
Fourier Volume Rendering

final version

Barthold B.A. Lichtenbelt

Hewlett Packard Laboratories

Visual Computing Department

1501 Page Mill Road

Palo Alto, CA 94304

United States

phone : +1-415-8574068

fax : +1-415-8523791

email : barthold@hpl.hp.com

Keywords: Fourier, volume rendering, graphics

November 8, 1995

Internal Accession Date Only

Abstract

In this report a direct volume rendering technique called Fourier Volume Rendering (FVR)
is explored in depth. FVR computes projection of a three dimensional dataset. Conven-
tional volume rendering methods have a complexity of O(N3). FVR has a complexity of
O(N2logN) and thus can be computed much faster.

The mathematical theory behind FVR is explained first. Then FVR itself is discussed, and
an example is given. The reason why the Hartley transform was chosen instead of the
Fourier transform is explained. Finally a possible real time implemention in hardware
is discussed. The last chapter handles about a completely different subject. It is about
coronary artery extraction out of a three dimensional dataset of the heart obtained by
MRI.

Images computed using FVR look like X-ray pictures. FVR is a fast method for computing
projections. A hardware implementation mainly concerns a resampling chip that can
resample a plane out of a three dimensional dataset in 150 ns. This chip should use a
resampling filter of size 5� 5� 5, which needs 64 voxels to compute one sample point.

i

List of Abbreviations

1-D One Dimensional

2-D Two Dimensional

3-D Three Dimensional

CAT Computer Aided Tomography

DFT Discrete Fourier Transform

DHT Discrete Hartley Transform

FFT Fast Fourier Transform

FHT Fast Hartley Transform

FVR Fourier Volume Rendering

MIP Maximum Intensity Projection

MRI Magnetic Resonance Imaging

RAM Random Access Memory

VLSI Very Large Scale Integration

ii

List of Figures

1.1 Five different volume visualization methods. The lower left image was segmented
by hand. The lower middle image is the only image rendered with a surface ren-
dering technique. 2

2.1 Periodicity of the discrete Fourier transform. (a) Showing back to back half periods
in the interval [0; N � 1]. (b) Shifted spectrum showing a full period in the same
interval. 8

2.2 Sampling a continuous function. (a) Sampling in time. (b) The frequency con-
sequence of sampling.(c) Sampling in time, but the sampling is too slow. (d) The
frequency result of sampling at a too slow rate. The copies of H(f) overlap each
other to form G(f). 11

2.3 Projection of a 2-D object . 14

2.4 The frequency plane (U1; U2) . 15

3.1 Three sinusoidal patterns . 25

4.1 The 3-D spatial function x(u1; u2; u3). The viewing direction is along the û1 axis. . 28

4.2 The 3-D frequency representation X(U1; U2; U3). 28

4.3 The 2-D frequency cut-plane P�(Û2; Û3) . 29

4.4 The 2-D spatial projection p�(û2; û3) . 30

4.5 Linear interpolation filter. (a) Spatial domain. P1 and P2 are known grid point
values. Pint is estimated using P1 and P2. (b) Frequency consequence of linear
interpolation in the spatial domain. 32

4.6 Aliasing. Left: tri-linear interpolation, middle: POCS 3 � 3 � 3 right: POCS
5� 5� 5 . 34

4.7 Left: Attenuation of outer regions. Right: Compensated for by using spatial pre-
multiplication . 35

iii

4.8 (a) Spatial premultiplication function for the linear interpolation function. (b)
Spatial premultiplication can be seen as multiplying the transform of the original
resampling function with an infinitely periodic version of the function in (a). (c)
Resultant spatial function. 35

4.9 MIP projection. Left: Image rendered by FVR. Right: Same image rendered by a
conventional MIP ray caster . 37

4.10 Block diagram of a hardware FVR engine. 39

4.11 Fetching 8 voxels (A-H) in parallel . 41

4.12 (a) A n = 4� 4� 4 cube has side lengths of 3. (b) f is the length of a ray through
one voxel sub cube . 42

