifying communication patterns among nodes, e.g.,
modifying multicast membership

4. Managing the transport properties of communication among nodes: flow control,
reliable delivery, etc.

5. Synchronizing the node clocks, if present
6. Conforming to system data and control models

Few current instruments, sensors, or actuators have the capability to manage these
properties. There are a few new LAN-based instruments that have some capabilities
in this area.

These properties are often the dominant factors in determining the usefulness of
nodes in distributed measurement systems. Without proper support for managing
these properties within the nodes, the design and implementation of a distributed
system requires impractical levels of low level programming for each node.

D. Communication protocol issues
Multicast communication capability is desirable for distributed measurements. Here
multicast means that MxN communication is supported, that is, multiple sources
can communicate with multiple sinks.

In a distributed system, the logic that determines behavior resides in the nodes. In
all but the most trivial measurements, this logic requires communication between

5

nodes in a variety of patterns. For example, data collected at a given node may be
needed at several other nodes for display, archiving, or perhaps setting an actuator.
Likewise, a given node, for example, a display node, may be managing data from a
number of sensor nodes. This sort of communication is a good match to a multicast
capability. Point-to-point communication is a special case of multicast and will be
needed occasionally in distributed measurement systems.

Most existing protocols in use in test and measurement implementations present a
point-to-point interface to the designer. However, it is worth noting that at the phys-
ical layer most are fundamentally multicast protocols since all nodes share a com-
mon multicast medium such as coax or RF. Notable exceptions are RS-232 and the 4-
20ma loop which are dedicated physical links and can not support a multicast proto-
col. Point-to-point protocols are not adequate for distributed measurements as envis-
aged in this paper.

In the case of the IEEE-488 protocol, information transfer is restricted to a single
talker at a time and is not as flexible as a true multicast protocol. The IEEE-488 pro-
tocol is not a good candidate protocol for distributed measurement systems.

LAN protocols often have a multicast capability for specialized needs. However, the
normal application interface is point-to-point. The internet protocol, IP, layer in the
protocol stack is usually used for point-to-point links. Most network applications
(e.g., FTP, Telnet, RPC, NFS) use IP in this manner. There is provision for multicast
in the IP layer. This multicast capability is often used for system-level protocols, e.g.,
NTP, and can be used for distributed measurement protocols as well.

One of the challenges in developing distributed measurement systems is finding
appropriate multicast implementations.

E. Data management issues
In a distributed system the management of data must be more structured than in
traditional systems. In centralized systems many data management tasks such as
identifying the source and time of a measurement, are based on the properties of
point-to-point communication links. In a distributed system using multicast, other
techniques must be used for binding the various pieces of information in the system.

An example of such a technique is the data model for physical measurements. It is
necessary to include the value or a reference to the value in the data sent from a dis-
tributed node for any item normally inferred from the properties of a point-to-point
link in a traditional system, e.g., source node identity. The minimum elements of the
relation representing a measurement include attributes for the value, units, time of
measurement, the location of measurement, and usually some name. Depending on
the type of system being built, additional elements such as accuracy or precision may
be included. A more detailed description of the data models used in the prototype
system is included in Appendix A of this paper.

6

The use of data models with the information binding implemented in the nodes, pro-
vides the best basis for realizing this project’s objectives, e.g., the “plug-and-play”
behavior.

F. Control protocol and real-time issues
In a traditional centralized system, behavior is managed by the controller issuing
detailed command messages to each of the remote nodes. Such systems, built using
existing instruments and sensors, require many of these messages to be concerned
with details of the internal operation of the node. These detail messages often domi-
nate network traffic, [4].

In distributed measurement systems, the details of system behavior are determined
by the nodes. The control protocol must therefore support each node internally man-
aging the application details occurring at that node. In addition, the control protocol
must support the transmission of synchronization messages between nodes to pro-
duce the correct overall system behavior.

Synchronization includes not only the timing of measurements but the overall
progress of the application from one sequence of events to another.

In the distributed measurement systems we have built to date, the communication
traffic consists mainly of these application synchronization messages and application
measurement data.

There are three main real-time considerations in measurement systems:
1. the relative timing of measurements and real world phenomena, i.e.,

synchronization
2. the time needed to transport data
3. the time needed to process data

In traditional systems, synchronization is managed by the central controller, often in
combination with hard-wired triggers between nodes. Any notion of real time is
imposed by the central controller on the received data.

