
Frequency analysis of gradient estimators in volume

rendering

�nal version

Mark J. Bentum

University of Twente

Dept. of Electrical Engineering

Lab. for Network Theory

P.O. box 217

7500 AE Enschede

The Netherlands

phone : +31-53-892673

fax : +31-53-334701

email : mark@nt.el.utwente.nl

Barthold B.A. Lichtenbelt and Tom Malzbender

Hewlett Packard Laboratories

Visual Computing Department

1501 Page Mill Road

Palo Alto, CA 94304

United States

phone : +1-415-8576760

fax : +1-415-8523791

email : barthold@hpl.hp.com

email : tom malzbender@hpl.hp.com

November 8, 1995

Keywords: Volume rendering, volume visualization, gradient �lters

1

Internal Accession Date Only

Abstract

In volume rendering gradient information is used to classify and color samples along a ray.

In this paper we present an analysis of the theoretically ideal gradient estimator and com-

pare some commonly used gradient estimators with the ideal estimator. A new method is

presented to calculate the gradient on an arbitrary position, using the derivative of the in-

terpolation �lter as the basis for the new gradient �lter. As an example we will discuss the

use of the derivative of the cubic spline. A comparison will be made showing the di�erences

with other methods. Computational e�ciency can be realized since parts of the interpolation

computation can be leveraged in the gradient estimation.

2

1 Introduction

Visualizing a given three dimensional dataset can be done by surface rendering algorithms,

e.g. Marching Cubes [8] or by direct volume rendering algorithms, e.g. raycasting [7] or

splatting [19]. For direct volume rendering methods the voxel intensity and the gradient

magnitude is often used to shade and classify the dataset. For surface rendering techniques

the gradient is used to estimate the surface normal. This normal is needed in order to shade

the polygons that form the surface.

The shading of objects in natural environments provides cues to the three dimensional struc-

ture and position of the objects. In volume rendering the local gradient is often used as an

approximation to the surface normal for use in a shading model. Phong shading[11], is widely

used in surface and direct volume rendering algorithms.

In volume rendering the dataset to be rendered has to be classi�ed. Classi�cation calculates

an optical density value for each voxel in the dataset, called opacity. Opacity is calculated

to accentuate surfaces or the boundaries between di�erent materials. Opacities are typically

calculated using either voxel intensities or a combination of voxel intensities and gradient

information.

Once the dataset is classi�ed and the opacity and color is calculated, the data has to be

rendered. The color and opacity values are composited to achieve the �nal two dimensional

projection. Several rendering techniques are known. The most important distinction between

the techniques is the order in which the voxels are processed to create an image, image-

order or object-order algorithms. Examples of image-order algorithms are raycasting [7] and

Sabella's method [14]. Examples of object-order algorithms are the splatting algorithm [18],

V-bu�er algorithm [16] and the Slice Shearing algorithm [4].

It is possible to calculate color and opacity as a preprocessing step, yielding two new voxel

datasets, a color and an opacity dataset. During the rendering step the color and opacity

on sample points (generally not on voxel positions) are calculated by interpolation. This

may reduce the quality of the image, and an alternative is to calculate the color and opacity

during rendering on the sample positions. This has some consequences for the complexity of

the algorithm.

This paper consists of 9 sections. In section two ideal interpolation will be briey discussed.

Understanding interpolation is essential to understand the ideas in the rest of the paper.

Section three discusses the notion of perfect gradient estimation. Then in section four some

well known gradient estimators are discussed and analyzed with respect to the perfect gra-

dient estimator. Section �ve discusses the frequency analysis of gradient estimators. Section

six proposes a di�erent view to designing a gradient estimator by using the derivative of the

interpolation function as the gradient estimator. An example which uses the cubic spline

is given. Section seven discusses the implementation of this example in volume rendering.

1

Section eight gives the results of using this example and section nine discusses the proposed

methods.

2 Ideal Interpolation

The process of interpolation is one of the fundamental operations in digital signal processing

and computer graphics. The purpose of interpolation is to calculate intermediate values of a

continuous signal f(x; y; z) from a discrete signal. In volume rendering interpolation is used

to calculate the values on the sample positions along rays, since it is unlikely these points

will be positioned on gridpoints.

According to the sampling theorem [15] a signal can be reconstructed exactly by the ideal

interpolation function if it is bandwidth-limited and sampled at the Nyquist rate, or higher.

The ideal interpolation function is the sinc function

r(x)ideal = sinc(x) =
sin x

x
(1)

This ideal �lter removes all replicates of the frequency spectrum introduced by sampling the

original continuous function by multiplying with a block function in the frequency domain.

In computer graphics one has a set of discrete points, an image or volume. This set of points

is obtained by sampling the continuous function f(x; y; z) in the three dimensional case. One

has to be careful and realize that the set of discrete points might not represent the continuous

function f(x; y; z) one wishes to process because of undersampling (sampled at a rate lower

than the Nyquist rate) or because this continuous function is not bandwidth limited. If this

is the case this set of discrete points of course still can be manipulated and interpolated.

The sinc is still the perfect reconstruction �lter, but it will reconstruct a continuous function

f 0(x; y; z) that is (slightly) di�erent from the one originally sampled.