4.13 Voxels that have to be fetched from memory if a resampling step in x, xy or xyz is
taken and a voxel sub cube boundary is crossed. (a) A 4 � 4 � 4 set of voxels. (b)
16 new voxels have to be fetched from memory when a step in x only is taken. (c)
28 new voxels have to be fetched when a step of one voxel sub cube in x and y is
taken. (c) 40 new voxels have to be fetched when a step in all three directions is
taken. 43

4.14 Hermitian property of the FFT for a 2-D dataset. The points in the upper half are
point symmetrical with their complex conjugates in the lower half. The origin is
in the middle. 45

4.15 Results of storing the 3-D forward Hartley transform in 8, 12 and 16 bits 47

iv

Contents

1 Introduction 1

2 Theory of Fourier Volume Rendering 4

2.1 The Fourier transform . 4

2.1.1 The continuous Fourier transform . 4

2.1.2 Fourier transform of discretely sampled data 5

2.1.3 The discrete Fourier transform . 6

2.1.4 Discrete convolution . 9

2.1.5 Sampling and aliasing . 10

2.1.6 Scaling . 12

2.1.7 The 2-D and 3-D Fourier transform . 12

2.2 Fourier Projection Slice Theorem . 13

2.2.1 The slice theorem . 14

2.3 The Hartley transform . 16

2.3.1 Hartley Projection Slice Theorem . 18

2.3.2 The discrete Hartley transform . 18

2.3.3 Properties of the discrete Hartley transform 19

2.3.4 The 2-D and 3-D discrete Hartley transform 21

2.4 Conclusions . 23

3 Processing images in frequency space 24

3.1 Spatial frequency . 24

v

3.2 Interpretation of frequency transformed images 24

3.3 Spatial convolution in the frequency domain 25

4 Fourier Volume Rendering 27

4.1 Theory and example . 27

4.2 Depth cueing . 29

4.3 Resampling in the spatial domain . 31

4.4 Resampling in the frequency domain . 33

4.5 Spatial premultiplication . 35

4.6 Zero padding of the 3D spatial dataset . 36

4.7 Maximum intensity projection with FVR . 36

4.8 Software implementation of FVR . 37

4.8.1 Features . 38

4.9 Hardware implementation considerations . 38

4.9.1 The interpolation unit and memory access 40

4.9.2 The inverse discrete Hartley or Fourier transform 43

4.9.2.1 2-D inverse Hartley transform using a FFT chip 44

4.9.2.2 2-D inverse Fourier transform using a FFT chip 45

4.9.2.3 Conclusions . 46

4.9.3 Specifications reconsideration . 47

4.10 Rendering times . 48

4.11 Conclusions and recommendations . 49

A Images 50

vi

1 Introduction

Volume visualization is the term used for all possible ways to represent a three dimen-
sional dataset on a two dimensional plane, e.g. a computer display. It is concerned with
the representation, manipulation, and rendering of volumetric data. Volume visualiza-
tion algorithms can be divided into two main categories: Surface rendering methods and
volume rendering methods.

Volume rendering is the term used for the conversion of three dimensional datasets into
two dimensional images, without use of an intermediate geometrical description of the
three dimensional dataset, as used in traditional computer graphics. Traditional com-
puter graphics represent three dimensional objects as geometric surfaces and edges, ap-
proximated by polygon and lines. This is called surface rendering. A popular surface
rendering algorithm is Marching Cubes, first published in [10].

Volume rendering is a direct display of the voxels in the three dimensional dataset. It
does not assume any existing structure in the dataset, as surface rendering methods do.
Any part of the dataset, including interior parts, normally not visible, can be viewed with
volume rendering. It does not require substantional preprocessing, although relevant
components in the dataset should be identified during a process called classification. See
also [8].

Surface rendering assumes some structure in the dataset to be viewed. Thus one is ren-
dering a representation of this dataset instead of the data itself. By trying to find some
structure in the dataset, errors might be introduced. A surface is either present or it is
not. This binary classification scheme might display a surface where there is none, or vice
versa. For e.g. medical applications this is not desirable. Doctors want to view the raw
data itself, and not some representation. This is why direct volume rendering methods
often are used in medical imaging.

