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Abstract

Timing data gathered from network traffic is fed into a Kalman filter designed to jointly
estimate the clock offset and the clock frequency offset with respect to the time server. The
method proposed builds a statistical framework for synchronization of computer clocks that
allows a probabilistic interpretation of the quantities involved. The tests show that the filter
performance is for all practical purposes optimal.



1. Introduction

Certain computer applications require clock synchronization. This happens, for instance,
when several computers are networked and run applications that need a tight clock synchro-
nization such as multimedia flows or in some secure environments. Other applications appear
in distributed protocol analysis in WANSs or in remote control of distributed measurement
systems. The common thread of all these settings is the need for correlating distributed
events. This correlation cannot be carried out without a common time base. A general
review of clock synchronization can be found in [4].

The Internet Activities Board clock synchronization standard is the Network Time Protocol,
Version 3 (NTPv3) developed by D. Mills [7, 5, 6, 8, 9]. The NTP is a general purpose clock
distribution protocol that provides clock synchronization to arbitrary computer networks.
For our purposes we can divide the NTP into 4 blocks. A transmit process, a receive
process, an update procedure and a local clock process. The update process generates the
best offset available with respect to a selected reference clock by performing clock selection
and combination. The input to the local clock part is the data generated by the update
process. The local clock part of the NTPv3 ajusts the phase offset and frequency offset of
the local clock with a PLL which removes input data noise and provides a stable timescale
between network updates.

The NTPv3 outputs three quantities: a clock offset with respect to a selected reference
clock, an offset error (dispersion) and the current round-trip delay to this reference clock.
The NTPwv3 also computes the so-called synchronization distance which defines the maximum
error under any operational condition. The dispersion is the error expected under nominal
operating conditions and has the following components [8]:

1. measurement errors due to inherent clock reading errors, also known as timestamping
errors and due to the clock resolution and the method of adjustment.

2. offset accumulated since the last offset update due to the frequency offset!. The NTPv3
uses the maximum nominal frequency offset to compute this quantity.

3. errors due to network delay jitter, called the peer dispersion.
4. errors due to the offset sample variance which arise when several servers are used to

synchronize a client.

Normally, and especially in WANSs, delay jitter errors dominate the dispersion budget. The
NTPv3 uses a type II PLL to minimize the delay jitter errors. PLLs have the problem that
even if they perform “well” it is hard to quantify how much “better” one could do, i.e., there

! frequency offset refers here to the first derivative of the time offset with respect to time.



is no optimality criteria available. While the current performance of the PLL 1s acceptable
for today’s needs, it may not be good enough to reach sub-millisecond synchronization in the
future. There is a need to improve the error performance of time synchronization algorithms
through better timestamping accuracy and better data processing.

In this document we design a Kalman filter that provides the phase (time offset) and the
frequency offset of the local clock. Kalman filters have been used to model cesium beam
atomic clocks in [10]. A Kalman filter presents several advantages with respect to a PLL:

1. It is optimal in the sense that it minimizes the mean square errors.

o

It provides a probabilistic framework for the synchronization of computer clocks which
allows easily used robust statistical techniques and gives a statistical meaning to some
quantities involved.

3. It provides the time and frequency offset estimates in a single loop.

We have tested the filter by running it with NTP timestamps. In both cases, in a client-server
model, the process is divided into 3 parts:

1. A packet transmission and reception part that generates NTP timestamps.
2. A clock filter which selects the best sample.

3. Local clock model part which is based on the Kalman filter.

When the client has timing information from several time servers, a Kalman filter has to
run for every client-server pair. In this case, clock selection will be performed after the clock
filters and clock and frequency combination are performed after Kalman filtering. Our tests
do not perform clock compensation for inherent frequency errors between network samples
however the Kalman filter provides all the data required to perform such an operation. The
local clock time offset, the local clock frequency offset and their corresponding error estimates
are computed with the Kalman filter. The filter also provides the time till the next packet.
The local clock time offset, the local clock frequency offset and the inter-packet time can
be used in a local clock slewing routine. In table 1.1 we list the main features of the PLL
in the NTPv3 and the Kalman filter. The Kalman filter requires floating point arithmetic
although it may be possible to avoid this requirement.

This report is divided as follows. In section 2 we present an overview of the system designed.
In section 3 we model the clock offset by an evolution equation. Section 4 describe how to
estimate the system parameters. Section 6 is the main section of the paper and contains
the design of the Kalman filter. In section 7 we investigate some implications of the use of
Kalman filters in time synchronization. Section 8 contains experimental results and section
9 the conclusions.
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NTPv3’s PLL | Kalman Filter
Floating Point Arithmetic NO YES
Optimization Criteria NO MSE
Time Offset Estimation YES YES
Frequency Offset Estimation NO YES
Time Offset accumulation YES YES
Error accumulation NO YES

Table 1.1; NTPv3’s PLL versus the Kalman filter

2. Overview

We adopt the following terminology. The machine that sources the packets is called the
client. The machine that receives and returns the packets is called the (time) server. We
assume that the client wants to be synchronized to the server.

