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Abstract

This paper presents the notion of problem-oriented
object memory, and its realization in a distributed
object-based programming system, Penumbra. This
system allows location transparent object invocation,
object migration and caching. Its distinguishing
feature, however, is its support for problem-oriented
object sharing.

Problem-oriented object memory is an object model
that allows exploitation of application specific

semantics by relaxing strict consistency in favour of
performance.

Our work addresses the problem of achieving
scalability of shared write-intensive data in an
environment of networked workstations. We have
successfully applied the presented ideas to the
management of a highly demanding telecoms
application.

1 Introduction

We have investigated the issue of how to provide a
high-level programming model for distributed
applications which require very high-performance of
a variety of types of shared data. Our approach is
based on exploitation of application-level semantics
to relax a traditional strict sense of consistency. This
paper describes the abstractions we have designed to
support such a model.

For a number of reasons the object-based approach to
distributed programming has become the preferred

one in recent years. We have carried out our work on
problem-oriented consistency protocols in an object-
oriented environment, namely that provided by the
Penumbra toolkit. The result is a programming
paradigm which we call Problem-Oriented Object
Memory (POOM). This programming model allows
relaxation of object consistency in favour of
performance. Penumbra is presented, and the use of
POOM is illustrated with examples from the telecoms
world, especially from a network management
application which we are currently developing.

One of the key points of this paper is that a distributed
object-oriented programming system is well-suited as
a starting point for implementing a generic
framework for supporting relaxed consistency
protocols. This is mainly due to the encapsulation
features of OO systems.

1.1 The application: a distributed MIB

The application that has been the motivating factor
behind our work is that of managing high
performance telecommunications network elements
(NEs) performing call-control. The important
properties and requirements of this application are:

Performance. The NEs must be able to handle a
very high number of service requests. We meet
this requirement by functionally replicating the
service logic, i.e. by processing multiple service
requests in parallel over a distributed system.

Hierarchical MIB. The  management
information for a NE consists of a number of
managed objects organized into a tree
structure—the Management Information Base or
MIB [13]. Due to replication, the MIB spans a



number of physical network nodes, but
embodies a single logical database.

Single System View. For administration and
management purposes, the NE MIB should
appear to the network operator as a single
system. It shouldn’t be necessary, for example,
to explicitly install new software on every node
in the NE!. Thus parts of the MIB is shared
between NE components and parts of it is local
to individual replicas. The problem of providing
a single system view is discussed in more detail
in [19].

Access patterns. Managed objects exhibit
different access patterns: some shared MIB
objects have a high read/write ratio while other
have a high ratio of writes to reads. This last
category includes, for example, counters being
updated on the order of incoming service
requests. This suggests that different
mechanisms are needed to meet the performance
requirements of such objects.

Fault tolerance. Each NE has stringent
availability requirements posed on it. Since
algorithms exist for providing fault tolerance
independently of the protocols and models
discussed in this paper, we shall not consider
fault tolerance any further.

The problem is thus primarily one of scalability: how
to provide high performance of “hot” shared
memory—data that is being updated with very high
frequency by different processors.

Fortunately our management application has two
properties ~ which  makes  problem-oriented
consistency a tractable approach. First managed
objects are often rather simple, such as counters, and
second clients are often able to tolerate or correct a
certain level of inconsistency. Our work primarily
addresses domains where these properties hold.

L. It must also be possible to manage nodes individually,
but this involves no coordination between NE
elements and is thus less troublesome to achieve.

1.2 Penumbra

Penumbra is a toolkit for writing distributed C++
programs. It is based on an early version of the
Shadows toolkit from Newcastle University [7].
Penumbra is based on a principle of retaining C++
invocation syntax, semantics, and typing as far as
possible and to provide support for POOM.

1.3 Organization of this paper

The rest of this paper is organized as follows. Section
2 introduces and justifies the concept of problem-
oriented object memory in lieu of other memory
sharing paradigms. Section 3 and 4 describes how this
is supported and implemented in Penumbra. In
section 5 we pause to discuss the notion of proxies
and section 6 provides a couple of detailed examples.
Section 7 discusses related work.