Volume rendering methods can be further divided into a screen space approach, and an ob-
ject space approach. For the screen space approach a ray is cast into the three dimensional
dataset, and samples along the ray are taken at evenly spaced intervals. These samples
are composited into a pixel value by applying some function to those samples. See again
[8]. In the object space approach the three dimensional dataset is traversed either front to
back or back to front, and each sample is used to compose the final pixel value.

A problem with volume rendering in general is its complexity of O(N3) for a N � N �
N dataset, since the whole three dimensional dataset has to be traversed. Some smart
algorithms use the fact that a typical dataset consist of a lot of empty space, or stops

1

processing a cast ray when the maximum pixel value has been reached before the ray
exits the dataset. The drawback is that those algorithms depend on the structure of the
three dimensional dataset, and their complexity still remains O(N3). Typical rendering
times on a fast graphics workstation using the above optimizations for a 256x256x225
dataset range from 1-4 seconds, see [7]. In Section 4.10 more benchmarks are given.

This report discusses one certain volume rendering algorithm, called Fourier Volume Ren-
dering, first published in [12]. This algorithm reduces the complexity to O(N2logN).
Fourier Volume Rendering computes projections of the three dimensional dataset. This
is done by first transforming the dataset into the frequency domain by either a 3-D Fast
Fourier Transform (FFT) or the Fast Hartley Transform (FHT). See Chapter 2. Then projec-
tion images can be quickly generated at any viewing angle by resampling along a plane
perpendicular to the viewing direction, and taking the inverse 2-D transform of this re-
sampled plane. The (computing intensive) 3-D FFT has to be evaluated only once. After
that is done only the resampling step and the inverse 2-D FFT have to be performed to
generate a projection.

 ���

Figure 1.1: Five different volume visualization methods. The lower left image was segmented by
hand. The lower middle image is the only image rendered with a surface rendering technique.

For more information about volume visualization see the excellent tutorial [6], which

2

provides many hours of reading pleasure. To get an idea of what volume visualization is,
see Figure 1.1.

Raycasting is the name of the method briefly mentioned before. A ray is cast through the
dataset, and samples are taken along the ray. Those samples are composited into a pixel
value and projected on the screen. Classification of the dataset is important. It determines
what will be viewed. In Figure 1.1 upper left image the dataset was classified so that the
skin is visible. In the lower left image the data was classified so that the interior of the
skull is made visible. On top of this different parts of the brains were segmented by
hand. Note that the lower left image was obtained from a different dataset. The other five
images were all obtained using the same dataset.

The rest of this report will discuss Fourier Volume Rendering, of which an example is
shown in the middle upper image.

Maximum Intensity Projection is very similar to raycasting. Now only the maximum
sample value found on one ray is converted into a pixel value and displayed to the screen.

The Marching Cubes algorithm is a surface rendering method. It first divides the skin
into small polygons which then are rendered and displayed to the screen.

The lower right image was obtained by using another direct volume rendering method
called splatting. It is an object space front to back algorithm. It is called splatting because
it can be seen as throwing a voxel at the screen. The contribution to the final image will
be high at the center of the impact and will drop off further away from it. Splatting was
first published in [20].

3

2 Theory of Fourier Volume Rendering

This chapter discusses the Fourier and Hartley transforms and their properties, as far as
they are relevant to understand Fourier Volume Rendering (FVR), which is discussed in
the next chapter. This is by no means meant to be a complete discussion of Fourier and
Hartley transforms. See [1], [18], [4], [2] and [16] for an in depth discussion.

A physical process can be described either in the time domain or in the frequency domain.
In the time domain the process is described as some quantity h as a function of the time,
e.g. h(t). In the frequency domain the same process is described as its amplitude H as
a function of the frequency f , e.g. H(f). H in general will be complex, indicating phase
too.

2.1 The Fourier transform

Fourier’s theorem states that it is possible to form a function h(t) as a summation of a
series of sine and cosine terms of increasing frequency. The Fourier transform of the
function h(t) is written H(f) and describes the amount of each frequency term that must
be added together to make h(t).