The data collected (timestamps) is processed using a Kalman filter. The output of this
processing is a time offset estimate and a frequency offset estimate between the client’s clock
and the server’s clock as well as their corresponding error estimates.

2.1 Timestamp Generation

In this section we briefly describe the timestamp generation process. More details can be
found in the NTPv3 [7] specification. Figure 2.1 shows the timestamping sequence for the n-
th packet sent from the client to the server. The n-th packet is timestamped and transmitted
by the client. This time stamp is denoted by T),. When it is received at the server a time
stamp R. is written on the packet and when the packet is sent back to the client another
timestamp S is written again on the packet. Finally, when the packet arrives back to the
client, it is timestamped again. This time stamp is denoted by A,. Thus, after the reception
of n-th packet, four timestamps T,,, R, S/ and A,, are available at the client. Times [},
and S! at the server respectively correspond to times R, and S, at the client so that, if X (%)
is the clock offset at client time t between the client and the server,

Sn = '5':1+X(Sﬂ.) (

S

)
)

Similarly, times A, and 7}, at the client correspond to times A/, and 7] at the server. In
current UNIX workstations, kernel timestamps will be accurate to a few tens of a microsecond

I

]
[ S

whereas user space timestamps will be accurate to the millisecond.
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Figure 2.1: The Timestamp Sequence
For the n-th packet, we define the quantities,
A, -5 2 .
d'n i ( n) ;- ( n ), (2'3]
A,-S)-(R. -T,
o, = Un=S)-(m -1 i
A, + T,
pe = AntT 29

The quantities d,,, ©, and A, can be directly computed from the timestamps and constitute
the input data that a packet brings to evaluate the clock offsets. The quantity @, will be
called the packet offset and the quantity d,, will be referred to as the half round trip delay.

In section 3, we show that the larger the value of d, the noisier is the offset information
provided by the n-th packet. In order to reduce the noise, t.e., the half round trip delay
d,, we send bursts of a few packets about one second apart. The first packet in the burst
acts as a "warning shot” and has the effect of moving the server address in the cache of the
routers. As a result, subsequent packets end up with a smaller half round trip delay. For
every burst, we select the packet with the smallest d,,. This technique is also used in the
NTPv3 (ntpdate).

2.2 The Clock Filter

The transmission part sends a burst of B packets to the destination. The clock filter selects
the best sample in a burst which is the one with smallest half round-trip delay. The triple
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Figure 2.2: Client-Server Module

(O, dn, A,) is then passed to the Kalman filter for time and frequency offset estimation.

The clock filter described here is very different from the NTPv3’s clock filter, where the
best of the last NTP.SHIFT (8) samples is selected. Frequency offset estimation is simpler
if the time ordering of the input data is preseved. The NTPv3 clock filter can potentially
complicate frequency offset estimation because input data ordering is not guaranteed and
furthermore, one can select the same sample several times which would totally prevent
frequency offset estimation.

2.3 Data Processing

The data processing block takes as input a triple (0,,d,,A,) and by means of a Kalman
filter outputs,

'1. A time offset estimate.

o

A frequency offset estimate.
3. The mean square error of the time offset estimate.
4. The mean square error of the frequency offset estimate.

5. The inter-burst time.

The system blocks for a client-server pair are shown in figure 2.2.

3. The Clock Offset Model
Let,

An = (An+T3)/2, (3.1)
th = Appi— A (3.2)

In modern computers, the frequency offset y, between two clocks increases at a constant
speed D over time. The constant D is called the frequency offset drift. The frequency offset



evolution equation is completed by a noise component W/ which captures the frequency
noise due to short term frequency offset fluctuations between times A, and A,;;. The linear
increase over time in the frequency offset implies a quadratic increase over time for the time
offset x, between two clocks. At time A, the frequency offset y, and the time offset z,
satisfy the evolution equations,

Ynt1 = Yn+ tnD + .["V:” (33)

tZ
Efﬂ.}.] = In + tnyn '+' _211D + tnylf;;. (3-4)

The initial values of these evolution equations will be specified in section 6. We assume that
the sequence (W}, )u>o is independent, with zero mean and Var(W}) = € + t,v2. The term
€? describes the flicker frequency noise and the term v? the random walk frequency noise [1].

Assumptions:

e frequency offset: The frequency offset per unit time is assumed at most of the order of
100-3), ie., ,
lyal <1, t2>0.

e frequency drift: The frequency drift D is constant.
o symmetry assumptions:

— symmetric protocol stack processing: The value of the assymetry can only be
evaluated if detailed information on the hardware architecture of the systems
involved is available.

— routing symmetry: In the average, the client-server delay and the server-client
delay are equal, i.e.,

m

Z(An == Sn) = (Rn == Tﬂ)
lim =0 = 0.

m—oo 1T

In practice the symmetry assumptions do not hold. They introduce a systematic bias
in the offset estimates.

