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We suggest an optimization based method for
halftoning that involves looking ahead into the
future before a decision for each binary output
pixel is made. We first define a mixture
distortion criterion that is a combination of a
frequency weighted mean square error and a
measure depending on the distances between
minority pixels in the halftone. A tree coding
approach with the ML-algorithm is used for
minimizing the distortion criterion and
generating a halftone. While this approach
generates halftones of high quality, these
halftones are not very amenable to lossless
compression. We introduce an entropy constraint
into the cost function of the tree coding algorithm,
which optimally trades-off between image quality
and compression performance in the output
halftones.
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1 Introduction

The objective of image halftoning is to produce a bi-level image from a given continuous
tone image so that both the continuous tone image and its corresponding halftone appear
similar when observed from a distance. Popular techniques for image halftoning include
ordered dithering [1-4], error diffusion [5-7], and optimization based techniques [8-14]. In
the optimization approach for halftoning, one selects an error metric that gives the dis­
tortion between the continuous tone and halftone images, and then finds a bi-level image
that minimizes the distortion. For an image of size M by N, the total number of possible
halftone images equals 2MN. For typical values of M and N, such a number is so large that
makes exhaustive searching infeasible. As a result, many practical but suboptimal search
techniques have been proposed to perform the minimization procedure. They include direct
binary search [8], blocking with greedy bit flipping [12], blocking with branch and bound
minimization [13], diffusion-reaction model [14], and one-dimensional Viterbi algorithm [10].

Block based minimization techniques suffer from a disadvantage that the procedure is greedy,
i.e., a locally optimum decision made at any particular pixel location does not in general
guarantee that the overall solution is globally optimum. Potentially one can improve on im­
age quality by looking ahead before a decision on a pixel is made, i.e., incorporating a delay
in the decision process. In [10,15], a one-dimensional minimization based halftoning algo­
rithm that uses the looking ahead idea has been proposed. Each scan line of the continuous
tone image is processed independently of the others, where one dimensional minimization is
performed using the Viterbi algorithm [16]. The resulting images, while near optimum in
the one dimensional sense, contain artifacts arising from the independent processing of each
line.

Tree coding is a class of encoding technique using delayed decisions [17], i.e., keeping mul­
tiple paths along the tree generated by the possible future code streams, where the retained
paths are chosen according to a distortion criterion. The optimality of tree coding for inde­
pendent and identically distributed random sources has been reported [18,19]. In practical
applications, tree coding has been shown to be very powerful in speech coding [20], image
coding [21], and chain coding [22,23]. In this paper, we apply the tree coding approach
with a two-dimensional error metric to develop an optimization based halftoning algorithm.
While the looking ahead is only performed within a scan line, the distortion metric considers
the bit patterns in a two-dimensional fashion. The tree coding based halftoning algorithm
interprets the halftone output as a binary tree, and is similar to the Viterbi decoding algo­
rithm [16] in that it looks a predetermined number of steps into the future before a decision
is made at each pixel location. As a result, the usual disadvantage of greedy optimization
can be alleviated and hence better halftone images can be produced.

The distortion measure is an extremely important building block in any optimization based
halftoning algorithm, as it directly impacts the quality of the output halftones. The fre-
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quency weighted mean square error, where the frequency weights typically has a low pass
characteristic that resembles the human visual system response, is very popular in the lit­
erature because of its tractability and its intuitive meaning. It is well known that human
observers prefer halftones where the black and white dots are spatially spread out as uni­
formly as possible", which is consistent with the observation that a good halftone should
have a blue noise characteristic [6]. Consequently, the frequency weighted mean square error
is not completely satisfactory because it does not address the question of the spatial dis­
tribution of dots (details in a later section). As a matter of fact, this distortion measure
tends to ignore or deemphasize high frequency contents due to the low pass characteristics
in the frequency weights. In this paper, we propose a mixture distortion criterion that is a
combination of weighted mean square error and a measure based on the distances between
minority pixels. This is used in conjunction with a well known tree coding algorithm, viz.,
the M L-algorithm [17], to generate the halftones that are of very high quality.