2.1.1 The continuous Fourier transform

h(t) and H(f) can be thought of as two different representations of the same function.
One goes back and forth between these representations by means of the Fourier transform
equations:

H(f) =
Z
1

�1

h(t)e2�iftdt (2.1)

h(t) =
Z
1

�1

H(f)e�2�iftdf (2.2)

If t is measured in seconds then f is measured in cycles per second, or Hertz. Likewise,
if t is measured in meters then f is measured in cycles per meters. The equations 2.1 and

4

2.2 are linear equations. Thus the Fourier transform is a linear operation. That means that
e.g. the transform of the sum of two functions is equal to the sum of the transforms of
each function.

A shorter notation for the pair 2.1 and 2.2 is:

h(t), H(f) (2.3)

Some basic knowledge by the reader of the Fourier transform is assumed. The properties
of the Fourier transform used in this report are described in the subsequent sections. For
more information about the Fourier transform see [16], [18], [4] and [1].

One important property used in Fourier Volume Rendering is the Convolution Theorem. it
states that:

g � h, G(f)H(f) (2.4)

or in words, the Fourier transform of the convolution of two functions g and f described
in the time domain is equal to the product of their individual Fourier transforms G(f)

and H(f).

2.1.2 Fourier transform of discretely sampled data

Often the continuous function h(t) has to be processed by a computer. In that case h(t) is
being sampled. In most cases that will be done at evenly spaced intervals in time. let �
denote the time interval between consecutive samples, and n the number of samples. The
sequence of sampled values then is:

hn = h(n�) n = : : : ;�3;�2;�1; 0; 1; 2; 3; : : : (2.5)

(1=�) is called the sampling rate. Related to the sampling rate is the Nyquist critical fre-
quency defined as:

fc �
1

2�
(2.6)

5

The Nyquist critical frequency is important for two reasons. The first reason is known as
the sampling theorem. This states that if a continuous function h(t) happens to be band-
width limited to frequencies smaller in magnitude than fc, i.e. H(f) = 0 8 j f j� fc, then
the function h(t) is completely determined by its samples hn as follows:

h(t) = �
1X

n=�1

hn
sin[2�fc(t� n�)]

�(t� n�)
(2.7)

This is quite a remarkable theorem. Fairly often one is dealing with a bandwidth limited
signal. E.g. the signal might have passed an amplifier with a known finite frequency
response. If this is the case it is possible to record the entire information content of the
signal h(t) by sampling at a rate (1=�) equal to twice the maximum frequency fm passed
by the amplifier. This can be seen by realizing that:

2fm =
1

�
(2.8)

fm =
1

2�
= fc (2.9)

When the signal h(t) is not bandwidth limited to fc and it is sampled at the sampling rate
1=�, the (undesired) effect of aliasing comes into focus. This is the second reason why
the Nyquist critical frequency is important. Aliasing means that all of the power spectral
density that lies outside of the frequency range �fc < f < fc is moved into that range.
More about aliasing is explained after the next section. See also [16] page 113-115.

2.1.3 The discrete Fourier transform

Suppose h(t) is sampled with N samples. Lets call these N points hk.

hk � h(tk); tk � k�; k = 0; 1; 2; : : : ; N � 1 (2.10)

Now the question is what is the Fourier transform of hk? Or differently phrased, can the
Fourier transform of h(t) using hk be estimated? For simplicity it is assumed that N is
even. Now try to estimate H(f) at the following discrete points fn in the range �fc to fc.

fn =
n

N�
; n = �

N

2
; : : : ;

N

2
(2.11)

6

Note that the extreme values of n exactly correspond to the absolute value of the Nyquist
critical frequency. By using 2.1, 2.10 and 2.11 the following is found:

H(fn) =
Z
1

�1

h(t)e2�ifntdt �
N�1X
k=0

�hke
2�ifntk = �

N�1X
k=0

hke
2�ikn=N (2.12)

where the integral in 2.12 is approximated by a discrete sum. The final summation in 2.12
is called the Discrete Fourier transform (DFT) of hk. It is called Hn:

Hn �
N�1X
k=0

hke
2�ikn=N (2.13)

Note that Hn is independent of �, the sampling interval. So in short the relation between
the continuous time Fourier transform and its discrete counterpart is given by:

H(fn) � �Hn (2.14)