After some elementary algebra, we have,
0, =z, 4+ W,, (3.5)

where, taking the above assumptions into account, the random quantity W), is given by,

— N -
W, = (An Ln) 5 (Rn Tn)’ n>1. (36)




The packet offset ©, is a noisy time offset at time A,, the noise level heing equal to W,.

The quantity W, will be referred to as the measurement or phase noise. As a result of the

symmetry assumption, the random variable W, has zero mean. Its variance is denoted by
2 .

a2, i.e.,

o® = Var(W,). (3.7)

If the symmetry assumptions fail, then W, is not a zero mean random variable and the offset
estimate will be systematically biased. The systematic bias due to processing assymetries is
often below the accuracy requirements and can be quantified if the characteristics of the hosts
involved are known or can be avoided by timestamping at the MAC level. The systematic
bias due to routing assymetries is beyond our scope and may be important.

4. System Parameter Estimation

The system parameters estimation algorithms and the filter design have been tested on six
data sets, covering both WAN and LAN environments. In both cases (LAN and WAN), we
collected NTP timestamps by running at fixed intervals ntpdate between a standalone ma-
chine, viper.hpl, running as a client and known NTPv3 time servers. In the WAN environ-
ment (HP internet) the time servers were andover.ntp, paloalto.ntp and cupertino.ntp
and in the LAN environment netman.hpl and sysman.hpl. Since the client remains un-
changed, each data set is named after the server.

The estimation of the noise variances and drift is based on the Allan variance. The Allan
variance is described in [8, 9, 1]. We fix the interburst time ¢,, to a constant value, say ¢ and

define,
@ n+l (_)n

t

T’Vn.;_l — I’Vn

o, = = g+ 2D+ W+ T (4.1)

and

LVn.f.g cxe 2IVH+1 "+' ;’Vn

0,,,-9,=tD+W, , + : (4.2)
The Allan variance is defined by,
e o
E‘z(t) i Va‘l(engl eu) (4.3)
e w30

and the Allan deviation is X(t). We have observed in all data sets that the empirical Allan
deviation starts with a slope of -1 and eventually ends with a slope of 0.5 in a log-log plot.
This behavior is in accordance with equation (4.4).
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Time Server netman | sysman | andover | colorado | cupertino

duration (days) 38 38 35 38 38
o (msecs) 0.33 0.42 6.72 6.63 6.82

v (ppm) 0.002 0.002 0.002 0.002 0.002

e (ppm) 0.52 0.49 0.56 0.60 0.57

D (pph) -0.001 | -0.001 0.000 -0.000 -0.000

E[d,] (msecs) 0.39 0.38 135.47 110.44 97.22
hops 0 0 18 16 14
empirical o (msecs) | 0.39 0.38 7.13 6.50 6.48

Table 4.2: Parameter Estimates

4.1 Algorithms

From equation (4.2), we see that the drift is estimated by,

p - € =01

and

T
Var(D) = E{z(f)

The estimation algorithm for ¢, v and e starts by estimating Y*() as a function of the
interpacket time ¢ from the empirical values of (©,,),>1. The first point is obtained by setting

t equal to the minimum interburst time, currently 16secs. Further points are obtained for
Fhdt o

The value of the phase or measurement noise deviation ¢ is obtained by best fitting the
function 302 /t? to the empirical Allan variance. The value of the frequency noise components
v and ¢ are obtained by best fitting the function ¢?/2+4tv? /2 to the empirical Allan variance.
which provides the minimum variance for D. Table 4.2 shows the parameters for each trace,
and figures 4.3, 4.4, 4.6, 4.5 and 4.7 show the plots of the empirical Allan deviation and the
estimated Allan deviation for all the traces considered.

4.2 Convergence

We have checked the convergence of the algorithms described in section 4.1 for each trace.
For a trace of duration T' we have computed estimates of o, v and ¢ for estimation periods
of length T, T/2,T/4,.... Thus, when the estimation period is T'/k the algorithm of section
4.1 provides k estimates for o, ¥ and ¢
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We decided that the algorithm had converged for the estimation period of length 7'/k when
the following two conditions were met:

1. The distance between the estimate obtained for the trace of length 7' and the mean
of the & estimates obtained for estimation periods of length 7'/k was less than the
standard deviation of the k estimates obtained for estimation periods of length 7'/k.

2. The standard deviation of the 4 estimates obtained for estimation periods of length
T'/k is an order of magnitude below the mean of the k estimates obtained for estimation

periods of length T'/k.
The convergence results show that:

1. Convergence in LAN seems slower. This may be due to the fact that timestamping
errors are probably comparable to the values to be estimated.

2. Even when convergence is achieved with the algorithms proposed, the time it takes
to achieve convergence 1s impractical for real time implementations. So, while the
algorithm in section 4.1 and the convergence criteria can be used to compute the true
values of o, v and ¢, empirical approaches are needed to estimate o, v and € in real
time.