While the tree coding algorithm with the new mixture distortion criterion together generate
very high quality halftones, these bi-level images are not amenable to lossless compression
using popular techniques such as Lempel-Ziv compression [24,25] and arithmetic coding [26,
27]. Experimental results in a later section show that one can typically achieve compression
ratios in the neighborhood of 1.6 for the outputs of the tree coding halftoner using a standard
JBIG coder [28] and standard test images. It is well known in rate distortion theory [29] that
one can trade distortion with compression ratio. We take this approach in this paper, and
incorporate an entropy constraint into a cost function with the distortion. Then we proceed
to minimize the cost function -using the tree coding algorithm.

In Section 2, we propose a new mixture distortion measure for comparing a continuous tone
image with its corresponding halftone. Section 3 considers the concept of looking ahead in
halftoning, and develops a halftoning algorithm using the famous M L-algorithm and the
mixture distortion measure. Experimental results using this approach is also presented.
Section 4 considers the compression performance of the halftones generated by the tree
coding algorithm. An entropy constrained halftoning method using the tree coding approach
is developed, and experimental results are shown. Section 5 summarizes the results in this
paper.

2 Mixture Distortion Criterion

Let Xm,n be a continuous tone image with pixel values in the range between 0 (black) and 1
(white), and let bm,n E {a, I} be a halftone (bi-Ievel) image. Given Xm,n, the optimization
approach to halftoning finds bm,n that minimizes a distortion measure E[d(xm,n, bm,n)]. Hence
the distortion measure has a direct impact on the quality of the generated halftone.

1We are only considering the monochrome case in this paper. Similar remarks and algorithms developed in this paper can
be extended to the case of color halftoning.
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Fig. 1. Two different forms of frequency weighted mean square error.

From a human observer's point of view, an important feature of a good halftone image is that
both Xm,n and bm,n appear similar when viewed from a distance. A very popular measure
for describing the distortion between xm,n and bm,n is the frequency weighted mean square
error criterion wm,n [8,10,12,13]. Specifically, we let .

(1)

where Vk,l is an impulse response that approximates the characteristics of the human visual
system, and * denotes convolution. The operation of (1) can be represented by the block
diagram in Fig. 1 (a). It makes good intuitive sense as it suggests that we measure the
difference between an original continuous tone image and its corresponding halftone image
as the halftone is perceived by the human visual system. Another form of frequency weighted
mean square error that is also frequently used in the literature is

(2)

which can be represented by Fig. 1 (b). In this form, both Xm,n and bm,n are low pass filtered
by Vk,l' Both (1) and (2) are used in the literature, and have been shown to produce good
results in halftoning [8,10,12,13]. For the rest of this paper, we will use the form given in
(1 ).

Digital halftoning, by its nature, relies on the spreading of black and white pixels to give a
perception of gray levels. For high visual quality, one prefers the spatial distribution of black
and white pixels to be as "uniform" as possible, since uniformly spaced dots generally gives
visually smooth renditions of graylevels, This is consistent with designing halftones that has
a blue noise (high frequency noise) characteristic [2-4,6], meaning that the energy in the error
spectra between continuous tone and halftone images should preferably be concentrated at
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Fig. 2. Two possible halftone dot patterns for a constant gray patch at the graylevel 9 = 0.75.

the high frequency range. As an example, Fig. 2 (a) and (b) represent two possible halftone
dot patterns for a constant gray patch at the graylevel 9 = 0.75. It is perhaps obvious that
the pattern of Fig. 2 (a) is preferred over the one of Fig. 2 (b) for good subjective halftone
quality. We therefore would like to use a distortion measure that favors halftone patterns
with a blue noise characteristic.

It is evident from (1) that the spatial distribution of the black and white pixels is not
explicitly reflected by the frequency weighted mean square error. To illustrate this, we show
in Appendix A using a one-dimensional example that a halftone with a uniform (periodic)
spatial distribution of black and white pixels can incur a larger frequency weighted mean
square error than a more irregular binary sequence. It means that an optimization based
halftoning algorithm that relies solely on the frequency weighted mean square error can lead
one to obtain suboptimal results in the sense that the dot patterns in the output halftones
may not be the most subjectively pleasing.

A different way to interpret this line of reasoning is the following: Since we want to generate
a halftone to have a blue noise characteristic, we would like to be able to control the high
frequency behavior of a halftone. Since the filter Vk,l in (1) often exhibits a low pass char­
acteristic, the weighted mean square error does not adequately reflect the high frequency
characteristics of the halftones. To introduce some emphasis on the high frequency com­
ponents, we propose to add an additional term-a dot distance based distortion-to the
weighted mean square error, so that they form a mixture distortion measure.