In distributed measurement systems, each node must explicitly deal with synchroni-
zation. Order, but not time specification, can be implemented via messages passed
between nodes. If a true time specification is to be imposed, then nodes must have
access to a clock.1 A central time server is one possibility but introduces delays and
probably excessive message traffic. For systems with more than a few nodes, a better
choice is for each node to have a local clock participating in a synchronization proto-
col among the nodes.

1) Simple ordering of events can be accomplished by a message exchange. For example, to ensure that event A1 in
node A executes before event B1 in node B (ordering), a message would be sent by node A after executing A1, to
node B. Upon receipt, node B would execute B1. A major deficiency of this scheme is that only the order of the
events is specified. The time difference between the two events (e.g., event B1 must follow event A1 by 50 msec.)
cannot be specified because there is no control over the processing or delivery time of the messages.

To provide this time specification, it is necessary to base the execution of events on time rather than on the receipt of a message. By
accessing a sufficiently accurate time reference, each node can be programmed to execute events at the appropriate times. The event
times may be preprogrammed or based on times communicated in messages.

7

The real time requirement for transporting data over the network and processing
this data within nodes is an issue of network and node design. In systems with many
nodes, network bandwidth may be at a premium for many applications. Conse-
quently, careful consideration of such things as the use of acknowledgments is neces-
sary to avoid saturating the network. Like others [5], we have found using
unacknowledged transport mechanisms with the appropriate end-to-end acknowl-
edgment at the application level, minimizes network traffic and is appropriate for
distributed systems.

IV. PROTOTYPE SYSTEM
A. Design objectives and specifications
The design objectives define the following specifications of system and node behavior
and capability:

1. Connection of a node to the medium is all that is required for the node to become
operational in the system (in a sensible way).

2. Deletion of a node for any reason (e.g., disconnection or power-down) does not
cause any failure of system behavior, other than those effects due to missing the
production or consumption of data and messages associated with the node.

3. All necessary protocols for operation of the system are distributed, i.e., there is
no need for any form of central control during the operational phases of the
system.

4. All nodes are capable of accepting an “application script” that tailors the
inherent behavior of the node to meet the requirements of the specific overall
system application.

5. Central control is permitted but is not required as a means of managing the
modification of node behavior for specific applications. However, for this study
the role of the central controller was limited to downloading “applications” and
issuing commands to change the selection or parameters of one of the behavioral
models within a node.

6. All nodes implement the same standard data, control, and behavioral models.
7. All nodes contain clocks that are synchronized with the clocks in other nodes of

the system.
8. All nodes provide information sufficient to properly interpret communications

with the node.
9. In this report, nodes that meet these design criteria are referred to as “smart”

nodes.

8

B. General description of an application using the prototype sys-
tem

As illustrated in Figure 1, a typical system contains a number of smart sensors and
actuators. Laboratory prototype smart sensor nodes have been implemented to mea-
sure light intensity, relative humidity, temperature, carbon dioxide concentration,
sound level, power line voltage, power line frequency, pH, fluid flow, acceleration,
and atmospheric pressure. Laboratory prototype actuator nodes have been imple-
mented to control a relay, control a D.C. motor, display a voltage, and display a byte
of data with a group of LEDs.

In addition to the smart actuators and sensors, a number of laboratory prototype
smart system nodes have been built to illustrate more complex functionality, while
still being good citizens in the distributed measurement system. The display and
archive nodes accept the output of all of the sensors and parse and display the data
or save it to a file.

A variety of communication media are used in the demonstration system. An Ether-
net LAN is used in the traditional portion of the system. A1.25Mb/s twisted pair and
a 49Mhz low-power RF link are used for communication in the distributed portion of
the system. A repeater is shown to illustrate the segmentation of the network allow-
ing more nodes than permitted with a single twisted pair.

A
dm

in
is

tr
at

io
n

X Terminal RTAP

Measurement

D
is

pl
ay

A
rc

hi
veLAN

Server

S
en

so
r

G
at

ew
ay

R
ep

ea
te

r

A
ct

ua
to

r

SensorSensor

Sensor

49 Mhz rf1.25Mb/s Twisted Pair

Figure 1. Prototype System Overview

S
en

so
r

A
ct

ua
to

r

1.25Mb/s Twisted Pair

9

The administration node downloads applications into smart nodes and sends com-
mands to change the internal model selection and parameters.