3. Convergence for the phase noise variance occurs earlier than convergence for the fre-
quency noise variance.

In figures 4.8, 4.8 we show the Allan deviation convergence for traces of T, T/2 and T/4
where T is the overall trace duration for sysman.hpl and colorado.ntp. Thus, there are 4
plots that last till time T/4, 2 plots that last till time T/2 and one plot that lasts till time
T. We can see in all cases how the deviation plots remain close until about 100000secs.

5. Empirical Estimates

[f X, and ¥, respectively denote the inbound and the outbound delays of the n-th packet,
we have,

g, = «\n+Yn]
2

An — Yy

W, = ——

-

Simple computations show that if X,, and Y, are uncorrelated and if both Var(d,) and
Var(W,,) exist, then,
Var(W,) = Var(d,).

14
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Unfortunately, the empirical data seems to indicate that Var(d,) does not exist, and thus
this method cannot be used.

5.1 Phase Noise Empirical Characterization

We have observed that when o is well approximated by the average half-round trip delay in
LAN cases and in WAN cases, we have,

d
1+ 4

e
~

(5.1)

where d is the average half-round trip delay and A is the number of routers the sync packets
cross from the client and back. These empirical estimates need further testing.

5.2 Frequency Noise Empirical Characterization

The noise frequency parameters seem to be independent of the time server considered. The
flicker noise standard deviation seems to be about 0.55ppm and the random walk noise
standard deviation about 0.002ppm. We do not know how general this situation is and
further tests are needed to verify this situation. Another alternative is to develop algorithms
that can estimate in real time these parameters. This, however seems to be not trivial because
the noise frequency parameters only become observable at times higher than 1000secs.

6. Kalman Filtering

In this section we design a Kalman filter to estimate the time and frequency offset and their
errors. The system equations are,

On = 2o+Wa, n>0, (6.1)

Ynt1 = Ynt D)+ I’V;a (6.2)
t?

Tn41 = Iy + tnyn + ‘_;ID -|— fn‘*’p” (6.3)

The Kalman filter will provide a recursive method to compute the time offset estimates,
Tn = El2s|00;::+:8a);, n20,
the clock frequency offset estimate,

?}n = E[ynleﬂ;---uen]; n 2z 0:—

17



and their respective mean square errors and cross-correlations,

U = El(zn—=8.)"]; w20
Vr;z E[(yn o ﬁﬂ)—)]ﬂ nz 0
2 = E[(yn—9n)(@n— &) n >0,

Kalman filters provide the minimum mean square error estimates when the observations are
perturbed by white noise and the system evolution is also driven by white noise. If the white
noise is gaussian, Kalman filters are optimum in the mean square error sense. When the
white noise is not gaussian, Kalman filters are the best linear filters in the mean square error
sense. For further details on Kalman filters, the reader is referred to [3, 2].

6.1 Filter Design

Unfortunately, a straightforward application of Kalman filtering results to the design of a
Kalman filter for time and frequency offset estimation is not possible because the system
parameters v, €, and D are not known. This is circumvented by estimating the parameters
using the empirical estimates proposed in section 5. To summarize we will implement a
Kalman filter under the following assumptions,

1. (W,)ao0 is a sequence of independent zero mean random variables and variance o
where o ~ d/(1 + h) with d = E[d,,] and A number of routers crossed.

2. (W) )n>0 is a sequence of independent zero mean random variables and Var(W),) =
€2 + t,v? where v = 0.002ppm and ¢ = 0.55 ppm.

3. 2g is a random variable of mean @y and variance o2.

4. The random variable sequences (W, ),>0 and (W} )n>0 are independent of each other.

6.2 Kalman Equations

We will design a filter that simultaneously estimates time and frequency offset. Let,
Z, = (:En:yn)Ta
where T is the transposition operator, The system equations (6.1), (6.2) and (6.3) become,

0, = h'fzn + W, n>0, (6.4)
Z'ﬂr-l-l = Fnzn—i—Fn—I—W;l ?12 ]. (65)



where, h, is the 2 column vector,

hl = (]—1 U)Ta

1 t,
F“:(n 1)’

2

t
1= (D.—;;DL‘RJT:

F, is the 2 x 2 matrix,

I, is the vector,

and W', = (t,W!, W/)T.

7L

If Zn = E[Z,|@o,...,0,), denotes the estimate of Z,, given Oy, ..., O,, and the matrix C,
denotes the 2 x 2 covariance matrix of Z,, i.e.,

G =E[(Zs — Z)(Bs —Z:) )

then the theory of Kalman filtering provides formulas for the updates of C,, and Z., at time
Ay 41. These updates are as follows:

. , F.C.FT+Q.)h ;
Zon = FoZy+Tut 5y ( + Qo) (041 = BT (FuZ, + I)),

2+ 2E 4+ 2V + 2y, + UE + 07

(F.C.FL +Q,)h:h!(F.C.FL +Q,)
3 2 + 22V 4 2y, + U + 07

Cusr = (FuC.FL+Q,)— ; (6.7)

where,

Q :(£2+tu2)(fi "“) (6.8)
T 1 ¢ 1 § *

T

U = Ca(1,1), (6.9)
Vi = Ca(2,2), (6.10)
Yo = Ca(2,1) = Ca(1,2), (6.11)

and the initial values are set after sending the first 2 packets as,

Z, = (6,,0p)7, (6.12)

oy = 02(*5 t“), (6.13)
to 1

D = 0. (6.14)