To this end, we consider a measure based on the distances between the minority pixels [6] in
a halftone, which has been experimentally verified [6,30] to be a crucial factor to the quality
of halftone images. If the gray scale of a local smooth region in an image is between 0 and
0.5, then the number of black pixels in the corresponding region of a halftone must be larger
than the number of white pixels for the graylevel to be rendered correctly. In such case the
white pixels are called minority pixels. Similarly, the black pixels are minority pixels when
the local graylevel has a value between 0.5 and 1. Let

Pm,n = {~
if 0 ~ Xm,n < 0.5
if 0.5 < xm,n ~ 1
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be the value of the minority pixel at location (m,n). Based on an approximation using
square packing, one can define the principal distance dp [6] as the average distance between
minority pixels in a halftone. Specifically,

d - {)1/9
p(g) - )1/(1 - g)

if 0:::; 9 < 0.5

if 0.5 :::; 9 :::; 1,

where 9 is the local gray level. Note that dp(g) is infinite for 9 = 0 or 9 = 1, as it should
because no minority pixel should be inserted for complete black or white gray values. Let
dm,n be the distance from the position (m,n) to the nearest minority pixel. We can define a
distortion measure using the distances between minority pixels by

Um,n =

o

o

if dm,n 2: dp(xm,n)
and bm,n = Pm,n

if dm,n < dp(xm,n)
and bm,n i- Pm,n (3)

(
dp(xm,n) - dm,n)2 otherwise.

dp(xm,n)

Note that Um,n favors putting a majority pixel at (m,n) if the distance from the nearest
minority pixel is less than dp(xm,n), while it favors a minority pixel at (m,n) if the distance
from the nearest minority pixel is larger than dp(xm,n)'

Consider an example with 9 = 0.75. Hence we have P = 0, i.e., the minority pixels are
black pixels, and dp(g) = 2. In the two cases shown in Fig. 3 (a) and (b), all the existing
minority pixels in the halftone are more than a distance of 2 away from the location being
considered. It would have be desirable if we could put a black pixel at some "past" locations
so that the distance between minority pixels could be kept to dp(g). Since we cannot change
the pixels that are already on the page, we would want to put a black pixel at the current
location. Consequently we assign a penalty to case (b), and no penalty to case (a). On
the other hand, the distance from (m,n) to the nearest minority pixel is only .J2 in the
cases (c) and (d), which is smaller than the principal distance. In such a situation, we would
want to put a white pixel at position (m,n). Consequently, we put a penalty to case (c),
and no penalty to case (d). The specific penalty as defined in (3) is given by the relative
error between the principal distance and the actual distance to the nearest minority pixel.
The criterion in (3), when incorporated into a distortion measure for an optimization based
halftoning algorithm, explicitly encourages the minority pixels in a halftone to be located
apart by the principal distance. As a result, this allows a smooth rendition of the continuous
tone image, which leads to good subjective halftone quality. Note that a similar approach,
that explicitly considers the distance between minority pixels, has also been introduced to
error diffusion [30] to obtain good output quality.

Using the frequency weighted mean square error and the distance from the nearest minority

5



II II II II
II

II

no penalty

(a)

II

penalty

(c)

II

II

penalty

(b)

II

no penalty

(d)

~ decide on putting black pixel at location

D decide on putting white pixel at location

Fig. 3. Examples showing the four different situations in the dot distance based distortion measure
of (3). In these examples, we have 9 = 0.75, P = 0 and dp(g) = 2. The circle in each case is of
radius 2, which equals the principal distance dp(g) at the graylevel used in this example.
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pixel, we define a mixture distortion measure as

em,n = Wm,n + ,Um,n (4)

where, is a parameter that controls the weighting between Wm,n and Um,n' We will use this
mixture distortion criterion in a a halftoning algorithm based on tree coding, and experi­
mentally determine a good value of ,.

3 Tree Coding Halftoning Algorithm

In a typical minimization approach to halftoning, we can process xm,n in a raster scan fashion
(i.e., from the top to the bottom on a row by row basis, and for each row from the left to the
right), and then choose bm,n sequentially at each location (m, n) to be either 0 or 1 so that
em,n is minimized. If the processing of Xm,n is to be performed according to a raster scan
fashion, we can choose the filter Vm,n to have a causal support so that bm,n can be generated
sequentially. Similarly, the search area for the nearest minority pixels, that determines the
value of dm,n, is confined to the causal half plane.