2 Consistency in distributed
environments

The notion of consistency is the focal point around
which all communication paradigms must revolve.
Ideally, distributed applications are provided with an
illusion of a hardware-implemented global memory
giving the same strong consistency guarantees as a
uniprocessor. The two dominating approaches are
page-based distributed shared memory (DSM) and
object-based systems.

2.1 Distributed Shared Memory

Page-based distributed shared memory, such as Ivy
[18], provides a notion of a shared and consistent
virtual address space on top of which one might have
higher-level programming models unaware of
distribution. This level of transparency comes at a
cost of

* False sharing. Coherence is at the granularity of
a page and data that happens to be collocated at
the same page cannot be accessed
independently. Furthermore, data that lie on a
page boundary will typically result in multiple
page faults.



» Expensive processor interrupts if the model is
implemented on top of message passing without
any hardware cache-coherence support.

* Inability to take advantage of application
specific knowledge about access patterns of data
‘(although some DSM systems, e.g. Munin [6],
does take steps to remedy this).

2.2 Distributed Object-Based Programming
Systems

A different approach to shared memory coherence is
the one employed in the increasingly popular
DOBPSs. These systems exhibit the following
characteristics:

« The unit of consistency, distribution,
communication, and migration if supported, is
the object as opposed to, for example, processes
in RPC systems, or memory pages in DSM
systems. Since objects are inherently problem-
oriented entities, it is more natural to express
location properties in this model than in DSM
systems.

« The illusion of a global address space is upheld
typically through the use of proxy objects. Local
and remote objects are generally treated in a
uniform manner; object references can for
example be passed as arguments to remote
methods.

* The DSM memory access primitives are read
and write of individual memory cells. The
process of fetching a memory page at page fault
time is called data shipping. In contrast, the
basic means of communication in an object-
based model is invocation of methods in an
objects interface, i.e. function shipping. The
equivalent of data shipping is supported through
object migration.

» The fundamental parameter passing semantics is
call-by-reference (also called call-by-proxy).
Consistency is guaranteed as there is always
only one version of an object. DOBPSs often
provide mechanisms for controlling object
placement for efficiency.

False sharing can also occur in an object-based
system if objects are too coarse grained and different
nodes access disjunct subsets of an object. This seems
to us like the result of a bad design—the analysis
phase should recognize such constraints and reflect
them in the decomposition of functionality into
objects.

It is interesting to note that naive application of either
the DSM or DOBPS algorithms doesn’t work well
with hot data. A DSM approach would cause massive
thrashing as all nodes would attempt to access the
same pages at the same time, and the huge number of
messages generated by a DOBPS system and the
delay associated with each one would be equally
prohibitive.

A different approach is obviously needed.

2.3 Problem-Oriented Object Memory

POOM is our novel model of shared memory. It
combines the advantages of object-based approaches
with a framework for expressing application-specific
semantic knowledge about exactly what consistency
means for a particular class.

The assumption is that distributed applications with a
need for very high performance often doesn’t need
absolute consistency of shared data, but can exploit
semantic knowledge of the problem domain to relax
consistency [9,21].

We can identify the following types of acceptable
inconsistencies (some of them identified in [9, 21]):

Tolerable. The application may simply not be
very sensitive to inconsistencies in some data.

Imperceivable. The user of a shared datum will
not be able to tell that the datum is inconsistent
but the application might yield a suboptimal
solution to its problem i.e. it degrades gracefully.

Detectable and correctable. The application
will detect data inconsistency when attempt is
made to use it, and is subsequently able to
correct it. This requires application cooperation
but may be hidden from the programmer.

Reconcilable. The synchronization required to
bring shared data into a consistent state is



embedded in the access function. Unlike in the
previous point no client cooperation, implicit or
explicit, is required.

In the POOM model the unit of consistency is still the
object, but objects are replicated for quick access and
the programmer annotates method implementations
of such objects with information about the type of
integrity required for instances. Given an invocation
on a cached or replicated version of an object, the
programmer is given control over whether to execute
the method locally or whether to pass it on to the real
object.

Object replicas are thus allowed to slide into states
which are neither consistent with the master object or
with other replicas. To handle the situation where the
result of queries on the master object depends on the
state of replicas, Penumbra supports the notion of
collator® objects. A collator object maps the state of a
number of replicas or a number of replies from
replicas to a single coherent object state or method
result.