Given a set of discrete points, the sinc is indeed the best interpolation function. This sinc

function, however, is de�ned over an in�nite spatial interval, and can therefore not be used

as an interpolation function. Other methods must be used, such as the nearest neighbor,

linear and higher order interpolation functions [1],[6],[9],[10].

2

3 Ideal Gradient Estimation

The gradient, or normal, of a surface is the partial derivative of the surface with respect to

all three directions. Given a function f(x; y; z) the gradient is

rf(x; y; z) =

�f

�x
;
�f

�y
;
�f

�z

!
(2)

In volume rendering, a 3-D dataset consists of discrete samples of f(x; y; z) called voxels.

If this function f(x; y; z) is not known, which in general is the case, the gradient has to be

calculated using these voxels.

Gradient estimation can be analyzed in the same way as interpolation. When the gradient

is needed at a location other than a given voxel point, some kind of reconstruction �lter

has to be used to estimate the derivative (in each direction) of f(x; y; z). Compare this to

interpolation which estimates f(x; y; z) itself at a sample point.

Since the gradient is the partial derivative of the original function f(x; y; z) and ideal in-

terpolation with the sinc will reconstruct that function, the gradient can be reconstructed

exactly by using the derivative of the sinc as a reconstruction kernel.

In one dimension the ideal gradient reconstruction �lter is

d

dx

�
sin �x

�x

�
=

�x� cos(�x)� sin(�x)�

�2x2

=
cos�x

x
�

sin �x

�x2
=

cos(�x)� sinc(�x)

x
(3)

This result is consistent with the results found in [13].

In order to analyze the �lter of equation 3 we will look at its frequency response. The Fourier

Transform of the sinc function is a block signal in the interval [��; �]. Using the derivative

theorem for Fourier Transforms [3] we �nd that the Fourier Transform of the derivative of

the sinc is j! times the Fourier Transform of the sinc itself. This results in a constant slope

in the frequency domain for the ideal gradient �lter in the interval [��; �]. See Figure 1.

3

ωπ−π

H sinc

derivative of sinc

Figure 1: Frequency response of the ideal gradient estimator and of the sinc function.

4 Some commonly used Gradient Estimators

Several methods exist to estimate a local gradient in volume datasets. The gradient of a

surface to be visualized is an important value, since both the shading and opacity values

may depend on the gradient of the surface.

One of the most commonly used methods in volume rendering calculates the gradient with

a 6 neighborhood function. This is also referred to as the central di�erence method. The

gradient at voxel (x; y; z) is calculated as follows

g(x; y; z) = rf(xi; yj; zk) =
1

2
(f(xi+1; yj; zk)� f(xi�1; yj; zk)); (4)

1

2
(f(xi; yj+1; zk)� f(xi; yj�1; zk));

1

2
(f(xi; yj; zk+1)� f(xi; yj ; zk�1))

Alternatively, all 26 neighbors of a voxel can be used to calculate the gradient. This is usually

a better estimation of the gradient, but takes more time to calculate. Another disadvantage

is that additional smoothing is introduced. See [5] and [12]. The Zucker-Hummel 3-D edge

operator [21] is one example of a 26 point gradient estimator.

For small objects in the dataset even a 6 voxel neighborhood gradient estimator may be too

large. An algorithm which adapts to the thickness of the object was proposed in [12]. It

selects between 3-6 adjacing voxels to compute the gradient. For the x component of the

gradient it works in the following way: If the voxel value at (i; j; k) is larger (smaller) than

4

the value of the neighbors at (i � 1; j; k) and (i + 1; j; k), it takes the gradient between the

voxel itself and the the neighbor with the lower (higher) gray value; otherwise it takes the

gradient between both neighbors. The same method is used for the y and z components of

the gradient vector. This principle can be generalized to all 26 neighborhoods. This methods

has been called adaptive gray-level gradient estimation.

Another adaptive method is proposed in [20]. The authors propose to segment the volume

�rst into small contexts which do not contain any discontinuities. Then for each voxel in each

context the gradient is estimated. The gradients will not vary greatly within a context. The

disadvantage is that the method relies on a segmentation step and a pre and post�ltering

step besides the gradient estimation itself.

Bosma et al. [2] propose a slightly di�erent method than the central di�erence method. They

calculate the gradient using two neighboring values. In that case the gradient is calculated

in between the original voxel positions. Estimating the gradient on sample positions requires

a linear interpolation between the closest gradient values. We refer to this method as the

intermediate di�erence method.

Mathematically the intermediate and central di�erence methods can be described as follows.

Suppose we have the values f(�1); f(0); f(1); f(2). Using the central di�erence method,

gradients are calculated on voxel positions as follows

g(0) =
f(1)� f(�1)

2
(5)

g(1) =
f(2)� f(0)

2
(6)

Using the intermediate di�erence method, gradients are calculated in between voxel positions

g(�0:5) = f(0)� f(�1) (7)

g(0:5) = f(1)� f(0) (8)

If we want to know the gradient on position x with x between 0 and 0:5, the estimation with

the central di�erence method equals

5

g(x) = (1� x)g(0) + xg(1)

= (1� x)
1

2
(f(1)� f(�1)) + x

1

2
(f(2)� f(0)) (9)

=
1

2
(f(1)� f(�1)) + x(

f(�1)

2
�
f(0)

2
�
f(1)

2
+
f(2)

2
)

While the intermediate di�erence method results in

g(x) = (1� (
1

2
+ x))g(�0:5) + (1� (

1

2
� x))g(0:5)

= (
1

2
� x)g(�0:5) + (

1

2
+ x)g(0:5) (10)

=
1

2
(f(1)� f(�1)) + x(f(�1)� 2f(0) + f(1))

Note that on the voxel positions these methods are identical.