Since the human visual system perceives halftone images through a form of local averaging
over the binary pixels, the value of each pixel will affect the distortion at some "future" pixel
locations with respect to the scanning strategy. As a result, the aforementioned approach
to halftoning, although minimizes em,n at each location, does not necessarily produce the
best possible halftone image because of the greedy nature of the procedure. We can alleviate
the drawbacks of greedy minimization by applying the tree coding approach [17], where a
decision for each binary pixel bm,n is made after we have looked ahead a certain number of
steps. The advantage of looking ahead in halftoning has also been observed in [10,15], where
a one-dimensional approach to halftoning is proposed using the Viterbi decoding algorithm.
Here we use a tree coding algorithm to perform the looking ahead in the scan direction, in
conjunction with a two-dimensional distortion measure given in Section 2.

To apply the tree coding algorithm in halftoning, we first choose a fixed number L, repre­
senting the number of steps that we look ahead before we would make a binary decision for
each output pixel. We then consider for each location (m, n) all the possible binary output
sequences for a depth of L steps, i.e., all possible bit streams bm,n, bm,n+l, .. . ,bm,n+L. These
2L +l possible bit streams can be put into a binary tree of depth L +1. An example for L = 2
is shown in Fig. 4. Each branch at depth k is identified with an output value of b~n+k where
i identifies the particular path in the collection. Hence each leaf of the tree is associated
with a particular output sequence {b~n+k : k = 0,1, ... , L}. We compute for each path a
cumulative distortion defined by

L
(i) _ (i)

Dm,n - E em,n+k'
k=O
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tr»m,n

D(2)
m,n

D(8)
m,n

Fig. 4. A binary tree representing all the possible output bit patterns bm,n, bm,n+b ... ,bm,n+L for
L = 2. Associated with each branch is a distortion em,n' The cumulative distortion of each path is

calculated from (5). The superscript i in D~~n identifies the path.

The output bit bm,n at location (m, n) is then decided using a minimum distortion criterion.
Specifically, we can use either one of the following strategies:

1. Choose the path with the smallest distortion, i.e., let

i* = arg min D(i). m,n
~

and then choose bm,n by
_ (i*)

bm,n - bm,n'

2. Calculate for each possible output value (0 and 1) the average distortion

(6)

'Dm,n,j = avg D~~n
{i:b~n=j}

j = 0,1. (7)

That is, 'Dm,n,o is the average distortion of all the paths where the output pixel bm,n
would be 0, and similarly 'Dm,n,l for the paths where bm,n would be 1. Then we decide
on the output pixel bm,n by

bm,n = arg min 'Dm,n,j .
i

(8)

We have experimentally found that we can consistently obtain halftones of better quality
using (8) than those obtained using (6).

Following the decision on bm,n, all the paths where the bits b~n's are not equal to bm,n
are deleted. The bit values and cumulative distortions of the surviving paths are stored for
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processing at the next step. The number of surviving paths for the tree coding algorithm with
a depth of L is 2L

. We then move on to the next pixel location, extend all the surviving paths
by one bit (hence doubling the number of paths), and calculate the cumulative distortion
for each path. The next output bit is then decided similarly as before. This procedure is
repeated until the entire image has been processed.

For any fixed L, the number of paths that need to be kept grows exponentially with L;
an undesirable feature considering the memory and computational complexities. A popular
approach in tree coding [17] is to choose a fixed integer M, and restricts the maximum
number of paths that are kept at each stage to M. This is the well known M L-algorithm,
which has been successfully applied in other coders [17,22,23]. In the rest of this paper, we
will consider using the M L-algorithm for halftoning. Note that the special case M = 2L

is identical to the generic tree coding algorithm where the full tree is used at every step.
Another special case with L = 0 and M = 1, is equivalent to the greedy minimization
approach where a decision on each binary pixel is made instantaneously.