These ideas can be used to implement problem-
specific relaxed object consistency.

An object-based model is particularly appealing to us
for the following two reasons (apart from the ones
mentioned above and other ones like encapsulation,
inheritance, modeling, etc.):

* Network management standards are typically
formulated in an object-oriented framework
[23], thus making the deployment of object-
based technology the natural choice.

* Resources within a distributed system can
conveniently be identified and accessed through
a handle to a corresponding object. The object
handle uniquely identifies a fine-grained object
within a system.

We have prototyped this model in a DOBPS called
Penumbra. We found that in this framework we were
able to express problem-specific object consistency

2. Collation: 1a: to compare critically 1b: to collect,
compare carefully in order to verify, and often
integrate or arrange in order (Webster’s dictionary).

protocols with a minimum of effort and with a
minimum of impact on the system as a whole.

3 Distributed programming with
Penumbra

This section describes the programmming model and
abstractions provided by Penumbra for enabling
simple construction of distributed applications.

The programming model is that of distributed, muli-
threaded objects communicating via RPC. As a reselt
of a remote object invocation a new thread is spawned
to execute the method at the current location of the
object. Objects are completely symmetric, and may
act both as originators and targets of RPC calls.
Furthermore, object references may be passed around
in the system, unconstrained by distribution. Objects
can migrate between processes (modelled as Contexts
in Penumbra) in the system and invocations are
transparently forwarded to the objects current
location.

The ability of objects to be remotely accessible,
cacheable, etc. is provided in the form of a C++ class
hierarchy, the idea being that shared objects inherit
from the Penumbra classes corresponding to desired
properties for that class. The set of abstract
superclasses can be combined using multiple
inheritance.

Figure 1 shows the inheritance hierarchy. The shaded
classes are abstract and are derived from by .
applications. The other classes implement a set of
standard services which represent functionalty
needed in most non-trivial applications. We describe
each class in turn.

3.1 The abstract classes

Applications create new classes by deriving from the
Penumbra base classes described in the following.

3.1.1 Distributable

Class Distributable is the basis of distribution of C++
objects. Instances of Distributable or subclasses are
the units of distribution, migration and caching.
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Figure 1. The Penumbra inheritance hierarchy

At the language level the use of references to remote
Distributable objects is syntactically, and modulo
network and processor failures also semantically,
indistinguishable from ordinary use of C++ pointers.
The implementation employs the well-known concept
of proxies to implement this logical model: a remote
object is represented locally as a shallow proxy
object. The represented “real’’ object is called the
proxies principal or master object [22]. The remote
object is accessed only through ordinary local
references to the proxy object which hides details of
remote communication like argument serialization
and network communication.

A Context can obtain a reference to a Distributable
object in three ways:

1. It can instantiate one itself. There is nothing
special about instantiation of Distributable
objects compared to other C++ objects.

2. References to Distributable objects can be
passed between Contexts as arguments or
results of remote method invocations.

3. It can look up a name in a NameServer. If an
object has been registered with that name, a
reference to that object is returned.

Obtaining references to and accessing remote objects
is thus syntactically identical to ordinary C++.

Class Distributable imple'ments the migrate
method which given a reference to an active Context,
attempts to migrate the object to the corresponding
process.

Low-level consistency of proxies and principals
during object migration is based on object locking.

Since multiple threads can execute within a single
object simultaneously, Penumbra must protect
threads against the situation where an invocation’s
controlling object is suddenly migrated by another
thread. A migration request is thus carried out holding
an exclusive lock for the duration of the migration
while ordinary invocations are executed holding a
shared lock. Of course applications can still interfere
at a semantic level and will thus typically need
additional concurrency control.

3.1.2 Cacheable

The Cacheable class provides objects with the ability
to be cached through the cache_object method.
In our implementation the principal object will keep
track of the whereabouts of cached versions of itself.
This information is needed in the subclasses
implementing  particular  cache  coherency
mechanisms. The Cacheable class itself thus doesn’t
come with any kind of consistency guarantees but
provides appropriate hooks for subclasses.

The effect of having immutable objects can be
achieved by inheriting directly from Cacheable.
Immutable objects can freely be replicated without
worrying about consistency constraints.