The Kalman recursions in scalar form are in appendix A.
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6.3 Predicted Offset Errors

The theory of Kalman filtering provides estimates for the time and frequency offset errors
t seconds after the n-th packet burst received. The correlation matrix of the time and
frequency offset system ¢ seconds after the n-th packet burst received is,

C(t) = F()C.F(t)" + Q(1),

P = (5 1)

Q) = (c2+f-u?)(‘f f).

where,

In particular, the time offset error is given by,
UP(t) = 3% + 126 + t*V2 + 24y, + U2
and the frequency offset error is given by,

Vi) =vi+ e+ V2

6.4 Inter Burst Time

The Allan variance plots show that the time offset error will be minimized for small inter
burst times whereas the frequency offset error will be minimized for times close to the time
that minimizes the Allan variance, i.e.,

= ()"

These two goals are incompatible. If one is interested in providing a stable time scale, large
interpacket times should be used. If one is interested in very accurate synchronization at a
given instant, small interpacket times should be used.

6.4.1 Bounded Time Offset Error

The predicted time offset error can be used to select the inter burst time to bound the time
offset error. By choosing t, = A,41 — A, as the minimal positive solution of,

302 4 12?4 12V2 4+ 2y, — 02U = 0,



we guarantee that the squared time offset error will only increase to (1 + a?)U2 between
two packets. This inter burst time selection method will be called the error accumulation
criteria.

6.4.2 Bounded Time Offset

One can also select the inter burst time to bound the time offset increase between packet
bursts by sending the next burst when the estimated time offset increases by a preset value

7. The interpacket time is then,
T

n = .
||
This inter burst time selection method will be called the {ime offset accumulation criteria.

This criteria is only well defined when the effects of local clock ajustments between packet
bursts are ignored.

7. Clock Synchronization with Kalman Filtering

In this section we explore how some of the algorithms used by the NTPv3 to perform time
synchronization could be modified if Kalman filters where used.

7.1 Clock Selection and Combination

Until now we have only addressed a client-server situation. When a client receives timing
information with respect to a reference clock from several time servers, a filter must exist
for every client-server pair. The issue of clock selection and combination arises.

The first step in clock selection is to identify a set of reliable and consistent clocks. The
NTPv3 provides efficient and widely tested algorithms that perform that task. The second
step is to rank the reliable clocks from better to worse. The NTPv3 uses the so-called
synchronization distance to rank the clocks [6]. Our previous analysis shows that, in a
Kalman filter setting, the natural metric to rank clock is the euclidean distance based on the
estimated variances.

Clock combination consists in taking as the client time offset with respect to the reference
clock some average of the selected servers’ offsets with respect to the reference clock. The
Kalman filtering setting provides a natural way of selecting this average.

If a client has receives timing information from .S servers, all synchronized with respect to
the same reference clock and all equally consistent and reliable, it is natural to try to use all
the information available to derive the time offset estimate of the client with respect to this
reference clock.



The time offset? x; with respect to the ith server is a random variable of mean #; and variance
U;, where &; and U, are respectively the current time offset estimate and the current time
offset error obtained from the Kalman filter associated to the ith server.

The client’s offset = with respect to the reference clock is estimated by # = E[2] and its error
by U? = Var(z). The time offset x is obtained as an average of the time offsets of each active
client-server pair. The client time offset & and frequency offset with respect to the reference
clock are of the form,

z = pir1+...+pscs,
@iy1 + ...+ gsys,

@
Il

withp; >0, 1<:<S,andpy+...+ps=1l,and ¢; > 0,1 <:< S,and g + ...+ g5 = 1.
Then,

i
|

P1&1 +v o+ Psis,
G + ...+ qsys,

gy

and, since z; and z; are independent for ¢ # j, and similarly for the frequencies,

U = B0+ + 85U,
Vo= @R+ V2

The values (p;)icics are selected to minimize the time offset error U?. They are given by?,

[1U&

kesti

i = e LEEES,
PTEIIO
7 ki
so that, the variance is,
1 1
7=

2Tn this section indices refer to client-server pairs rather than to time.

38. Crouch, private communication
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Figure 7.10: Clock Combination Architecture

oimilarly, we obtain,

[1Tv
Y AN

q; 21
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Jok#i
so that, the variance is,
1

1
PR

This shows that clock combination can achieve error reductions by factors of 1/v/S. In
particular, U < min{Uy,...,Us}, i.e., there is a gain in using several time servers to estimate
the time offset. Also, clock combination stabilizes both the time offset and its error by
protecting against sudden error surges in one server.,

The clock combination architecture is shown in figure 7.10. Clock selection occurs at the
output of the client-server modules. The survivors are used for clock combination. Even
if a server fails the clock selection test at some point, it is worth keeping the client-server
exchange alive because past history will always help to improve time offset and frequency
offset estimates.