5 Frequency domain analysis

To compare some of these practical gradient estimators to the ideal case we compare the

frequency transforms of these estimators to the frequency transform of the ideal case.

To analyze discrete signals in the frequency domain, the discrete Fourier transform (DFT)

can be applied. For samples of a periodic function with period NT , the DFT transforms a

�nite sequence of samples x(n) of length N to the frequency domain by

X(k) =
N�1X
n=0

x(n)e
2�ikn

N

�
�
N

2
� k �

N

2

�
(11)

The ideal gradient �lter is a constant slope function between �� and �, as shown earlier.

First we will look at truncating the ideal gradient �lter given in equation 3. Figure 2 the

e�ects in the frequency domain can be seen of using such a �lter truncated to a width of 4,6

and 10 voxels.

6

ideal

4 voxels

6 voxels

10 voxels

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

frequency

m
ag

ni
tu

de

Figure 2: Frequency response of the truncated ideal gradient �lter.

The frequency response of the central di�erence method can be calculated analytically. The

DFT of the three element sequence

hc(n) = [
1

2
; 0;�

1

2
] n = [�1; 0; 1] (12)

is given by

Hc(k) =
1

2

�
e�2�ik=N � e2�ik=N

�
= �i sin 2�

k

N
�
N

2
� k �

N

2
(13)

The frequency response of the intermediate di�erence method can also be calculated analyt-

ically. The DFT of the two element sequence

hi(n) = [1;�1] (14)

and shifted by half a voxel to match the individual grids results in

Hi(k) = e�2�ik
1

2
=N
� e2�ik

1

2
=N = �2i sin�

k

N
(15)

7

There are two important di�erences with the DFT of the central di�erence method. The

amplitude is twice as high and the period is twice as low. This makes the intermediate

di�erence a better estimator in the passband, but the aliasing energy is much more than

that of the central di�erence estimator. See Figure 3.

Ideal gradient

Central difference

Intermediate difference

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

frequency

m
ag

ni
tu

de

Figure 3: Frequency response of the central di�erence and intermediate di�erence estimator.

5.1 combining gradient estimation and interpolation

Frequencies above the cuto� frequency � in Figure 2 and Figure 3 are aliased back since the

interpolation �lter, used to calculate sample values on non voxel positions, is not ideal. If the

interpolation �lter was perfect, it would not matter what the energy content of the gradient

estimator is for frequencies above � since these would all be �ltered out by the interpolation.

Figure 4 shows the e�ect of estimating the gradient on a sample position using central

di�erences to calculate the gradient on voxel positions and linearly interpolating the gradient

to the sample position. This is the conventional method of calculating the gradient. In the

frequency domain this can be viewed as �rst �ltering with the frequency transform of the

central di�erence operator, and then �ltering with the frequency transform of the linear

interpolation operator. This means that we can take the product of these transforms to

form one e�ective �lter which describes the e�ects of the standard method. We will call

this resulting �lter the e�ective central di�erence operator. These three �lters are plotted in

Figure 4. Compared to Figure 3 the e�ective central di�erence operator falls o� even quicker

at frequencies below � but has less aliasing energy in the stop band at frequencies above �.

8

linear interpolation

central difference

effective central diff.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

frequency

m
ag

ni
tu

de

Figure 4: Frequency response of central di�erence and linear interpolation and their product.

6 Using the derivative of the Interpolation function

As described before, the gradient is the derivative of the continuous function f(x; y; z). Since

we apply an interpolation �lter to the voxels to estimate this function, using the derivative

of this interpolation �lter will estimate the gradient on sample positions directly. This is

opposed to the conventional method which calculates the gradient on a voxel point and then

interpolates to the actual sample point.

6.1 Interpolation and Gradient Estimation with the Cubic Spline

In [9] [6] [10] and [1] it is shown that the cubic spline function performs very well for interpo-

lation. In this section we will discuss the cubic spline �lter and its application as a gradient

estimator.

The general cubic spline is given by

r(x) = (a+ 2) jxj
3
� (a+ 3) jxj

2
+ 1 0 � jxj � 1

r(x) = a jxj
3
� 5a jxj

2
+ 8a jxj � 4a 1 � jxj � 2 (16)

r(x) = 0 jxj > 2

9

This can be rewritten as

r(x) = r0(x) + ar1(x) (17)

Where

r0(x) = 2jxj3 � 3jxj2 + 1 0 � jxj � 1

r0(x) = 0 otherwise (18)

r1(x) = jxj3 � jxj2 0 � jxj � 1

r1(x) = jxj3 � 5jxj2 + 8jxj � 4 1 � jxj � 2 (19)

This leaves the parameter a free to choose. a has physical signi�cance. It is the slope of r(x)

at jxj = 1. In [6] is shown that for a = �0:5 the reconstructed function g(x) matches the

Taylor expansion of f(x) exactly up till the third order term. If a = �1 then the slope at

jxj = 1 is the same as the slope of the sinc(x) at jxj = 1. Finally, a = �0:75 assures that

the second derivative at x = 1 is continuous, which may be important if the derivative of

the cubic spline is used as the gradient estimator.