3.1.3 SoftConsistent

Class SoftConsistent provides a traditional cache
coherency mechanism. Methods which don’t alter the
cached object (“read” operations) are carried out
locally and can thus proceed in parallel with local
reads elsewhere in the system. Serialization of
“write” operations is guaranteed through the use of
either a write-invalidate or a write-update protocol.



The write-invalidate protocol, for example, works by
letting cached objects pass on write invocations to
their principal object. The principal object invalidates
all cached versions of itself (in parallel), and executes
the body of the method holding an exclusive lock on
itself. Cache invalidation uses the information
inherited from Cacheable to invoke the
invalidate method on each cache.

Read methods invoked on a cached object checks
whether the cache is valid and either executes the
operation immediately and locally, or gets the new
state of the object from the master and then executes
locally.

The delay for executing write operations with this
protocol is simply the round-trip-time for RPCs
(assuming no lock contention), and the number of
messages required equals the number of valid cached

versions of the principal in existence at the time of the
update.

Obviously the scheme must be robust towards
changes in the membership of the “cached-version-
of-object” predicate. Again we rely on object locking
in the prototype.

The cache coherence of SoftConsistent objects can be
relaxed. We provide fuzzy (or chaotic) versions of the
read and write methods, which will always execute
locally without any external synchronization. This
allows the use of out-of-date values when application
semantics can tolerate it.

Actually, fuzzy invocations are special cases of
conditional method execution. In general, the
decision about where to execute methods can be made
at run-time based on the evaluation of a boolean
expression. This expression is part of the method
implementation and for fuzzy invocations it evaluates
to false. The expression tested for in a conditional
method can involve replica state as we shall see in
section 6 below.

The cache can be brought up-to-date at any time by
reexecuting cache_object.
3.1.4 Amalgamated

When there is high contention for shared data, strictly
coherent caching only works well when the number

of reads is (much) larger than the number of writes.
Fuzzy access to caches can alleviate this problem in
some cases, but assumes that the information is usable
independently of other caches.

The Amalgamated class supports the process of
transforming inconsistent caches to be consistent or
rather to appear as being consistent to observers. It
allows flexibility in choosing the location at which
operations on replicas (cached Amalgamated objects)
are carried out, and allows replicas to become
inconsistent, as long as a coherent object state can be
constructed from the total set of replica states.

This is useful when data is updated much more
frequently than it is read. An example of this is a
replicated and monotonically increasing counter
which is updated on the order of hundreds or even
thousands times per second but which is read only
infrequently by management applications [19]. A
write ratio in these orders would exclude strict
consistency among replicas in our application.

One way of dealing with objects exhibiting such
characteristics is to carry out updates directly on
replicas without synchronizing with the principal
object or with other replicated versions of the same
object, and to deal with synchronization through
value amalgamation at the time the object is read.
Value amalgamation is the process of amalgamating
the state of all replicas of an object to a single
meaningful value.

Of course not all objects are of a nature that allows a
single meaningful value to be synthesized from
multiple more or less independent values (though in
our application it helps that managed objects are often
quite simple). Value amalgamation for such types
may consist simply of making a list of individual
values available to clients.

The Amalgamated class lets the user decide on a per-
method basis where to execute methods and how to.
The counter type may, for example, be implemented
by carrying out the frequently occurring increments
locally on replica versions of the counter while read
requests are forwarded to the principal object. The
principal will in turn retrieve the values of each of its
replicated versions, and return the result of adding
them together. This process is illustrated in figure 2
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Figure 2. Amalgamated and Collator

where the Amalgamated object forwards an
invocation to its replicas and delegates out to a
Collator object the responsibility of mapping the three
replies thus obtained on to a single reply to be
returned to the client as the result.

This scheme is very much analogous to the logical
model of multicast communication in ANSA [20]. In
this analogy the master object and replicas
corresponds to the group representative and group
members respectively, but invocation forwarding
need not be implemented using multicast protocols.

The decision about whether or not to execute a
method locally within a replicated object or forward it
to the principal depends on the semantics of that
particular operation. We provide the programmer
with macros for passing this information on to
Penumbra. A more elegant solution would be to make
this information part of an interface definition.