The complexity of the M L-algorithm is proportional to M, since 2M distortion values (one
for each extended path) must be computed at each step. The parameter L actually has no
effect on the complexity of the algorithm, as it only affects the set up stage of the algorithm.
To see this, consider the procedures performed at a general location (m, n), where we want
to decide the pixel value bm,n. A path i at the current stage must be an extension of some
surviving path, say the ph, of the previous stage. We can then use (5) to write

L-1 L-1
D(i) -" (i) + (i) _" (j) (i) _ D(j) _ (j) (i)

m,n - L..J em,n+k em,n+L - L..J em,n+k + em,n+L - m,n-1 em,n-1 + em,n+L'
k=O k=O

(9)

But e~~n-1 's for all surviving paths j's are identical, since b~~n-1 = bm,n-1 for all the surviving
paths j's. Keeping in mind that the path distortions are used only for comparative purposes,
we can ignore e~~n-1 from (9), and use D~~n-1 +e~n+L in the decision procedure. This means
that the complexity of the M L-algorithm is independent of L.

The multipath tree coding approach for halftoning using the M L-algorithm is summarized
in Algorithm 1. The essential steps in the M L-algorithm is illustrated by an example in
Fig. 5.

Algorithm 1: Halftoning using the M L-algorithm.

1. Initialize (m,n) to the first pixel.

2. Consider all the possible 2L +l initial paths, and calculate D~)n for each path.,

3. Calculate 'Dm,n,j from (7) for j = 0 and 1, and set the value of bm,n that results in the
minimum average distortion according to (8).
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bm,n bm,n+l bm,n+2
D(l)

bm,n+l bm,n+2m,n
bm n bm,n+l D(2),

Path
m,n

extension Discard

and paths
0 decision

1 D(6)
m,n

Fig. 5. An example illustrating the key steps in using the M L-algorithm for halftoning, with
M = 3 and L = 2. In this example, the output at position (m, n) is chosen to be 0, i.e., bm,n = O.

4. Discard all the paths where the bit b~n is not equal to the output bit bm,n'

5. If less than M paths remaining, save all. Otherwise, save the M surviving paths with
smallest cumulative distortions D~)n',

6. Increment (m, n) to the next position. If passed the end of the scan line, move on to
the next scan line, reinitialize the tree, and go to step 3.

7. If passed the last pixel of the image, stop.

8. Extend all the saved paths by one bit (both 0 and 1), hence doubling the number of
paths. Calculate D!:!n for each path.,

9. Go to step 3.

Here we consider the application of the M L-algorithm in conjunction with the mixture dis­
tortion of (4) for image halftoning. In particular, we consider a one-pass algorithm where
the continuous tone image is scanned once in a raster scanned fashion while the halftone
is generated. The approach can be easily extended to incorporate strategies that are often
used in other popular halftoning techniques. For example, one can incorporate a serpen­
tine scanning strategy in the M L-algorithm. One can also use multiple passes as in other
optimization based halftoning methods [8,12,15]; That is, one applies one pass of the tree
coding algorithm to generate an initial halftone, and then applies additional passes to refine
the halftone for improved image quality.

To obtain Vm,n with a causal support, we have chosen a truncated and normalized version of
a filter used in [12], which is based on a measurement of the human visual contrast sensitivity
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Fig. 6. Lena image of size 512 by 512 pixels halftoned using Floyd Steinberg error diffusion. The
printing resolution is 150 dpi. The compression ratio achieved using a JBIG coder is 1.89.

function [31]. The filter coefficients are given by

0.0091
0.0030

-0.0029

0.0306
0.0174
0.0030

0.0980
0.0306
0.0091

10.22191
0.1439
0.0355
0.0116

0.1439
0.0980
0.0306
0.0091

0.0355
0.0306
0.0174
0.0030

0.0116
0.0091
0.0030

-0.0029

Note that the (0,0) element 0.2219 in the impulse response is marked by a box.

Applying the tree coding algorithm with the distortion criterion given by (7), we have ex­
perimentally determined that the optimum value of I is 0.03. We use both the Lena and
the pepper images of sizes 512 by 512 to demonstrate the experimental results. All the
halftones are generated and printed at a resolution of 150 dots per inch. Fig. 6 shows a
halftone of Lena generated using Floyd Steinberg error diffusion [5] with raster scanning.
In order to make a comparison between the tree-coding halftoner with generic error diffu­
sion, we have not incorporated techniques such as adding random noise or using serpentine
scanning in the error diffusion examples. Fig. 7 shows the Lena image halftoned using the
mixture distortion criterion in greedy optimization, i.e., no looking ahead is performed in the
optimization procedure for generating this image. This is equivalent to setting M = 1 and
L = 0 in the M L-algorithm, and hence greedy optimization is a special case of tree coding.
Comparing Figs. 6 and 7, we notice that the quality of the halftone generated by greedy
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Fig. 7. Lena image of size 512 by 512 pixels halftoned using the mixture distortion criterion and
greedy optimization (without looking ahead). The printing resolution is 150 dpi.