Note that in Equation 2.11 n ranges from �N=2 to N=2. This is not a problem, because
2.13 is periodic in n with period N . This means that Hn = HN+n and that H�n = HN�n.
This can be seen by considering that:

H�n =
N�1X
k=0

hke
�2�ikn=N (2.15)

HN�n =
N�1X
k=0

hke
2�ik(N�n)=N =

N�1X
k=0

hke
�2�ikn=N (2.16)

and because

e2�ik = 1 k = 0; 1; : : : ; N � 1 (2.17)

it follows that

H�n = HN�n (2.18)

7

0 N/2-N/2 N-1 N

H n

0 N/2-N/2 N-1

H n

(a)

(b)

one period

one period

n

n

Figure 2.1: Periodicity of the discrete Fourier transform. (a) Showing back to back half periods in
the interval [0; N � 1]. (b) Shifted spectrum showing a full period in the same interval.

Because 2.13 is periodic in n with period N , n can as well range from 0 to N � 1 instead
of from �N=2 to N=2. See Figure 2.1(a). This is equivalent to shifting the window with
which Hn is looked at with half a period. This is useful because now k in 2.10 as well as n
in 2.13 vary exactly over the same range, and the mapping from the N numbers hk to the
N numbers in Hn is manifest. There is one pitfall though. Because of the shift with half
a period, the frequencies corresponding to n in 2.13 no longer range from �fc to fc. The
frequency f = 0 now corresponds to n = 0. Positive frequencies in the range 0 < f < fc
correspond to 0 < n < N=2, while negative frequencies �fc < f < 0 correspond to
N=2 < n < N . The value n = N=2 corresponds to both f = fc and f = �fc. See
Figure 2.1(a). This is not very convenient. To overcome this and display a full period,
it is necessary to move the origin of the transform to the point n = N=2, as is shown in
Figure 2.1(b). This can be done by multiplying hk by (�1)k prior to taking the transform.
(This is the frequency shift property, see [18] page 112 and [4] page 95)

The discrete Fourier transform of a real function is hermitian. This means that the real
part of the transform is even and the imaginary part is odd. There is a redundancy of a
factor of two in the DFT:

H�

N�n =
N�1X
k=0

hke
�2�ik(N�n)=N =

N�1X
k=0

hke
2�ikn=Ne�2�ik = Hn (2.19)

8

Thus by storing only N=2 complex numbers the DFT of N real numbers is completely
defined.

The Inverse Discrete Fourier transform is defined as:

hk =
1

N

N�1X
n=0

Hne
�2�ikn=N (2.20)

2.1.4 Discrete convolution

In formula 2.4 the convolution theorem for the continuous case was defined. Here the
discrete convolution theorem will be defined. If a signal sj is periodic with period N , so it
is completely determined by its values s0; : : : ; sN�1, then its discrete convolution with a
function rk of finite duration N has the following Fourier transform relationship:

sj � rj =
N=2X

k=�N=2+1

sj�krk , SnRn (2.21)

Sn and Rn are the discrete Fourier transforms of the values sj (j = 0; : : : ; N � 1) and
rk (k = 0; : : : ; N � 1) conform 2.13. Note that these values of j and k are the same as
in Equation 2.21, where they run from �N=2 + 1; : : : ; N=2, but shifted as described in
Paragraph 2.1.3.

The discrete convolution theorem assumes that the two signals are periodic and that those
two signals are of the same length. That is often not the case. Real data is often not
periodic, and the constraint that the two functions must be of the same length is not a
convenient one. The latter case is easily overcome. If rk is of length M smaller than N ,
simply extend rk to length N by padding it with zeros. I.e. set rk = 0 for M=2 � k � N=2

and for �N=2 � k � �M=2 + 1.

To be able to use the discrete convolution theorem on non periodic signals as well, the
following preprocessing to the data sj has to be done. Pad the data sj with a number
of zeros on one end equal to the maximum positive duration or negative duration of the
function rk, whichever is larger. (For a symmetric function rk of duration M , one needs to
pad sj with M=2 zeros.) Combining this operation with the padding of rk will effectively
make it possible to use the discrete convolution theorem for non periodic data as well. In
[16] page 541 this is explained in more detail.