Class Amalgamated implements a method
rmulticast, which (in parallel) invokes a method
on each of its “cached” copies. Associated with each
multicast is a collator object. The programmer
specifies which collator class to use for particular
methods as part of the implementation. The Collator
object performs the task of producing a single result
from the n that are received. It can discontinue the
multicast at any time if it decides that enough
information is available to construct the result. This
sort of preemption can be exploited, for example, to
trade precision for latency in the retrieval of statistical
information. Replies that arrive late are silently
discarded. As part of the multicast Penumbra creates
a new instance of the specified subclass of Collator,

feeds each multicast reply to its collate method as
they are received, and blocks the original invocation
(the read in figure 2) until the collator object comes up
with a result or times out.

An advantage of this scheme is that it is possible to
write generic collator classes which perform typical
actions, such as return the first reply received (the
default) or a list of all replies. Users with specific
needs define custom collation strategies by writing
new classes inheriting from Collator. The
AddCollator used in the Counter example might be
defined as in Figure 3.

Replica replies are passed to the collate method in
a generic RpcBuffer since the same method prototype
must allow different types of values in different
subclasses.

We see the notion of collation filters as supporting the
construction of “democratic memory” as defined in
[9]. Democratic memory deals with fetch requests by
reading the values of its replicas and returning the
result of some computation on the memory values
thus received.

3.1.5 Recoverable

The Recoverable class provides objects with the
ability to persist on secondary storage independent of
the process creating the object. The implementation
exploits the marshalling code already present for
distribution purposes.

3.2 Standard services

We have identified the Context, ObjectFactory, and
NameServer classes as providing commonly used
services. These classes all inherit from Distributable
and instances are thus remotely accessible.

3.2.1 Context

The Context class is an abstraction of processes. In
the spirit of network management standards, a
process is considered a resource, and is subsequently
modelled as an object, towards which invocations
(remote and local) can be issued, thus controlling
various aspects of the corresponding process.



class AddCollator: public Collator
{
public:

virtual void collate(RpcBuffer &reply_buff); // invoked for each reply

private:
int accumulated;
};:

// sum of replica values

void AddCollator::collate(RpcBuffer &replyBuff) // replyBuff contains reply

{

int incr;

reply buff >> incr;
accumulated += incr;
if (repliesReceived == numCaches)
{
resultBuff << accumulated;
return_result (resultBuff) ;

// unpack the reply
// add to interim result
// if this was last reply

// pack return value
// discontinue multicast

Figure 3. An example Collator class definition

Apart from encapsulating per-process data structures,
the Context implements methods activate and
kill. An application can explicitly instantiate new
Contexts. These will start in the passive state and can
be activated on a (possibly remote) node through the
activate method. A process will be started on the node
determined by an argument (assuming that the
environment permits it) and the Context object will
change to the active state and will become a proxy for
the master object in the new process.

The kill method terminates the process corresponding
to that Context.

A typical use of Contexts is to designate the target of
object relocations.

3.2.2 ObjectFactory

The ObjectFactory class supports runtime creation of
instances of distributable objects through the
create_object method which all applications
must reimplement. It returns a handle to a newly
created object of the specified type or NULL if it fails.
This can be used directly by applications but is

heavily used internally. If the ObjectFactory doesn’t
have a priori (i.e. static) knowledge of the class it is
being asked to create an instance of, it will attempt to
dynamically load the code for it from a shared library.

3.2.3 NameServer

The name server in our (and similar) systems
provides the indirection in binding object references
to process and object addresses that is necessary for
writing location transparent applications. It is a
standard component in many high-level distributed
object-based system.

All Penumbra processes are born with a reference to
the system-wide name server and will connect to it as
part of their start-up sequence. Multiple NameServers
can, however, exist in a system, and a process can
reference and access more than one of these.
Likewise, NameServer references can themselves be
inserted into other NameServers thus providing a
hierarchy, or federation, of NameServers.



4 Implementation

As already mentioned, remote objects are locally
represented as proxies and are locally referenced as
ordinary C++ objects using their virtual memory
address. No special precautions are taken to ensure
identical layout of virtual memory in communicating
processes. (This would imply a process coupling
which we didn’t find suitable in our environment.
Amber, which assumes a tight coupling between
communicating processes, does this [8]). Instead
object references are mapped to new virtual memory
values when they are passed between processes.