The smart sensors, actuators, display, archive, and administration nodes constitute
a pure distributed measurement system in the terms of this article. The remainder
of the components illustrate how such a system might interface to traditional sys-
tems.

The measurement server node provides a remote-procedure-call, RPC, based inter-
face to the LAN and provides visibility into the distributed measurement system. In
this system the measurement server serves as a gateway by converting LAN packets
to and from equivalent packets on the smart sensor network. One of the remaining
research issues is the design of measurement servers and the way such servers
present distributed measurement systems to the more traditional systems.

The measurement server communicates with RTAP, a Hewlett-Packard SCADA
supervisory system. RTAP accepts the data from the smart sensors as delivered by
the measurement server node. This data is archived in the RTAP database and is
available for display, analysis, trending, etc. Access to RTAP is from any X-terminal
on the LAN.

C. Smart node architecture
The architecture for the prototype smart nodes is illustrated in Figure 2.

Smart Node

Communication Media Access

Control and Configuration

Sensor or Actuator

Real World

Communication Medium

Figure 2. Smart Node Architecture

Application

Transducer Interface

Network Interface

10

The Communication Media Access block handles the low-level protocol required to
access the physical medium. Included in this block, is a media-dependent trans-
ceiver. This transceiver is the physical interface to the medium. Ideally, the interface
between this block and the Control and Configuration block, i.e., the network inter-
face, is media and protocol independent.

The Control and Configuration block includes the remainder of the protocol stack,
i.e. the media and protocol independent portion, and the control and computation cir-
cuitry needed to implement the functions of the smart node. This Control and Con-
figuration block is identical in all smart nodes.

The optional Application block consists of a ROM containing an application-specific
script. Applications may also be loaded over the network. This block is located on a
card that plugs into the smart node.

The Sensor or Actuator block contains the sensor or actuator transducer, any addi-
tional circuitry not contained in the control and configuration block, and an elec-
tronic data sheet containing specifications and calibration information unique to the
specific sensor or actuator.

The two possible data paths within the smart node Control and Configuration block
are illustrated in Figure 3.

The physical transformation converts between the digital representation in the
International System of Units, SI, and the raw digitized representation provided by
the transducer. This conversion is based on information from the “electronic data

D/A

Physical
Transformation

Application
Transformation

Network
Data

Figure 3. Data Path

A/D

Physical
Transformation

Application
Transformation

Network
Data

Actuator NodesSensor Nodes

11

sheet” contained in the transducer.

The application transformation is converts between the SI units representation and
the application representation which appears at the network. In the absence of any
provided application this will default to a SI unit representation at the network. This
application transformation implements the portions of the application specific to the
node. The transformation can be quite general. In addition to operations on the data,
e.g. change of units, averaging, filters, limits, etc., the transformation can generate
messages on the network.

In addition to the transformations on the data, the Control and Configuration block
implements the behavior models defined for the smart nodes. These models specify
the behavior of the node with respect to properties like sampling rate and data man-
agement.

D. Operational aspects of smart nodes
The internal operation of the smart nodes may be divided into two phases; start-up
and normal-operation.

The start-up phase occurs after power-up or reset. During the start-up phase, the fol-
lowing sequence of events takes place within the node:

1. The transducer uploads the information contained in the “electronic data sheet”.
2. Based on this information, the node configures itself as a sensor or as an

actuator. In addition, it configures the physical transformation, as well as
operating characteristics imposed by the transducer, for example, warm-up time
and minimum sampling interval. Thus it is possible to completely change the
nature of a node by substituting a different transducer. For example, a
temperature transducer could replace a pressure transducer, or perhaps another
temperature transducer with lower accuracy. These changes are reflected
automatically in the transducer-related node behavior.

3. The contents of the application ROM upload. Based on this information, the node
configures the application transformation.

4. The node monitors the network to detect the presence of other nodes. Based on
the information received, the node configures the relevant properties, e.g., data
management options.

5. At the end of the warm-up time the node begins normal operation.
Typical functions occurring during the normal-operation mode include:

1. For actuators, the node receives data via a multicast or point-to-point link. This
data then moves along the data path illustrated in Figure 3 and normally results
in an update of the actuator at the appropriate sampling time.