8. Results

We have estimated the time and frequency offset for all the data sets using the Kalman filter
designed in section 6.1 with the values for o, v and € obtained in section 4. The filter ran
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Parameter | Value Description

MAX SECS | 4096 | Maximum inter-burst time (secs)
MIN_SECS 16 | Minimum inter-burst time (secs)
BSZ 3 Burst size

Table 8.3: List of Parameters

using both inter burst time criteria described in section 6.4. We analyze the data obtained
from two angles. Firstly, we assess the filter error performance and stability and secondly
we study the filter optimality. Table 8.3 gives a list of the more relevant parameters used in
the tests.

8.1 Filter Performance and Stability

In order to assess the filter performance and stability we provide for each trace the following
values:
1. The empirical mean interburst time .

2. The empirical mean of the time offset error U/ and its empirical standard deviation
ViU =D

3. The empirical mean of the frequency offset error V and its empirical standard deviation
Jv —vp.

4. The empirical mean frequency offset 7 and its empirical standard deviation y/(y — 7)2.

The filter performance is assessed by comparing the empirical mean errors obtained to the
inherent data noise. Thus, the empirical time offset mean error U is compared to the
corresponding noise quantity, o and the empirical frequency offset mean error V is compared

to the corresponding noise quantity, /€2 + tv? 4+ 202/t2.

The filter stability is studied by comparing mean values with their standard deviations for
relevant parameters. We will say that a quantity is stable when its empirical standard
deviation is an order of magnitude below its empirical mean.

Finally, since the frequency drift should be very small, the frequency offset estimate should
remain roughly constant between packet bursts, i.e., the short term fluctuations of the fre-
quency offset estimate should be very small. A simple way of testing this is by looking at
the values of the correlation coefficients of the frequency offset estimate time series, their
values should be very close to 1.
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8.2 Filter Optimality
For the Kalman filter, it is known [2] that the random variables (M, },>1, where

-y
ow (EERIT)

Mp1 = ’
V32 + 1262 + 12V2 + 2y, + U2

should be uncorrelated with zero mean and unit variance. These properties can be tested
from the empirical data. The random sequence (M, );>, can be evaluated from the mea-
surements and hence one can compute empirical means and correlation parameters. If the
empirical mean, variance and correlation of (M, ).>1 are close to their theoretical values, one
should expect that the Kalman filter design will be close to the best® linear filter to estimate
the time and frequency offset®.

Intuitively, an empirical mean close to zero and an empirical variance close to one show that
the filter tracks well. Furthermore, a variance much less (resp. more) than the unity can
be a sign of overestimated (resp. underestimated) the noise power. Finally, the correlation
coefficients give a measure of how good is the filter at extracting the real information from
the data.

The a posteriory checks are done by computing,

1. The empirical mean M of the sequence (M, )n>1.

2. The empirical standard deviation /(M — M)? of the sequence (M )n31-

3. The first five autocorrelation coefficients py, ..., ps of the sequence (M, )n>1,

8.3 Data Analysis

The results obtained are gathered in tables 8.5, 8.7, 8.4 and 8.6. Both in LAN and WAN
environments the numerical results obtained show that the filter performs very close to its
expected theoretical behavior. The numerical data also shows that the filter performance in
WAN environments is better since the aposteriory checks are closer to the expected theoret-
ical values. It is possible that this difference is due to the fact that in LAN environments we
are within the limits of the timestamp accuracy since we are dealing with sub-millisecond
errors.

4in the mean square error sense.

SIf furthermore it ever turns out that the random variables M, are normal then they will be independent and one should
expect that the Kalman filter design will be close to the optimal filter to estimate the time and frequency offset. We have not
found (Mn),>1 to be normal.



SEIrver netman sysman

o 1 3 5 1 3 D
t(secs) 142 | 1066 | 2302 || 205 | 1432 | 3082
U{msec) 0.23 | 0.31 | 0.32 || 0.30 | 0.39 | 0.41
V(U — U)?*(msecs) || 0.01 | 0.00 | 0.01 || 0.02 | 0.00 | 0.00
V(ppm) 0.75 | 0.30 | 0.18 | 0.69 | 0.30 | 0.17
VV —V)2(ppm) | 0.33 | 0.00 | 0.00 | 0.16 | 0.41 | 0.00
7(ppm) -9.21 | -9.20 | -9.20 || -9.21 | -9.87 | -9.21
vy —7)2(ppm) | 2.70 | 1.76 | 1.75 || 1.94 | 31.59 | 1.74
M 0.00 | -0.00 | -0.00 || 0.00 | -0.00 | -0.00
(M — M)? 0.62 | 0.62 | 0.77 || 0.58 | 0.66 | 0.71
P 0.11 | -0.15 | -0.05 || -0.17 | -0.02 | 0.22
P2 -0.01 | -0.03 | -0.03 || -0.01 | -0.08 | -0.02
P3 -0.19 | 0.02 | 0.04 | -0.05 | -0.00 | -0.14
P4 -0.20 | -0.01 | 0.01 || -0.07 | 0.01 | -0.10
Ps -0.16 | -0.01 | -0.03 || -0.06 | -0.02 | -0.06