optimization is actually worse than that of error diffusion, confirming that greedy optimiza­
tion is generally not a good approach. Fig. 8 shows the halftone of Lena generated using the
M L-algorithm for M = 8 and L = 5. It demonstrates that the tree coding algorithm can
generate halftones of higher quality than those generated by greedy optimization and error
diffusion. Fig. 9 shows the pepper image halftoned using greedy optimization, while Fig. 10
shows the halftone of the pepper image generated with the ML-algorithm for M = 4 and
L = 4. They show again that the quality of halftones can be significantly improved by using
the idea of looking ahead through the multipath tree coding method. This is consistent with
previous results on improved performance by applying tree coding to speech, image, line
arts, etc. [10,17,20-23].

On testing with grayscale images of sizes 512 by 512 pixels in the USC database, we found
that M = 8 is generally sufficient for good quality output, while the values of L are typically
no larger than 6. This means that the M L-algorithm, where only a partial tree is kept
at every step, can generate halftones that are similar in quality to the generic tree coding
algorithm where the full tree is kept. Recall that the complexity of the M L-algorithm only
depends on M. In our implementation using C code on an HP 735 workstation, it takes
about 68 seconds to generate a halftone of size 512 by 512, using the value M = 8. Error
diffusion for images of the same size, on the other hand, requires only about 0.5 seconds
on the same machine. Although error diffusion is more computationally efficient, the tree
coding halftoner can offer much better image quality. Furthermore, as we shall see in the
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Fig. 8. Lena image of size 512 by 512 pixels halftoned using the mixture distortion criterion in
the M L-algorithm with M = 8 and L = 5. The printing resolution is 150 dpi. The compression
ratio achieved using a JBIG coder is 1.52.

Fig. 9. Pepper image of size 512 by 512 pixels halftoned using the mixture distortion criterion in
greedy optimization. The printing resolution is 150 dpi.
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Fig. 10. Pepper image of size 512 by 512 pixels halftoned using the mixture distortion criterion
in the M L-algorithm with M = 4 and L = 4. The printing resolution is 150 dpi. The compression
ratio achieved using a JBIG coder is 1.71.

next section, the minimization approach also offers a natural mechanism, through adding
an entropy constraint in the cost function, for generating halftones that trades-off between
image quality and compression performance.

4 Entropy Constraint in Tree Coding

We have described in the previous section the application of the M L-algorithm for mini­
mizing a mixture distortion and producing optimized halftones, such as the ones shown in
Figs. 8 and 10. Using a standard JBIG (lossless) coder [28], it is found that one can achieve
compression ratios of 1.52 for the Lena image of Fig. 8, and 1.71 for the pepper image of
Fig. 10. Experimental results using other images give similar compression performance. As
a comparison, we can achieve a compression ratio of 1.89 using JBIG on the error diffused
image of Fig. 6.

Although the tree coding algorithm is capable of generating high quality halftones, it is
desirable to improve the compression performance on the resulting bi-level images. This is
useful, for example, in printing applications for reducing both the transmission time and
memory requirement, or in communications applications where halftones are to be trans­
mitted over bandwidth constrained channels. The fact that the halftones generated by the
tree coding algorithm are not amenable to lossless compression is not surprising, because the
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Fig. 11. Template of previous output pixels used as a context for computing conditional entropy.

optimization procedure in Section 3 has been performed to solely minimize distortion. Note
that the tree coding based halftoner can be viewed as a lossy encoder for the continuous
tone image, where the output alphabet is constrained to be binary. As indicated by Shan­
non's rate-distortion theory [29], one can trade distortion for compression performance in
any lossy coder. To this end, one formulates the optimization problem by adding an entropy
constraint to the cost function. More specifically, we can minimize J = D + )...Hb where D
is the mixture distortion as defined in Section 2, Hi; is the entropy rate of the halftone bm,n,
and )... is a Lagrangian parameter. The parameter X determines the location of the resulting
halftone on the rate distortion curve, where -)... has an interpretation of the gradient of the
rate distortion function. We can then proceed to choose bm,n for minimizing the cost function
using the M L-algorithm.