2. For sensors, the node triggers the sensor at the appropriate sampling time. The
data then moves along the data path. Depending on the application
transformation, this results in data or messages being placed on the network.

12

The application transformation can also result in more complex behavior such as
reporting by exception.

3. For any node, the node monitors the network for messages that indicate a change
in the operational behavior, e.g., multicast membership changes.

IV. INTERFACE DEFINITIONS
The key to successful use of distributed technology lies in the interface and behav-
ioral definitions. All members of a distributed system must adhere to the same set of
definitions to permit graceful scaling, modification and operation of the system.

In smart nodes, the two key interfaces are the transducer interface and the network
interface.

A. Transducer interface
This interface serves to define all aspects of the smart node that depend only on the
transducer. There are four areas of concern: the physical form of the interface, iden-
tity specifications, operational specifications, and calibration specifications.

1. The physical form of the interface includes definitions for all signals, power
levels, connectors, etc.

2. The identity specification must include a unique identifier that allows the smart
node to determine whether the transducer has been changed. The prototype
specification includes the manufacture’s identification and an ASCII textual
description of the transducer.

3. The transducer operational specifications of the prototype include the minimum
sampling interval, transducer warm-up time, acquisition time, units, data
representation, precision, and accuracy.

4. The calibration specification includes the method and parameters to enable the
physical transformation to convert between SI units and the transducer signal.
Also, the transducer contains the specification of the expiration of the
calibration. To allow for recalibration, these items are stored in EEPROM.

This interface is the subject of a current NIST/IEEE standardization effort.

B. Network interface
This interface defines all aspects of the smart node that are visible to other nodes on
the network. Data, connection, and behavioral models specify the network interface.

The use of common models allows the design of nodes that can operate on the data
without further configuration, one of the objectives of this study.

The main feature of the data model is the network-level representation for measure-
ment data. This representation includes value, units, time of measurement, and
place of measurement. The data is normally communicated as a multicast message
named “data” and is received by all nodes in the multicast group. Receiving nodes fil-
ter the incoming data based on their internal application information and on the

13

fields of the data message. For a more detailed discussion see Appendix A.

V. EXPERIENCE USING THE PROTOTYPE SYSTEM
The prototypes have been used in a number of applications which are described in
the following sections.

A. Printed circuit board manufacturing
A system much like the one illustrated in Figure 1 was used to monitor conditions in
the wet-chemical processing portion of a printed circuit board manufacturing opera-
tion within Hewlett-Packard. The system includes smart nodes to measure the tem-
perature and pH of the solutions in various tanks and the flow rates and line
pressure in the automatic spray equipment.

The measurement server transfers measurement results to an RTAP installation for
process monitoring.

The interesting feature of this application is that periodic monitoring of the flow
rates is inappropriate since the spray process is intermittent. An “application trans-
formation” was produced which allowed the node to make measurements at the
desired rate during spray time, but only place the data on the network when flows
above a certain threshold are observed.

Data from RTAP is accessible via an X-terminal from anywhere within Hewlett-
Packard. We have also implemented a Mosaic interface to this data for demonstra-
tion purposes.

B. Laboratory ambient condition monitoring
A system similar to the printed circuit board system has been installed in several
laboratory areas at Hewlett-Packard. This is a straightforward monitoring of atmo-
spheric pressure, ambient temperature, humidity and concentration of carbon diox-
ide. RTAP is used for archival recording of the data for later correlation with defect
data associated with various operations being conducted in these laboratories.

C. Miscellaneous systems
A variety of systems have been built to demonstrate various aspects of distributed
measurement such as:

1. controlling a closed loop system
2. adding nodes to running systems
3. changing system application behavior based on events observed in one or more

nodes and communicated using a multicast operation
4. partitioning of systems into multiple multicast groups

All of these systems used the same nodes. Only the application transformations were
modified.

14

D. Observations
The following observations are based on our experience with the limited number and
types of nodes in our current systems.

1. The maximum measured sampling rate possible for the current nodes is 25
samples per second. This figure can be expected to improve with a node processor
faster than the Motorola MC143150 and Toshiba TMPN3150 chips used to
implement the nodes.

2. The measured deviation of the sample period for a single node making periodic
measurements at a rate below the maximum is on the order of 5 milliseconds.