9

2.1.5 Sampling and aliasing

Let the signal h(t) have the Fourier transform H(f). h(t) is being sampled with period �.
The resulting discrete signal is g(k).

h(t), H(f) (2.22)

g(k) = �h(k�), G(ejf�) (2.23)

G is the frequency spectrum of the sampled h(t). It can be shown that G is of the following
form (see [18] page 113 and 114):

G(ejf�) =
1X

n=�1

H(jf + jnf0) (2.24)

f0 is the sampling rate 1=�. Equation 2.24 and Figure 2.2 show the consequence of sam-
pling. Sampling can be seen as multiplying the original continuous function with a series
of delta functions. This is shown in Figure 2.2(a). The frequency equivalent of sampling
in time is shown in Figure 2.2(b). The frequency transform of the original continuous
function is convolved with the transform of the series of delta functions (which again is
a series of delta functions). The result is that the original frequency spectrum H(f) is
repeated infinitely. The frequency axis is cut into strips of length f0, which then are su-
perimposed to form G. Note that H(f) can be reconstructed from G(f) by multiplying
G(f) with a block function of width f0.

If a signal, which is not bandwidth limited to the Nyquist frequency fc, is being sampled,
aliasing will occur. Aliasing means that power outside the range �fc < f < fc is moved
into that range. This is not desirable. Or in other words, if f is not bandwidth limited to
fc = (f0=2) then frequencies larger than fc will be folded back into the range�fc < f < fc.
One solution for this problem is to low pass filter the original signal h(t) before the actual
sampling takes place.

Aliasing also occurs when the sampling of h(t) is not done quickly enough, although
H(f) is bandwidth limited. The H(f)s that form G(f) will in this case partly overlap each
other. See Figure 2.2(c) and 2.2(d) for an illustration of this effect. H(f) no longer can be
reconstructed from G(f).

10

(a) (b)

X

=

*

=

h(t) H(f)

g(k)

G(f)

X

=

*

=

h(t) H(f)

g(k)

G(f)

(c) (d)

Figure 2.2: Sampling a continuous function. (a) Sampling in time. (b) The frequency conse-
quence of sampling.(c) Sampling in time, but the sampling is too slow. (d) The frequency result of
sampling at a too slow rate. The copies of H(f) overlap each other to form G(f).11

2.1.6 Scaling

If hk has a discrete Fourier transform Hn then h�k has a discrete Fourier transform Hn

�
.

This can be seen by considering that:

N�1X
n=0

h�ke
2�ikn=N =

N�1X
n=0

h�ke
2�i�kn=�N = Hn

�
: (2.25)

This means that compression of the time (or spatial) scale means expansion of the fre-
quency scale and vice versa.

2.1.7 The 2-D and 3-D Fourier transform

The Fourier transform can be easily extended to the 2-D or 3-D case. In the 2-D case the
discrete Fourier transform is:

Hu;v =
M�1X
x=0

N�1X
y=0

hx;ye
2�i(ux=M+vy=N) (2.26)

for u = 0; 1; 2; : : : ;M � 1 and v = 0; 1; 2; : : : ; N � 1. The inverse transform is:

hx;y =
1

MN

M�1X
u=0

N�1X
v=0

Hu;ve
�2�i(ux=M+vy=N) (2.27)

for x = 0; 1; 2; : : : ;M � 1 and y = 0; 1; 2; : : : ; N � 1. The Equations 2.26 and 2.27 are the
most general case. Most of the time square images will be dealt with, i.e. M = N . This is
assumed for the rest of this report.

The 2-D and 3-D transform can be performed separately in each direction. For a 2-D image
for example, it would be possible to perform a 1-D Fourier transform on each horizontal
scan line of the image, storing the intermediate result, and then perform another 1-D
Fourier transform on the vertical scan-lines of the intermediate stored result.

The discrete Fourier transform in Equations 2.13 and 2.26 and the inverse in equations 2.20
and 2.27 are periodic with period N . For the 2-D case this means that:

12

Hu;v = Hu+N;v = Hu;v+N = Hu+N;v+N (2.28)
hx;y = hx+N;y = hx;y+N = hx+N;y+N (2.29)

This can be seen by substituting (u + N) and (v + N) in Equation 2.26, and the variables
(x+N) and (y +N) in Equation 2.27.