The derivative of Equation 17 is

r0(x) = r00(x) + ar01(x) (20)

r00(x) = 6jxj2 � 6jxj 0 � jxj � 1

r0
0(x) = 0 otherwise (21)

r0
1
(x) = 3jxj2 � 2jxj 0 � jxj � 1

r01(x) = 3jxj2 � 10jxj+ 8 1 � jxj � 2 (22)

The performance of this gradient �lter is compared to other methods in the next section. In

order to do so the Fourier Transform of Equation 20 is needed. It can be shown that the

Fourier transform of Equation 17 is

R(!) = R0(!) + aR1(!) (23)

10

Where the capital R stands for the Fourier Transform and

R0(!) =
12

!2
[sinc2(!=2)� sinc(!)]

R1(!) =
8

!2
[3sinc2(!)� 2sinc(!)� sinc(2!)] (24)

The derivation of Equation 24 can be found in the appendix. Note that at the Nyquist or

foldover frequency ! = � the magnitude of R(!) is independent of a and is equal to 48=�4.

The Fourier Transform of Equation 20 is j! times Equation 23.

In Figure 5 a plot of r(x) for di�erent values of a is shown. The same Figure shows r0(x)

also for di�erent values of a, while Figure 6 show the respective Fourier Transforms.

The bottom section of Figure 6 shows the frequency responses as a function of a. By varying

this parameter the response to higher frequencies can be adjusted as desired and thus can

be used as an adjustable gradient �lter. All energy above the Nyquist frequency � is aliased

back. This is due to imperfect interpolation with the cubic spline. See the top of Figure 6

for the frequency response of the cubic spline.

6.2 Evaluation of the cubic spline based gradient �lter

While most of the gradient estimators show a good approximation of the ideal �lter at lower

frequencies, they show a rapid fall o� at higher frequencies. See Figure 7. This �gure shows

several e�ective gradient estimators. Thus the e�ect of linear interpolation to the sample

point is already included in the plots for the intermediate di�erence, central di�erence and

adjustable �lter. Since �ne details, like bone fractures in medical images, contain a lot of

high frequencies, some errors will occur. Although this is a disadvantage, fall o� at higher

frequencies has also some desirable properties. Volume data often contains a lot of noise

and aliasing energy, especially for PET and SPECT data. This energy may be concentrated

along the high frequencies. The gradient �lter has its greatest sensitivity along these high

frequencies. Attenuation of these high frequencies reduced artifacts caused by noise and

aliasing. As always, a trade o� has to be made. If it is possible to adjust the frequency

response the user can control this trade o� themself. In [5] an adjustable gradient �lter is

discussed. This �lter is based on truncating the cos(x)=x and windowing that truncated

�lter with a Kaiser window. By adjusting the Kaiser window parameter � the frequency

response can be varied. Figure 7 shows a plot of this �lter with � = 4 as the Kaiser window

parameter.

Note that the cubic spline (and its derivative) only needs 4 voxels to evaluate in the 1-D case,

compared to 6 for the adjustable gradient �lter proposed in [5]. Furthermore this adjustable

11

a=0

a=−0.5

a=−0.75

a=−1.0

a=−2.0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

width in voxel spacing

r(
x)

a=0

a=−0.5

a=−0.75

a=−1.0

a=−2.0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

width in voxel spacing

d
r(

x)
/d

x

Figure 5: The cubic spline (top) and its derivative (bottom) for di�erent values of a.

12

a = 0

a = −0.5

a = −0.75

a = −1.0

a = −2.0

0 1 2 3 4 5 6
0

0.5

1

1.5

frequency

m
ag

ni
tu

de

a = 0

a = −0.5

a = −0.75

a = −1.0

a = −2.0

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

frequency

m
ag

ni
tu

de

Figure 6: The Fourier Transform of the cubic spline (top) and the Fourier Transform of the

derivative (bottom) for di�erent values of a. The thick lines denote the ideal cases

13

cs derivative a=−1.0

effective central diff.

effective intermediate diff.

effective adj. filter a=4.0

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

frequency

m
ag

ni
tu

de

Figure 7: Frequency responses of di�erent methods to estimate the local gradient. The thick

line is the ideal case.

gradient �lter calculates gradients on voxel positions, not on sample positions. In order to

get the gradient on sample positions, some kind of interpolation has to be done between the

gradients on voxels positions. The cubic spline with the a parameter set to a = �1:0 falls of

at a higher frequency than the adjustable gradient �lter but has about the same energy at

frequencies higher than �. See Figure 7.

In Figure 8 a comparison is made between the cubic spline derivative �lter for several values

of a and the truncated version of the ideal gradient estimator on sample positions. All the

�lters have an extend of 4 in the spatial domain. Three cubic spline based �lters are plotted,

with a value of the a parameter of respectively -0.75, -1.5 and -2.0.

Figure 8 shows that the cubic spline derivate �lter with a = �2:0 approximates a constant

slope up to a slightly higher frequency than the truncated ideal �lter, but it has much more

energy above the foldover frequency �. The cubic spline derivate �lter with a = �1:5 is

nearly identical to the truncated ideal �lter up to �. Above that it has somewhat more

energy.