3. The timing offset accuracy between nodes is on the order of 6 milliseconds based
on comparing the time-stamps of observations of periodic measurements started
at the same time.

4. System application writing and debugging is generally easier than that for a
corresponding, centrally-controlled systems. This appears to be the result of:
a. partitioning the application into node-specific operations which are

implemented at the node
b. using synchronization messages between the nodes
c. using common data models which promote inter-changeability and inter-

operability by eliminating excessive data manipulation
d. using multicast communication patterns which provide more flexibility and

allow for graceful addition of nodes
e. modifying the system usually requires modifying the application specification

only at the few directly involved nodes
5. System application writing and debugging would be easier if explicit support for

application-events had been provided
6. Identifying, partitioning, and modelling transducer, measurement, and system

or application-related issues allows node design to explicitly support these
issues, greatly reducing the difficulty in constructing applications

7. Adopting SI units for all internal operations simplifies the design of the nodes.
Application development is also simplified since only those nodes which must
present data in human readable form need concern themselves with the variety
of units representations for the same measure. Additional research is needed to
design a robust specification technique for compound and dimensionless units
[6].

VIII. TOPICS FOR FUTURE RESEARCH
As a result of our investigation, several topics were noted in which additional
research is needed to allow more effective design and use of distributed system appli-
cations. These include:

1. Determining the set of useful models and support structures for implementing
the application level of distributed systems. This will result in a more formal

15

definition of an interface between the “application” and “measurement” portions
of the node architecture.

2. Designing a robust specification technique for compound and dimensionless
units, and variable naming.

3. Designing an effective method for implementing unique identifications for
transducers, nodes, etc.

4. Designing the environments for application development, simulation and
debugging of distributed measurement systems.

5. Specifying a network interface, as defined in this paper, that is independent of
the actual network transport and physical protocols used.

6. Ensuring low cost node design.

VII. CONCLUSIONS
This study has shown that the use of distributed system technology is useful and
important in measurement, monitoring and control systems. With further develop-
ment these techniques will enable straightforward construction of applications
which are easily configured, expanded, modified, and maintained.

Appendix A: Detailed description of system models.

This appendix provides more detail into the top level definitions of the various mod-
els and interfaces of the smart nodes. There is considerably more detail to these
models than is possible to present in this paper. However the level of definition given
should illustrate how these models support the design objectives of the prototype
system.

In the following sections, italics indicates that the item is an explanation intended to
convey the intent of the underlying detail of the item, i.e., it is not a terminal symbol
for the definition. A complete definition would extend to the bit structure of the rep-
resentation.

A. Network interface
network-interface:

network-data
network-time
application-script
node-control
network-connectivity

network-data:
node-id
sequence-number
time-stamp
variable-parameters

16

value
node-id:

A unique identifier referencing the source of the record
sequence-number:

The ordinal number of the set of network packets conveying this item of network-
data. This may be a compound sequence number if network packet fragmentation
is needed.

time-stamp:
A representation of the local node time. When related to data it indicates the time
at which the data became or is to become valid.

variable-parameters:
variable-type
variable-name
variable-units
data-model

variable-type:
A type indicating the nature of the data, e.g. normal physical data, normal physi-
cal data from a node whose calibration is overdue, application level data,....

variable-name:
A key to either a standard enumerated variable names or an expression defining a
user created name.

variable-units:
A key to either a standard enumerated SI unit or an expression defining a SI com-
pound or user created unit

data-model:
A type indicating the data type used to represent the data value, e.g. IEEE-float, 3
IEEE-float vector, etc.

value:
The value of the data.

network-time:
node-id
time-stamp

application-script:
application-id
application-model
application-variable-map
application-specification

application-id:
A system unique identifier referencing this application

application-model:
The model used to represent the application. For the prototype: series, categoriza-
tion, subroutine.

17

application-variable-map:
Defines the names, types, units and relationships between the variables at the

input and output of the application transformation defined by the specification.
application-specification:

As appropriate to the application-model, defines either the relevant parameters or
an executable subroutine.

node-control:
A definition of commands which may be used to change node state or to set

parameters of various behavioral models, e.g. reset, stop-sampling, set-sample-
rate.

network-connectivity:
A set of commands and data used to establish or modify the network connectivity.