The same observations as for the 1-D discrete Fourier transform in section 2.1.3 holds for
the 2-D case. Again, to display one full period in the frequency domain just multiply hx;y
with (�1)x+y prior to taking the 2-D transform. See also Figure 2.1 and [4] page 95. u and
v then can run from 0 to N � 1, without mixing up the order in which the frequencies are
traversed. See also [4] pages 95-97 and [18] pages 105-106.

The 2-D and 3-D DFT of a real function are hermitian too, just like the 1-D DFT. That
means for the 2-D case that:

H�

�u;�v =
M�1X
x=0

N�1X
y=0

hx;ye
�2�i(�ux=M�vy=N) = Hu;v (2.30)

Which is the same as stating that H�u;�v = HN�u;N�v = H�

u;v . Something similar goes for
the inverse DFT:

h�
�x;�y =

1

MN

M�1X
u=0

N�1X
v=0

Hu;ve
2�i(�ux=M�vy=N) = hx;y (2.31)

Or, h�x;�y = hN�x;N�y = h�x;y .

2.2 Fourier Projection Slice Theorem

A projection is a mathematical operation, to be compared with taking a X-ray picture of a
three dimensional object. The resulting X-ray picture is a two dimensional image which
holds information about the density of the three dimensional object. See Figure 2.3.

The brick in the figure has three holes in it. If the holes where not to extend to the walls of
the brick, those holes would not be visible for a human observer. By making a projection
of the brick something can be said about its inner structure. The intensity of the projection
is less at those places where the X-rays go through the holes. This idea is used in Fourier
Volume Rendering.

13

u1 u1

2u

2u

projection

θp (u)1

θ
^

^

^

θ

Figure 2.3: Projection of a 2-D object

2.2.1 The slice theorem

For simplicity reasons the slice theorem will be discussed for the one-dimensional and
two-dimensional cases. Mathematically it is of course possible to consider projections of
any dimension.

In words the Fourier projection slice theorem tells us that the 1-D Fourier transform of a 1-D
projection of a 2-D object at an angle �, is a 1-D line across the 2-D Fourier transform of that 2-D
object, at the same angle �.

Let the brick in Figure 2.3 be described by the unknown density function x(u1; u2). By
defining:

û1 = u1 cos � + u2 sin � (2.32)
û2 = �u1 sin � + u2 cos � (2.33)

14

the projection of x(u1; u2) at angle � is (see also Figure 2.3):

p�(û1) =
Z
1

�1

x(u1; u2)dû2 =
Z
1

�1

x(û1 cos � � û2 sin �; û1 sin � + û2 cos �)dû2 (2.34)

If enough of these projections are made at different angles �, it is possible to use recon-
struction techniques to compute the 2-D density function x(u1; u2). One way to achieve
this is through the use of the Fourier Slice Theorem.

θ

1
Û

U
1

2
U

Figure 2.4: The frequency plane (U1; U2)

If x(u1; u2) has a 2-D Fourier transform X(U1; U2), the 1-D Fourier transform of p�(û1) will
exist. This transform is denoted by P�(Û1):

P�(Û1) =
Z
1

�1

p�(û1)e
2�iÛ1û1dû1 (2.35)

=
Z
1

�1

Z
1

�1

x(û1 cos � � û2 sin �; û1 sin � + û2 cos �)e
2�iÛ1û1dû2dû1 (2.36)

Or by using the normal coordinate system (u1; u2):

P�(Û1) =
Z
1

�1

Z
1

�1

x(u1; u2)e
2�iÛ1(u1 cos �+u2 sin �)du1du2 (2.37)

15

or

P�(Û1) = X(Û1 cos �; Û1 sin �) (2.38)

Equation 2.38 is known as the Fourier Projection Slice Theorem. It says that the Fourier
transform of the projection taken at an angle � is the 2-D Fourier transform of the un-
known x(u1; u2), i.e. X(U1; U2), evaluated along a line passing through the origin of the
(U1; U2) plane and making an angle � with the U1 axis. See also Figure 2.4.