Knowing this, the truncated ideal gradient �lter performs best, but it is not adaptive. If

small features in the original data should be detected with more sensitivity, the cubic spline

based method with a = �2:0 gives a better high frequency behavior. Of course the aliasing

energy in this case is much higher than using the truncated ideal �lter.

14

ideal

truncated ideal

a=−0.75

a=−1.5

a=−2.0

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

frequency

m
ag

ni
tu

de

Figure 8: Frequency responses of the ideal estimator truncated to 4 voxels and of the derivative

of the cubic spline for di�erent values of a.

7 Implementing the cubic spline based gradient �lter

This section will address two di�erent ways of implementing the cubic spline based gradient

�lter in volume rendering. First the two dimensional case will be discussed. After that it

will be extended to three dimensions.

In Figure 9 the two dimensional situation is shown, with Pi the sample position. Px;y are

the known pixel (3D: voxel) values.

Using an interpolation kernel h(x; y), Pi can be estimated as follows

Pi(x; y) =

P�2;�2h(x� 2; y � 2) + P�1;�2h(x� 1; y � 2) + P0;�2h(x; y � 2) + P1;�2h(x+ 1; y � 2) +

P�2;�1h(x� 2; y � 1) + P�1;�1h(x� 1; y � 1) + P0;�1h(x; y � 1) + P1;�1h(x+ 1; y � 1) +

P�2;0h(x� 2; y) + P�1;0h(x� 1; y) + P0;0h(x; y) + P1;0h(x + 1; y) +

P�2;1h(x� 2; y + 1) + P�1;1h(x� 1; y + 1) + P0;1h(x; y + 1) + P1;1h(x+ 1; y + 1) (25)

This means that in order to interpolate Pi the pixel values are multiplied with a 2-D kernel

of which the weights are determined by h(x; y). One method to achieve this is to sample

h(x; y) and storing these values in a lookup table which reduces the interpolation to 16

multiplications and 15 additions. We call this non-seperable interpolation.

For seperable interpolation kernels h(x; y) can be calculated as a product of two 1-dimensional

15

P P P P-2,-2 -1,-2 0,-2 1,-2

P P P P-2,-1 -1,-1 0,-1 1,-1

P P P P-2,0 -1,0 0,0 1,0

P P P P
-2,1 -1,1 0,1 1,1

PiA B C D

E

F

G

H

X
Y

Figure 9: Two dimensional interpolation situation. Pi is the sample position.

interpolation kernels.

h(x; y) = h(x)h(y) (26)

Now Equation 25 can be rewritten as

Pi(x; y) =

h(x� 2)[P
�2;�2h(y � 2) + P

�2;�1h(y � 1) + P
�2;0h(y) + P

�2;1h(y + 1)] +

h(x� 1)[P
�1;�2h(y � 2) + P

�1;�1h(y � 1) + P
�1;0h(y) + P

�1;1h(y + 1)] +

h(x)[P0;�2h(y � 2) + P0;�1h(y � 1) + P0;0h(y) + P0;1h(y + 1)] +

h(x+ 1)[P1;�2h(y � 2) + P1;�1h(y � 1) + P1;0h(y) + P1;1h(y + 1)]

= h(x� 2)A+ h0(x� 1)B + h0(x)C + h0(x+ 1)D (27)

Where A::D are interpolated values in the X-direction. Figure 9 shows this seperable inter-

polation method.

The computational expense of calculating the gradient on the sample position (x; y) depends

on the way interpolation is done. In the non-seperable case it is not possible to use any results

of the interpolation to speed up the gradient calculation. If a seperable �lter is used, this is

possible.

16

The gradient at the sample position (x; y) is the partial derivative in the x and y direction

of Pi(x; y)

Gi(x; y) = [Gix; Giy] = [
�

�x
Pi(x; y);

�

�y
Pi(x; y)] (28)

This leads to the following gradient in the x-direction

Gix =

h0(x� 2)[P
�2;�2h(y � 2) + P

�2;�1h(y � 1) + P
�2;0h(y) + P

�2;1h(y + 1)] +

h0(x� 1)[P
�1;�2h(y � 2) + P

�1;�1h(y � 1) + P
�1;0h(y) + P

�1;1h(y + 1)] +

h0(x)[P0;�2h(y � 2) + P0;�1h(y � 1) + P0;0h(y) + P0;1h(y + 1)] +

h0(x+ 1)[P1;�2h(y � 2) + P1;�1h(y � 1) + P1;0h(y) + P1;1h(y + 1)]

= h0(x� 2)A+ h0(x� 1)B + h0(x)C + h0(x+ 1)D (29)

Thus the x-component of the gradient can be calculated using the interpolated values A;B;C

and D. If interpolation is done using a seperable �lter these values already were computed.

Thus calculating the x-component of the gradient only requires 4 multiplications and 3

additions. If on the other hand interpolation was done using a non-seperable �lter, no

savings would be achieved.

Giy can be derived in the same way

Giy = h0(y � 2)E + h0(y � 1)F + h0(y)G+ h0(y + 1)H (30)

Unfortunately the values E; F;G and H are not available and have to be computed too.