B. Behavioral models
The selection and definition of the node behavioral models, along with the data mod-
els, visible either from the transducer or from the network determines the inter-
changeability and interoperability properties of the smart nodes in a distributed
system. The following are two of the models used in the prototype to illustrate this
point.

Operational state model:

The network state modifications possible from the network via “node-control” are:
reset (or power up)
d: download a new application
f: calibrate the node
e: accept new calibration
f: use previous calibration
i: reset

All other transitions are governed internally.

reset

warm-up

application
reconfiguration

normal
operation

calibration
operation

error

any state
a

b

c

d

e
fg h

i

Figure A1: Operational state

18

Sampling state model:

The network state modifications possible from the network via “node-control” are:
a: reset (or power up)
b: start-polled-mode
c: start-periodic-mode
d: start-measurement
f: start-measurement
h: arm-measurement
i: start-periodic-mode

All other transitions are governed internally.

C. Transducer interface
transducer-interface:

operational-parameters
transducer-description
conversion-specification
calibration-specification

operational-parameters:
transducer-type
transducer-id
transducer-variable-name
transducer-units
range-model
warm-up-time
acquisition-time
minimum-sampling-period
physics-representation
transducer-representation
precision
accuracy

periodic
stopped

periodic
run

one-shot
armed

one-shot
in progress

one-shot
recovery

b

a

c

d e f

g

h

Figure A2: Sampling state

i

19

transducer-type:
Indicates whether the transducer is a sensor or an actuator and the form of the
physical interface. In the prototype the forms included: voltage signal, frequency
signal and a byte stream.

transducer-id:
A unique identifier for the transducer.

transducer-variable-name:
A key to either a standard enumerated variable names or an expression defining a
user created name.

transducer-units:
A key to either a standard enumerated SI unit or an expression defining a SI com-
pound or user created unit

range-model:
Specifies the representation and values of the range of the physical variable acces-
sible to this transducer.

warm-up-time:
The time required after power is applied before the transducer is operational.

acquisition-time:
The time required after the trigger signal applied to the transducer before the data
is valid.

minimum-sampling-period:
The minimum time required between successive samples.

physics-representation:
The data representation used on the network side of the physical transformation.
(see Figure 3)

transducer-representation:
The data representation used on the transducer side of the physical transforma-
tion.

precision:
The precision of the calibrated data.

accuracy:
The accuracy of the calibrated data.

transducer-description:
An ASCII description of the transducer.

conversion-specification:
conversion-model
default-conversion-values
calibrated-conversion-values

conversion-model:
Specifies the type of the conversion model used. In the prototype a series, a catego-
rization and subroutine models are supported.

20

default-conversion-values:
Default value of the conversion values appropriate for the selected model.

calibrated-conversion-values:
Conversion values appropriate for the selected model.

calibration-specification:
calibration-type
calibration-description
calibration-script

calibration-type:
Specifies the method used to calibrate the transducer. The prototype supported: no
calibration possible, self calibration, and an externally managed N point calibra-
tion.

calibration-description:
A human readable set of instructions on the calibration procedure.

calibration-script
An executable script defining the externally managed N point calibration.

REFERENCES

[1]James Pinto, ISA paper #94-598, “Networked, Programmable, Intelligent I/O, The
‘Truly’ Distributed Control Revolution”, Proceedings of the Industrial Computing
Conference, vol4, part 2, pgs. 141-147, October 23, 1994.

[2]Gary Tapperson, ISA paper #94-569, “Fieldbus: Migrating Control to Field
Devices”, Advances in Instrumentation and Control, vol. 49, part 3, pgs. 1239-
1252, October 23, 1994

[3]James Pinto, ISA paper #94-514, “Fieldbus- A Neutral Instrumentation Vendor’s
Perspective”, Advances in Instrumentation and Control, vol 49, part 2, pgs. 669-
675, October 23, 1994.

[4]Stan Woods, and Keith Moore, “An Analysis of HP-IB Performance in Real Test
Systems,” Hewlett-Packard Laboratories Technical Report 93-20, August 1992

[5]J.H. Saltzer, D.P.Reed, and D. D. Clark, “End-To-End Arguments in System
Design”, ACM Transactions on Computer Systems, vol 2, No. 4, November 1984,
pages 277-288.

[6]Stephanie Leichner, William Kent, Bruce Hamilton, “Dimensioned Data”,
Hewlett-Packard Laboratories private communication, February 1995.