In order to incorporate the entropy constraint into the cost function, we need a way to
estimate the statistics of the halftone. Since the M L-algorithm works on the image in a
raster scan fashion, it is convenient to use the "past" halftoned data as a basis for estimating
the probability distribution, and continuously update the statistics as one performs the
halftoning. An efficient way to accomplish this is the usage of a conditional probability, i.e.,
the probability of the current binary pixel value based on a window of "past" halftoned data.
To this end, we use the concept of context introduced in [26,27].

Let Cm,n be a context defined by a window of neighboring pixels at position (m, n). Typically,
we choose the neighbors to be the "previous" pixels according to the scanning strategy in the
processing. To be specific in generating experimental results in this paper, we have chosen
a context using a template of ten "previous" output pixels as shown in Fig. 11, and hence
there are 1024 different possible context values. Note that this template is identical to the
one used in a standard JBIG encoder. Let hm,n(cm,n, bm,n) be the conditional entropy of bm,n
conditioned on the context Cm,n. It is well known [32] that if bm,n is stationary and ergodic,
then

avg hm,n(cm,n, bm,n) -----+ n,
m,n

as the image size goes to infinity. Consequently, we can equivalently minimize the cost
function that is defined using the conditional entropy, viz.,

L; n = em n + )"'hmn(cmn, bmn)., , '"

Although it is questionable that images of natural scenes are stationary, we still use the
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aforementioned cost function because of the ease of implementation.

Since each output pixel bm,n is binary valued, the conditional entropy is completely deter­
mined by

Pm,n(O, c) = Pr{bm,n = 0lcm,n = c} = 1- Pm,n(1,c).

Similar to what is done in adaptive arithmetic coding [26], these probabilities are estimated
using the statistics of the past output pixels, and are continuously updated as the halftone
image is being generated. An estimate of the conditional probability can be obtained as

(10)b = 0,1~ (b ) _ Nm,n(b,c) +1
Pm,n ,c - Nm,n(c)+2

where Nm,n(c) is the frequency count of the context c up to the location (m, n), i.e., the
number of times that the context c has occurred; and Nm,n(b,c) is the frequency count of
the context c and output b, i.e., the number of times that the output value b follows context
c. It is evident that

Nm,n(c) = Nm,n(O, c)+Nm,n(1, c).

Note that when a particular context value c occurs for the first time, there is no prior data
and hence Nm,n(O, c) = Nm,n(c,1) = 0. The bias values of "1" and "2" in (10) have been
inserted to avoid the situation of dividing by zero. They also have the property that when
there is no data, we have Pm,n(O, c) = Pm,n(1, c) = 0.5, i.e., neither °nor 1 is favored for the
first occurrence of c. Using these estimates (that are being constantly updated when the
image is being halftoned), we use at each pixel location the cost function

Jm,n = em,n - ,\ log(Pm,n (bm,n, cm,n)),

where it is well known that the term -log(Pm,n(bm,n,c)) approximates the average length
of a codeword required to describe bm,n' As such, we are performing the minimization with
respect to the operational rate distortion function, and -,x now has the interpretation of the
gradient of the convex hull supporting the operational rate distortion function.

Recall that we can only obtain a compression ratio of 1.52 using a standard JBIG coder on
the halftone of Lena (Fig. 8) generated by the tree coding halftoner without using an entropy
constraint. The error diffused version of Lena (Fig. 6), while of lower image quality than
that of Fig. 8, can be compressed to a compression ratio of 1.89. The two images of Figs. 12
and 13 are the halftones generated by the entropy constrained tree coding halftoner at two
different values of ,x, and hence are of different entropy. Using a standard JBIG encoder,
one can achieve a compression ratio of 2.09 for the image of Fig. 12, and 2.35 for the one of
Fig. 13. As expected, the image quality of Fig. 13 is lower than that of Fig. 12, which in
turn is lower than that of Fig. 8. The compression performance, on the other hand, ranks
in the reverse direction. In other words, as the compression ratio improves, the distortion
also increases as predicted by rate distortion theory [29]. Fig. 14 is a plot of the mixture
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Fig. 12. Halftone of Lena generated using the entropy constrained tree coding halftoner. The
compression ratio achieved using a JBIG coder is 2.09. The printing resolution is 150 dpi.