The above can be easily extended to the 3-D case

Pi(x; y; z) =
1X

i=�2

1X
j=�2

1X
k=�2

Pi;j;kh(x+ i; y + j; z + l)

=
1X

i=�2

1X
j=�2

1X
k=�2

Pi;j;kh(x+ i)h(y + j)h(z + k) (31)

The local gradient at the sample position is

Gi(x; y; z) = [Gix; Giy; Giz] = [
�

�x
Pi(x; y; z);

�

�y
Pi(x; y; z);

�

�z
Pi(x; y; z)] (32)

17

With

Gix = h0(x� 2)

0
@ 1X

j=�2

1X
k=�2

P
�2;j;kh(y + j)h(z + 1)

1
A

+ h0(x� 1)

0
@ 1X

j=�2

1X
k=�2

P
�1;j;kh(y + j)h(z + 1)

1
A

+ h0(x)

0
@ 1X

j=�2

1X
k=�2

P0;j;kh(y + j)h(z + 1)

1
A

+ h0(x+ 1)

0
@ 1X

j=�2

1X
k=�2

P1;j;kh(y + j)h(z + 1)

1
A (33)

The sum-terms between the large brackets in this equation are interpolated values in the

yz-plane. Thus the x-component of the 3-D gradient can again be calculated with very

little extra computation, if interpolation is done taking advantage of the seperability of the

interpolation �lter.

For the gradient vector in the y- and z-direction the same kind of formulas can be derived.

7.1 Computational expense of the new gradient �lters

Interpolation in 3-D with a �lter of extend 4 using a non-seperable �lter requires 64 multi-

plications and 63 additions. This assumes that the interpolation �lter is sampled and that

all possible values of h(x; y; z) are stored in a lookup table. This can possibly be a very

large lookuptable. Gradient estimation requires three times as much computation and a

lookuptable to store the sampled derivative of the interpolation �lter h0(x; y; z) in. Thus

interpolation and gradient estimation in total amounts to 4� 64 = 256 multiplications and

4� 63 = 252 additions.

A 3-D interpolation using a seperable �lter with an extent of 4 points in one dimension

requires 4� 5+1 = 21 1D interpolations1, or convolutions with the interpolation �lter h(x).

In that case the x-component of the gradient can be calculated with one 1-D convolution

with the gradient �lter. For the y and z components however, a totally new interpolation

scheme must be applied to obtain the 4 interpolated points, necessary to calculate the y

and z gradient components. That means that a total of 21 + 21 + 1 = 43 convolutions2

1A 4� 4 2-D interpolation requires 5 1-D interpolations. See Figure 9.
2One convolution in the x direction because values calculated in the interpolation stage can be reused to

calculate the x component of the gradient. Twice 21 convolutions because for the other two directions this

is not the case.

18

are needed to obtain the complete gradient vector. Thus the calculation of the gradient

vector is about twice as expensive as the interpolation itself. A 1-D convolution requires

4 multiplications and 3 additions. Thus interpolation and gradient estimation together

amounts to 4 � (21 + 43) = 256 multiplications and 3 � (21 + 43) = 192 additions. This

assumes however that the interpolation function h(x) and its derivative h0(x) are sampled

and the values stored in a lookup table. Note that this lookup table will be much smaller

than the one needed if a non-seperable �lter is used.

It is slightly cheaper to use a seperable �lter to do interpolation and gradient estimation.

Note that no extra memory fetches are required to calculate the gradient. The gradient

vector calculation uses the same memory addresses as the interpolation unit.

8 Results

Figure 10 and Figure 11 present two renderings using various gradient estimators. Fig-

ure 10(a) shows a volume rendering of a dataset from the University of North Carolina

Volume Rendering Test Dataset Volume II. The dataset is a 256� 256� 109 voxel magnetic

resonance image of a head with the brain surface exposed. Figure 10(b),(c) and (d) show

closeups of the center of Figure 10(a) but rendered using di�erent gradient estimators. In

Figure 11 three rendered images are shown of a solid cone with grooves in it.

Figure 10(b) and Figure 11(a) show the standard gradient and opacity method in which

the opacity and color is calculated on grid points and interpolated to estimate the color

and opacity on sample positions. Gradient estimation was done using the central di�erence

method. Figure 10(c) and Figure 11(b) are rendered using the intermediate di�erence method

to estimate the gradient. Linear interpolation is used to estimate the gradient on sample

positions. Figure 10(d) and Figure 11(c) images are rendered using the gradient method we

propose, the derivative of the cubic spline interpolation function.

As can be seen in both �gures there is a substantial di�erence between the image quality with

precalculated color and opacity and direct gradient estimation. The di�erences between the

intermediate di�erence method and the cubic spline based gradient method are smaller in

Figure 11. For detecting �ne features the cubic spline method performs slightly better. The

di�erences are signi�cant in Figure 10. Figure 10(d) shows the most details because high

frequencies are better preserved. These �gures show that the choice of a gradient estimator

depends on the dataset and the application.

19

(a) (b)

(c) (d)

Figure 10: Di�erence between gradient �lters. (a) Original dataset. (b) Zoomed in

on the center using precalculated color and opacity on grid positions (c) Zoomed in

on the center using the intermediate di�erence method (d) Zoomed in on the center

using the cubic spline based gradient method with a=-0.5.