For this purpose each Distributable object is assigned
a unique object identifier (UID) and each Penumbra
process maintains a mapping between UIDs and
pointers to local principals/proxies. Instead of passing
a pointer to some Distributable object the sending
process passes the corresponding UID. The receiving
process is then able either to map this UID to an
already existing local principal/proxy or to instantiate
a new proxy and update the UID-to-pointer mapping.

When an object is migrated it leaves behind a proxy,
which acts as a forwarding address. If an object is
repeatedly migrated, chains of remote references can
arise. Old remote references are thus left out-of-date
and are updated only when dereferenced or when
more up-to-date information appears, and always
transparent to users. Forwarding chains can thus be
seen as a problem-oriented mechanism: instead of
keeping references consistent the system infra-
structure support the detection of stale data on use
with subsequent correction.

Internally, Penumbra needs a way of identifying and
communicating types as if they were first class
values. For simplicity we identify types as text strings
in the prototype. All Distributables respond to the
virtual get_type method with their type name.
There is no check that processes are compiled with
identical versions of classes.

Also for simplicity, proxies are actually instantiations
of the same class as the corresponding principal
object, only marked as being a proxy. This means that
standard compilers can more readily be applied and
that object migration isn’t complicated by the need to

relocate local pointers from the existing proxy to the
(locally) new principal.

Multithreading in Penumbra is based on DCE threads
which complies to POSIX threads draft 3.4.
Concurrency within a process is controlled using the
features of DCE threads, namely mutexes and
condition variables.

5 Transparency issues

The notion of proxy objects can be seen as the object-
oriented analogue to RPC stubs in that they allow
location transparent access to objects. They can,
however, also be seen as supporting other types of
transparencies such as:

Caching transparency. The concealment of the
fact that cached objects are any different than
ordinary ones from a particular user and the
insurance of cache consistency using whatever
protocols are appropriate.

Replication transparency. The concealment of
object replication from a particular user—again
any consistency constraints can be transparently
enforced by the system.

Group transparency. When an object-based
system is extended to include some notion of
group communication, a group should be
represented by an object like all other entities.
Clients interface to the group via this group
object, and invoke operations on the group by
invoking operations on this object [16]. Group
transparency entails hiding of invocation
distribution, group membership changes,
multiplicity of replies, etc.

The commonality between these examples and the
common use of proxies is that they all employ local
objects to represent remote resources and to hide
complex distributed algorithms, and also that they do
this by stretching the notion of unique object identity:
an ordinary proxy has the same UID as its principal
(we think of it as the same object). Group objects
resemble ordinary proxies in that they pass
invocations on to other objects but unlike ordinary
proxies they don’t directly correspond to something
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Figure 4. Migration of cached objects

more “real” than themselves. Replicated and cached
objects can be seen as variations over the same theme.

Transparencies correspond to different levels of
abstraction. Since different users have different
perspectives on objects, they will need different
abstractions and it is thus important that
transparencies are selective, i.e. that mechanisms
exist for escaping them. The location of an object may
for example be very important for performance or
fault tolerance reasons. Or a client of an object group
might really want to retrieve a result from each group
member.

A transparency is the concealment of some property
from the user. In Penumbra transparencies come with
classes such as Cacheable. Other transparencies can
be introduced by refinement through single
inheritance (Cacheable inherits from Distributable)
and combined by multiple inheritance.

An important assumption is that transparencies can be
made orthogonal in the sense that the result of
combining them will adhere to the individual
consistency requirements. One can, for example,
freely pass references to cached objects around since
these are also Distributables. Or as another example
consider what happens when one migrates a cached
version of an object. There are several possibilities as
illustrated in figure 4.
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In Figure 4(a) site C has a proxy for a cached version
of an object residing at site D. The principal is located
at site A. Figures 4(b) and 4(c) depicts two possible
answers to the question about what happens when
someone invokes migrate on site C’s proxy giving
it a reference to Context C as argument. The proxy
passes the invocation on to the next element in the
chain, i.e. to the cached object at site D, which in turn
has a choice between

1. passing the migration request on to the
principal; this results in the migration of the
principal object to site C, or

2. executing the request itself, that is migrating the
cache instead of the real object to site C.