Fig. 13. Halftone of Lena generated using the entropy constrained tree coding halftoner. The
compression ratio achieved using a JBIG coder is 2.35. The printing resolution is 150 dpi.
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Fig. 14. Distortion-rate performance of the entropy constrained tree coding halftoner.

distortion versus the average bit rate required for a JBIG encoder to encode the output
generated by the entropy constrained tree coding halftoner. The curve exhibits the usual
form as predicted by rate distortion theory.

Comparing Figs. 8 and 12, we judge visually that the quality difference is relatively small,
but the compression ratios between them differ by more than 25%. It is interesting to note
that the halftone of Fig. 12 is bothof better quality and more amenable to compression than
the error diffused halftone of Fig. 6, showing the advantage of optimization based halftoning
approach.

5 Conclusion

We have suggested a method using multipath tree coding for generating halftone images.
The technique is a special case of dynamic programming, which looks ahead into the future
along the paths of possible bit patterns and then makes a decision based on an averaged
cumulative distortion. Specifically, the well known M L-algorithm is applied to perform
the multipath minimization. For used in the optimization procedure, we have suggested a
mixture distortion criterion that is a combination of frequency weighted mean square error
and a measure based on distances between minority pixels. We have shown that halftones
generated using the mixture distortion criterion is of better quality than those generated
using the frequency weighted mean square error. Furthermore, halftones generated using
the tree coding technique are observed to be of better quality than those obtained using
either error diffusion or greedy optimization.

Although the tree coding algorithm generates halftones of high quality, the resulting halftones
are not amenable to lossless compression. In view of this, we have incorporated an entropy
constraint into the cost function, and use the tree coding algorithm to generate halftones that
optimally trade quality with compression performance. The trade-off in the minimization is
specified by a Lagrangian parameter, and hence the compression performance of the output
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halftone can be controlled. We have shown that we can generate halftones that have better
quality than generic error diffusion, and at the same time more amenable to compression
than error diffused images.
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Appendix

A An Example Concerning Frequency Weighted Mean
Square Error and Uniformity of Spatial Distribution
of Pixels in A Halftone

Consider a one-dimensional constant gray "image" of length 64

X n = 0.25 n = 0,1, ... ,63.

Two possible halftone representations for X n are

b« = {I if n = 4k
o otherwise

o<n < 64

o~ n < 64.
and

{
I if n = 8k or n = 8k + 3

Cn = o otherwise
Note that the ratios of black pixels to white pixels for both bn and Cn are 3:1, giving an
average intensity of 0.25. It is evident that the spatial distribution of black and white pixels
is more "uniform" in bn than in Cn' As a result, bn would appear to be visually smoother than
Cn, and hence bn is preferred over Cn' Consider the frequency weighted mean square error
between the halftone patterns and the de signal X n using a filter with a frequency response
(64-point DFT of an impulse response hn )

{

I
o

H m =

:rbitrary

if m = 0,8,16,48,56
if m = 32
if m = 24,40
otherwise

o::; m < 64 (AI)

where t: is a parameter to be decided soon. Note that m = 32 corresponds to one half of the
sampling frequency, and that we have only specified in this example the response of Hm for
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several values of m. It is evident that the specified Hm is consistent with the characteristics
of low pass filters. It can be verified that the DFT's of bn and Cn are

and

Em = {016 if m = 0,16,32,48
otherwise

o~ m < 64

16 m = 0
2.3431 - j5.6569 m = 8
8 + j8 m = 16
13.6569 - j5.6569 m = 24c; = 0 ~ m < 64.
13.6569 + j5.6569 m = 40
8 - j8 m = 48
2.3431 - j5.6569 m = 56
o otherwise

Here j = yCT. The frequency weighted mean square errors are

and

Hence if E < 0.6435, then d(x n , cn) < d(x n , bn ) . That is, although bn is visually preferred
over Cn as a halftone, Cn incurs a smaller frequency weighted mean square error than bn .

Note that the sequences bn and Cn, as well as the responses specified in (AI) only serve as a
convenient example. There are many other situations that can lead to the same conclusion,
i.e., that the frequency weighted mean square error does not generally reflect the uniformity
in the distribution of black and white dots in a halftone.
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