20

(a) (b)

(c)

Figure 11: Di�erence between gradient �lters. (a) precalculated color and opacity

on grid positions (b) Intermediate di�erence method (c) Cubic spline based gradient

method with a=-0.5.

21

9 Discussion

In this paper a few methods are presented to estimate the gradient in a three dimensional

dataset. The most commonly used gradient �lter, the central di�erence, is �xed and can

not be tuned for optimal balance between �ne details on one hand and aliasing and noise

rejection on the other hand. The adjustable �lter techniques of Goss [5] and the derivative

cubic spline �lter do have this feature. Both �lters also have a better high frequency behavior

and less energy in the frequency range above � compared to the central di�erence and the

intermediate di�erence methods.

It would be possible to make the �lter choice adaptive. If several lookup tables are used, one

for each di�erent gradient �lter, choosing between �lters means switching between lookup

tables or changing the contents of a lookup table. This leads to a gradient estimator based

on local information around the sample point being processed at that moment.

10 Acknowledgments

We like to thank all the people who helped in this research. We especially like to thank

Irwin Sobel and Ron Schafer for their comments and suggestions.

The investigations were partly supported by the foundation for Computer Science in the

Netherlands (SION) with �nancial support from the Netherlands Organization for Scienti�c

Research (NWO) and the Visual Computing Department of Hewlett Packard Laboratories.

22

APPENDIX Fourier Transform of the Cubic Spline

This appendix derives the Fourier Transform of the cubic spline function given in Equation 17

analytically.

For convenience the cubic spline equation is repeated here

r(x) = r0(x) + ar1(x) (34)

Where

r0(x) = 2jxj3 � 3jxj2 + 1 0 � jxj � 1

r0(x) = 0 otherwise (35)

r1(x) = jxj3 � jxj2 0 � jxj � 1

r1(x) = jxj3 � 5jxj2 + 8jxj � 4 1 � jxj � 2 (36)

The Fourier transform of r(x) can be calculated using r0(x) and r1(x) and by using the linear

property of the Fourier transform

�f(x) + �g(x)() �F (!) + �G(!) (37)

Then the Fourier transform of R(!) is

R(!) = R0(!) + aR1(!) (38)

First the Fourier Transform of r0(x) will be derived. It is easiest to use the Laplace Transform

as a means to derive the Fourier Transform. Let p(x) be

p(x) = 1 0 � x � 1

p(x) = 0 otherwise (39)

and

h0(x) = 2x3 � 3x2 + 1 0 � x � 1

h0(x) = 0 otherwise (40)

23

Now de�ne g(x) as

g(x) = p(x)h(x) = p(x)f2x3 � 3x2 + 1g (41)

then

r0(x) = g(x) + g(�x) (42)

and

R0(!) = G(!) +G(�!) (43)

The Laplace Transform of Equation 41 can be computed by using the derivative theorem of

the Laplace Transform. If

P (s) =

Z
1

�1

p(x)e�sxdx (44)

Then

dP (s)

ds
=

Z
1

�1

�xp(x)e�sxdx (45)

Or in words, P 0(s) and �xp(x) are a Laplace Transform pair. The same reasoning holds for

the second and higher order derivatives.

�xp(x) () P 0(s)

x2p(x) () P 00(s)

�x3p(x) () P 000(s) (46)

Where () denotes a Laplace Transform pair. Thus the Laplace Transform of Equation 41

has the following form

G(s) = �2P 000(s)� 3P 00(s) + P (s) (47)

P (s) is the Laplace Transform of p(x) and is

P (s) =

Z
1

0

e�sxdx =
1� e�s

s
(48)

24

Now

P 0(s) =
se�s � 1 + e�s

s2

P 00(s) =
�s2e�s � 2se�s + 2� 2e�s

s3

P 000(s) =
s3e�s + 3s2e�s + 6se�s � 6 + 6e�s

s4
(49)

Thus

G(s) = �2P 000(s)� 3P 00(s) + P (s)

=
1

s3
(�6� 6e�s) +

1

s4
(12� 12e�s) (50)

Then

R0(!) = G(!) +G(�!)

=
6

j3!3
(ej! � e�j!)�

12

j4!4
(ej! + e�j! � 2)

=
12

!2

�
sinc2

�
!

2

�
� sinc(!)

�
(51)

Next the Fourier Transform of r1(x) will be derived.

r1(x) = jxj3 � jxj2 0 � jxj � 1

r1(x) = jxj3 � 5jxj2 + 8jxj � 4 1 � jxj � 2 (52)

Again the function p(x) is used and also the function q(x)

q(x) = 1 1 � x � 2

q(x) = 0 otherwise (53)

g(x) is now de�ned as

g(x) = p(x)(x3 � x2) + q(x)(x3 � 5x2 + 8x� 4) (54)

25

Then

r1(x) = g(x) + g(�x) (55)

and

R1(!) = G(!) +G(�!) (56)

Using the same strategy, G(!) can be calculated as follows

G(s) = �P 000(s)� P 00(s)�Q000(s)� 5Q00(s)� 8Q0(s)� 4Q(s) (57)

Q(s) can be calculated using the Laplace transform

Q(s) =

Z
1

�1

q(x)e�sxdx =

Z
2

1

e�sxdx =
e�s � e�2s

s
= e�sP (s) (58)

This results in the following derivatives of Q(s)

Q0(s) = e�sP 0(s)� e�sP (s)

Q00(s) = e�sP 00(s)� 2e�sP 0(s) + e�sP (s)

Q000(s) = e�sP 000(s)� 3e�sP 00(s) + 3e�sP 0(s)� e�sP (s) (59)

Substitution in Equation 57 yields

�G(s) = P 000(s)[1 + e�s] + P 00(s)[1 + 2e�s] + P 0(s)[e�s]

=
1

s3

�
2 + 8e�s + 2e�2s

�
+

1

s4

�
6e�2s � 6

�
(60)

Now R1(!) is

R1(!) = G(!) +G(�!)