Table 8.4: Average Values for LAN environment - Error accumulation

server colorado andover cupertino

at 0.5 | 0.75 0.5 | 0.75 0.5 | 0.75 1
t(secs) 683 | 1499 | 2567 | 698 | 1831 | 2585 || 744 | 1607 | 2757
U(msec) 3.64 | 4.27 | 4.72 || 3.67 | 4.29 | 4.75 || 3.73 | 4.36 | 4.82
V(U — U)%(msecs) || 0.03 | 0.01 | 0.02 || 0.04 | 0.02 | 0.02 || 0.03 | 0.02 | 0.01
V(ppm) 132 | 1.04 | 090 || 1.31 | 0.87 | 0.88 || 1.25 | 1.00 | 0.84
vV (V —=V)2(ppm) || 0.27 | 0.32 | 0.73 | 0.31 | 0.39 | 0.29 || 0.32 | 0.46 | 0.41
7(ppm) -9.03 | -9.28 | -8.80 || -9.18 | -9.13 | -8.17 || -9.40 | -9.51 | -9.60
V(y —¥)*(ppm) 6.07 | 236 | 7.88 || 2.54 | 2.55 | 2.17 || 4.04 | 4.92 | 5.92
M 0.01 {-0.01 | 0.01 || 0.00 | 0.0L | 0.01 || -0.02 | -0.03 | -0.05
(M — M)? 1.01 | 0.95 | 1.13 || 1.00 | 1.01 | 1.00 || 1.002 | 1.07 | 1.09
p1 0.07 {-0.04 | -0.01 || -0.01 | -0.03 | -0.06 || 0.06 | -0.00 | 0.05
P2 0.04 {-0.10 | -0.01 || -0.07 | -0.09 | -0.07 || -0.02 | 0.01 | 0.12
P3 -0.01 | -0.09 | -0.09 || -0.04 | 0.04 | -0.08 || -0.00 | 0.00 | 0.08
P4 -0.03 | -0.14 | -0.01 || -0.06 | 0.00 | -0.05 || -0.04 | 0.02 | 0.19
Ps -0.02 | -0.04 | -0.04 || -0.07 | -0.09 | -0.01 || -0.00 | 0.02 | 0.09

Table 8.5: Average Values for WAN environment
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server netman sysman
7(msecs) 1 10 20 1 10 20
t(secs) 107 | 1085 | 2173 || 107 | 1085 | 2071
U(msec) 0.22 | 0.31 | 0.32 || 0.26 | 0.37 | 0.40
(U — U)?*(msecs) || 0.01 | 0.02 | 0.00 || 0.01 | 0.00 | 0.00
V(ppm) 0.85 | 0.37 | 0.19 || 0.88 | 0.34 | 0.22
V(V =V)2(ppm) | 0.50 | 2.03 | 0.03 || 0.59 | 0.03 | 0.03
7(ppm) -9.54 | -9.52 | -9.52 || -9.55 | -9.54 | -9.53
Vv —7)%(ppm) | 2.08 | 2.61 | 1.69 || 2.75 | 1.68 | 1.68
M -0.00 | -0.01 | -0.01 [/ -0.00 | -0.00 | -0.00
(M —-M)? 0.62 | 0.85 | 0.75 || 0.53 | 0.62 | 0.67
P -0.21 | -0.19 | -0.10 || -0.08 | -0.09 | 0.04
P2 -0.11 | -0.15 | 0.03 || -0.06 | -0.11 | 0.01
p3 0.03 | -0.02 | 0.04 | -0.01 | -0.04 | -0.05
P4 0.13 | 0.01 | 0.00 | 0.14 | 0.03 | -0.03
Ps 0.11 | 0.00 | -0.01 || 0.05 | 0.01 |-0.04

Table 8.6: Average Values for LAN environment

- Time Offset accumulation

server coleradoe andover cupertino

T (msecs) 1 10 20 1 10 20 1 10 20
{(secs) 108 | 1088 | 2165 || 108 | 1085 | 2167 || 108 | 1080 | 2155
U(msec) 240 | 3.99 | 4.56 || 2.40 | 4.00 | 4.58 || 2.40 | 4.01 | 4.59
(U — U)?(msecs) || 0.15 | 0.18 | 0.17 || 0.17 | 0.19 | 0.18 || 0.16 | 0.18 0.17
V(ppm) 222 | 1.17 | 097 || 2.23 | 1.16 | 0.92 || 2.14 | 1.17 | 0.95
V(V = V)2(ppm) || 0.29 | 0.65 | 0.96 || 0.35 | 0.23 | 0.01 || 0.34 | 0.95 | 0.79
7(ppm) -9.61 | -9.44 | -8.76 || -9.65 | -9.57 | -9.59 || -9.90 | -10.60 | -10.50
(y —7)*(ppm) | 3.41 | 5.01 |12.97 || 3.05 | 2.07 | 1.58 || 6.70 | 15.87 | 12.86
M -0.01 | -0.00 | 0.03 | -0.00 | -0.00 |-0.00 |[ -0.01 | -0.05 | -0.07