Option 1, which is what we have implemented in
Penumbra, seems like the natural choice of semantics,
but option 2 would be equally consistent. Other
possible “feature interactions” may have a less
obvious resolution.

It seems that the notion of proxies in an object-
oriented environment makes an ideal transparency
mechanism. They provide the indirection which
enables the run-time system to perform certain
actions depending on the nature of the object.



6 Examples

We will now turn to consider two concrete examples
of how problem-oriented protocols can greatly
decrease communication by relaxing consistency.

They exemplify the notions of tolerable and
correctable inconsistencies respectively. An example

of reconcilable inconsistency was given in section
3.14.

6.1 The gauge threshold counter

The example is a threshold counter as it appears for
example in the context of OSI network management.
A threshold counter has associated with it an
increment and a decrement operation, and a number
of threshold pairs. Whenever the high-water mark of
a threshold pair is crossed in upwards direction, a
ThresholdExceeded notification is generated and
whenever a low-water mark is crossed in downwards
direction a ThresholdAbated notification is
generated3. Figure 5 shows a gauge with only one
associated threshold pair. Thresholds are specified in
pairs so as to avoid oscillations around one value to
cause huge numbers of notifications to be generated.

ThresholdAbated
notification

high-water mark

low-water mark

Figure 5. The threshold counter

When users of a gauge are functionally replicated, as
is the case in our application, the straightforward
approach is to have a centralized gauge object and do
increments and decrements as ordinary remote
operations on it. However, we can achieve huge
savings in remote communication by weakening the
precision of threshold detection.

3. Notifications are subsequently processed and
forwarded to any interested parties.
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Instead of performing each increment and decrement
as remote operations on the principal object, we
increment and decrement in larger units. We refer to
this as the N-indeterminate integrating gauge, see
Figure 6. The N determines the application dependent

inc/dec incN/decN

.N-count
integrator

‘ notifications
integrator detector

_N-count
integrator

Replicas Principal

Figure 6. The N-indeterminate integrating gauge

trigger precision: inc’s and dec’s are done on the
master object in units of N/2. The case where N is less
than or equal to 2 degenerates to the default action of
forwarding each update to the master. The point is
that delaying threshold detection often isn’t critical in
practice [19], i.e. this is an example of a tolerable
inconsistency.

Figure 7 shows the result of applying the integrating
gauge to an application. The two plots show how one
of the N-count integrators from Figure 6 react to a
series of inc’s and dec’s for different values of N.
Increments and decrements are generated as the result
of two independent poisson processes intended to
simulate real traffic. Plot 1 where N equals 6 reduces
150 updates to 14 going remote, while a value of N =
10 reduces the number to only 4, as shown in plot 2.
These numbers correspond to a reduction in network
traffic by factors of 10.7 and 37.5 respectively.

The integrating gauge example was implemented
using the conditional invocation forwarding feature
of Cacheable.

Network management standards define a multitude of
objects resembling the threshold counter. One
variation is where the master object itself takes the
initiative to update its value. In this scheme, the
master is an active object, conceptually or physically
executing in parallel with other objects, and it
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Figure 7. The integrating counter on simulated traffic

periodically poll replicas using the multicast
method, thus amalgamating their state to form its own
new state.

The idea of only maintaining approximately accurate
information applies especially well to statistical
information, such as the average number of requests
during some time-interval or the rejection rate for
connection requests.

6.2 Mobile station location information

In section 4 it was noted that proxy forwarding chains
can be argued to be an example of a problem-oriented
mechanism. Out-of-date references are allowed
because of the increase in performance due to less
synchronization at object-migration time. When an
application attempts to access an object using a stale
reference it is detected and the object reference
transparently updated.

This example has an almost equivalent telecoms
formulation. In mobile communication networks,
information about the whereabouts of a mobile
subscriber is held in location registers. The smallest
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notion of subscriber location is the cell while a
number of cells are grouped together to form a
location area.

There’s a trade-off between exactness in location
registration and overhead in locating a user on
incoming calls. Typically the network has
approximate knowledge of subscriber location—it
knows the location area but identifies the exact cell by
paging all cells controlled by that location area, i.e.
through a form of broadcast [14].