=
8

j3!3

�
ej! � e�j!

�
+

2

j3!3

�
e2j! � e�2j!

�
�

6

j4!4

�
e2j! + e�2j! � 2

�

=
8

!2

�
3sinc2(!)� 2sinc(!)� sinc(2!)

�
(61)

26

Finally the Fourier transform of the cubic spline interpolation function is given by

R(!) =
12

!2

�
sinc2

�
!

2

�
� sinc(!)

�

+a
8

!2

�
3sinc2(!)� 2sinc(!)� sinc(2!)

�
(62)

27

Bibliography

[1] M.J. Bentum, M.A. Boer, A.G.J. Nijmeijer, M.M. Samsom, and C.H. Slump. Resam-

pling of Images in Real-Time. In Proceedings of the IEEE ProRISC workshop on Circuit,

Systems and Signal Processing, volume March, pages 21{26, 1994.

[2] M. Bosma, J. Smit, and J. Terwisscha van Scheltinga. Super Resolution Volume Ren-

dering Hardware. In Proceedings of the Tenth Workshop on Graphics Hardware, volume

EG95 HW, page . EuroGraphics Technical Report Series, 1995.

[3] Ronald N. Bracewell. The Fourier Transform and its Applications. McGraw-Hill, 1986.

[4] R.A. Drebin, L. Carpenter, and P. Hanrahan. Volume Rendering. Computer Graphics,

22(4):65{74, August 1988.

[5] M.E. Goss. An Adjustable Gradient Filter for Volume Visualization Image Enhance-

ment. In Proceedings Graphics Interface '94, volume , pages 67{74. Canadian Inf.

Process. Soc, Toronto, Ont., Canada, 1994.

[6] R.G. Keys. Cubic Convolution Interpolation for Digital Image Processing. IEEE Trans-

actions on Acoustics, Speech, and Signal Processing, ASSP-29(6):1153{1160, December

1981.

[7] M.S. Levoy. Display of Surfaces from Volume Data. IEEE Computer Graphics and

Applications, pages 29{37, May 1988.

[8] W.E. Lorensen and H.E. Cline. Marching Cubes: A High Resolution 3D Surface Con-

struction Algorithm. Computer Graphics, 21(4):163{169, July 1987.

[9] S.K. Park and R.A. Schowengerdt. Image Reconstruction by Parametric Cubic Convo-

lution. Computer Vision, Graphics, and Image Processing, 23:258{272, 1983.

[10] J.A. Parker, R.V. Kenyon, and D.E. Troxel. Comparison of Interpolating Methods for

Image Resampling. IEEE Transactions on Medical Imaging, 2(1):31{39, March 1983.

[11] B.T. Phong. Illumination for Computer Generated Pictures. Communications of the

ACM, 18(6):311{317, June 1975.

[12] A. Pommert, U. Tiede, G. Wiebecke, and K.H. Hohne. Surface Shading in Tomo-

graphic Volume Visualization. In Proceedings of the First Conference on Visualization

in Biomedical Computing, volume 1, pages 19{26. IEEE Comput. Soc. Press, 1990.

28

[13] L.R. Rabiner and R.W. Schafer. On The Behavior Of Minimax Relative Error FIR

Digital Di�erentiators. The Bell System Technical Journal, 53(2):333{361, Februari

1974.

[14] P. Sabella. A Rendering Algorithm for Visualizing 3D Scalar Fields. Computer Graphics,

22(4):51{58, August 1988.

[15] C.E. Shannon. Communication in the Process of Noise. Proceedings of the IRE, 37():10{

21, January 1949.

[16] C. Upson and M. Keeler. V-Bu�er: Vissible Volume Rendering. Computer Graphics,

22(4):59{64, August 1988.

[17] D. Vandermeulen, D. Delaere, P. Suetens, H. Bosmans, and G. Marchal. Local �ltering

and Global optimisation Methods for 3D Magnetic Resonance Angiography (MRA)

Image enhancement. In SPIE Visualization in Biomedical Computing, volume 1808,

pages 274{288, October 1992.

[18] L. Westover. Footprints Evaluation for Volume Rendering. Computer Graphics,

24(4):367{376, August 1990.

[19] Lee Westover. Interactive volume rendering. In Chapell Hill Workshop on Volume

Visualization, pages 9{16, May 1989.

[20] R. Yagel, D. Cohen, and A. Kaufman. Normal Estimation In 3d Discrete Space. The

Visual Computer, 8(5-6):278{291, June 1992.

[21] S.W. Zucker and R.A. Hummel. A Three-Dimensional Edge Operator. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 3(3):324{331, May 1981.

29