(M —M)? 092 | 0.99 | 1.12 | 0.93 | 092 | 0.95 || 0.91 | 1.04 | 1.13

o1 0.07 | 0.00 | 0.14 | 0.06 | -0.04 | -0.11 || 0.09 | 0.12 | 0.19

P2 0.03 | -0.06 | 0.12 | 0.04 | -0.08 | -0.09 || 0.05 | 0.07 | 0.20

P 0.04 |-0.08| 0.07 || -0.02 | -0.03 | 0.00 | 0.02 | 0.03 | 0.17

pa 0.00 | -0.07 | 0.10 || -0.02 | -0.08 | -0.03 || 0.03 | 0.05 | 0.17

Ps -0.02 | -0.03 | 0.06 || -0.02 | -0.08 | -0.09 | 0.00 | 0.14 | 0.24

Table 8.7: Average Values for WAN environment - Time Offset accumulation




In general, time offset estimates are better than frequency offset estimates. The filter time
offset error estimate is very small and stable.

On the other hand, both the filter frequency offset estimate and its error are more less stable.

The estimated frequency drift i1s negligible for the length of traces available but its standard
deviation comparatively large. Thus, the influence and importance of the frequency drift
cannot be fully assessed in this study.

We have also found that the frequency offset estimate can fluctuate between packet bursts.
Thus, there is a high frequency noise component in the frequency offset estimate that the
Kalman filter cannot remove. Since the effect of the frequency drift is negligible for the time
scales considered, we should expect a frequency offset estimate with no short term fuctua-
tions. We can remove the frequency offset estimate short term fluctuations by performing
a moving average or a regression over consecutive frequency offset estimates. In practice
we have found that the combination of 5 consecutive values normally brings the first few
correlation coeflicients above 0.95.

Finally, the time offset accumulation criteria for inter burst time seems to provide a more
consistent performance accross all the traces. Its values would probably be less variable if
the frequency estimates were improved.

8.8.1 LAN Performance and Optimality

1. The time offset error is in all cases smaller than the noise in (0,),>1. It is also very
stable. However, for T larger than 1000 secs, U < d. Thus, for average inter burst
times above 1000 secs, the usage of the filter solely for time offset estimation cannot be
justified. In this case the usefulness of the filter relies on the frequency offset estimate
which provides the means for generating accurate time between packet bursts.

2. The frequency offset error becomes more stable as the interpacket times grows. It is
always below the noise in (07,),>1.

3. According to our stability criteria, the frequency offset is unstable and fluctuates more
than expected.

4. Optimality: The filter shows excellent tracking in all cases (M = 0). The empirical
standard deviation of (ﬂ’fn)ngl seems to be a bit low, indicating a possible noise pa-
rameter overestimation. The correlation coefficients of (M, ),>1 are for the most part
close to 0, indicating that the filter is very efficient at extracting information from the
noise.

8.3.2 WAN Performance and Optimality

1. The time offset error is in all cases smaller than the noise in (©,),5:. It is also very
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stable. The average time offset error I is well below a tenth the half round trip delay

d.

[ Sv]

. The frequency offset error becomes more stable as the interpacket times grows. It is
always below the noise in (©/,)>1.

3. According to our stability criteria, the frequency offset is unstable and fluctuates more
than expected.

4. Optimality: The filter shows excellent tracking in all cases (M = 0). The empirical
standard deviation of (M, )n>1 1s also very close to unity, indicating good noise param-
eter estimates. The correlation coefficients of (M, )n>1 are for the most part close to
0, indicating that the filter is very efficient at extracting information from the noise.

9. Conclusions and Future Work

The Kalman filter provides time offset estimates with very low errors. The frequency offset
estimates have also very low errors. However, they fluctuate more than expected. This
fluctuation can be reduced by choosing interpacket times large enough and combining con-
secutive estimates with a moving average or a linear regression. The a posteriory checks
performed on the data show that the Kalman filter performs very close to optimality in
practically all the cases.

There are some areas of future work.

1. Perform [urther checks on the assumptions on v and e.
2. Is the drift needed?

3. Filter performance on longer runs.

4

. Filter performance in real time.

on

Refinement and further checks on the empirical algorithm for ¢.

6. Test the filter performance with more precise timestamping, especially in LAN envi-
ronments.

7. Full integration with clock selection and combination.
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A. Appendix: Kalman Recursions in Scalar Form

At time A, 4, we have,

i T
Tnyl — h} Zn+1 )
2 x4
U'n,-l-l = h Criih,
~ T 5
Un+1 = hg Z?H—l 3

Vrf+1 = hgcnﬂhz,
Tn+l = h?cn—i—l h; = hzTCn,-l—l hy,

where hy = (0, 1).
A.1 Scalar Recursions

If 22 = v, + €%, the offset updates in scalar form are,
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