This solution strikes a better balance between
overhead of updating location information and paging
than does the two extreme solutions of maintaining
exact location information and paging the entire
world on incoming calls.

7 Related work

Penumbra is a DOBPS in the tradition of program-
ming languages like Amber [8], Emerald [4,15],
DOWL [1], Distributed Smalltalk [e.g. 10] and BETA
[S]. These systems all implement strict consistency,



essentially by only ever having one version of an
object.  Applications can optimize remote
communication by specifying object attachment [15],
i.e. that some objects must migrate together, and by
specifying call-by-move and call-by-visit parameter
passing semantics, i.e. that the argument migrates
with the invocation either permanently or for the
duration of the call. These systems have no support
for object replication.

Cheritons work on problem-oriented shared memory
is formulated in the framework of low-level memory
accesses, i.e. reads and writes of memory locations
[9]. He identifies a number of areas where problem-
oriented approaches to relaxing strict cache
coherency can yield substantial performance
improvements. In [21] the use of partially ordered
multicast algorithms is used to support relaxed
consistencies. Our work differs mainly in integrating
a problem-oriented approach with an object-oriented
distributed programming model. Our claim is that
expressing problem-specific needs at the semantic
level of objects is both more natural and allows better
localization of protocol details.

In the Orca language data sharing is provided through
automatic replication of data objects [3]. Objects are
kept consistent for example by using atomic update
protocols. It is thus best suited for data that is
frequently read and infrequently written. No support
for explicit object migration is provided.

Several proposals have been given for the use of
relaxed memory models in non-uniform memory
access multiprocessor architectures, including weak
ordering [2] and release consistency [12].

These approaches are also applicable to more loosely
coupled machines not implementing cache coherence
in hardware, but then suffers from processor
interrupts and typically also higher memory latency.
Systems implementing a relaxed consistency model
guarantee that applications will observe sequential
consistency (as defined in [17]) provided that they
make synchronization operations visible to the
system. The provision of this semantic information
allows the hardware or runtime system to provide
strong ordering guarantees with a reduction in the
overhead and number of messages exchanged.

13

Munin is an example of a page-based DSM system
which implements release consistency (together with
multiple consistency protocols) [6]. In Munin,
applications are explicitly annotated with information
about where synchronization needs to take place, and
is thus able to achieve performance quite close to that
of a message passing solution on certain problems.

Versioned distributed object memory is a variation of
the weak memory model in which 1) objects are
immutable, modifying an object results in the creation
of a new version of that object, and ii) on each access
the programmer selects which version of an object on
which to operate [11]. This form of weak consistency
is thus mostly useful if such ordering information is
already implicitly or explicitly available in the
application. This is claimed often to be the case in
scientific numeric applications.

In a sense the problem-oriented approach goes further
in its use of semantic information than the weak
memory models—the goal isn’t to arrive at sequential
consistency but merely at an application-specific
notion of consistency. We can therefore achieve very
good performance improvements for a restricted set
of applications.

The difference between a hardware based cache
coherence protocol and the notion of problem-
oriented object memory can also be highlighted by
noting that they could be combined in a shared-
memory multiprocessor to achieve higher
performance than any of the two approaches in
isolation.

8 Conclusions

We have demonstrated how a problem-oriented
approach to memory consistency can successfully be
combined with an object-based distribution toolkit. In
the problem-oriented object memory model, objects
are replicated for performance and consistency of
shared objects is relaxed depending on semantic
information.

We have identified and prototyped support for
different types of object consistency based on:

* Ordinary proxies and remote invocations (i.e.
function shipping).



» Immutable objects.
* Caching and strict cache consistency.

e Fuzzy reading and/or writing of replicated
objects.

* Value amalgamated (democratic) memory.

* “Almost” consistent objects. Exemplified by the
ThresholdCounter.

It is an important benefit of problem-oriented object
memory that it allows cached and replicated objects
to be accessed in a manner that is uniform with
ordinary object access. Also, the use of objects allows
application-specific update protocols to be isolated
from clients of the object, thus localizing and
minimizing such information.

Though any application of POOM will inherently be
application dependent it is our belief that a problem-
oriented approach is applicable to a large class of
problems, not only in a network management context,
and that the object-oriented programming paradigm
provides the right framework for it.
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