From Equation 2.38 it is seen that knowledge of several projections of an object provides
knowledge of the 2-D Fourier transform along lines in the Fourier plane. The problem of
reconstructing the wanted x(u1; u2) (or its Fourier transform X(U1; U2)) is thus equivalent
to interpolating the whole 2-D Fourier transform from these 1-D samples. See also [2]
pages 363-383 and [9] pages 42-49. This technique for example is used in Computer Aided
Tomographic (CAT) scanners and is called tomographic reconstruction.

2.3 The Hartley transform

In 1942 R.V.L. Hartley presented a transform very similar to the Fourier transform. Given
a real function h(t) its Hartley transform will be real too. The Hartley transform equations
are:

H(f) =
Z
1

�1

h(t)(cos ft+ sin ft)dt (2.39)

h(t) =
Z
1

�1

H(f)(cos ft + sin ft)df (2.40)

Compare this to the Fourier transform:

S(f) =
Z
1

�1

s(t)(cos ft+ i sin ft)dt (2.41)

s(t) =
Z
1

�1

S(f)(cos ft� i sin ft)df (2.42)

Let H(f) = E(f)+O(f), where E(f) and O(f) are the even and odd parts of H(f) respec-
tively:

16

E(f) =
H(f) +H(�f)

2
=
Z
1

�1

h(t) cos ftdt (2.43)

O(f) =
H(f)�H(�f)

2
=
Z
1

�1

h(t) sin ftdt (2.44)

This is an interesting result. Given the Hartley transform H(f) the Fourier transform S(f)

can be formed by adding E(f) + iO(f).

S(f) = E(f) + iO(f) (2.45)

The reverse is true too. Given the Fourier transform S(f) H(f) can be obtained by:

H(f) = Re[S(f)] + Im[S(f)] (2.46)

For the reverse transforms something very similar can be done. Let h(t) = e(t) + o(t),
where e(t) and o(t) are the even and odd parts of h(t) respectively:

e(t) =
h(t) + h(�t)

2
=
Z
1

�1

H(f) cos ftdf (2.47)

o(t) =
h(t)� h(�t)

2
=
Z
1

�1

H(f) sin ftdf (2.48)

Given the inverse Hartley transform h(t) the inverse Fourier transform s(t) can be readily
formed by:

s(t) = e(t)� io(t) (2.49)

Again, the reverse is true too. Given the inverse Fourier transform f(t) the inverse Hartley
transform can be obtained by:

h(t) = Re[s(t)]� Im[s(t)] (2.50)

17

2.3.1 Hartley Projection Slice Theorem

The Slice theorem from holds for the Hartley transform as well. That will be proved here.
Refer to section 2.2.1 also.

The Hartley transform of the projection p�(û1) is:

P�(Û1) =
Z
1

�1

p�(û1)cas(2�Û1û1)dû1 (2.51)

=
Z
1

�1

Z
1

�1

x(û1 cos � � û2 sin �; û1 sin � + û2 cos �) �

cas(2�Û1û1)dû2dû1 (2.52)

Where cas(x) = sin(x) + cos(x), an abbreviation adopted from Hartley. Equation 2.34 is
used to get to this result. Or by using the normal coordinate system (u1; u2):

P�(Û1) =
Z
1

�1

Z
1

�1

x(u1; u2)cas(2�Û1(u1 cos � + u2 sin �))du1du2 (2.53)

or

P�(Û1) = H(Û1 cos �; Û1 sin �) (2.54)

Where H(U1; U2) the Hartley transform of x(u1; u2) is. Equation 2.54 is the Hartley Projec-
tion Slice Theorem.

2.3.2 The discrete Hartley transform

The discrete Hartley transform is defined by:

Hn =
N�1X
k=0

hkcas(2�nk=N) (2.55)

The inverse discrete Hartley transform is almost the same:

hk =
1

N

N�1X
n=0

Hncas(2�nk=N) (2.56)

18

As for the continuous case an even and odd part can be defined, and the discrete Fourier
transform formed out of those:

Hn = On + En (2.57)

En =
Hn +HN�n

2
(2.58)

On =
Hn �HN�n

2
(2.59)

These relations can be verified by substituting in Equation 2.55. The discrete Fourier
transform is then given by:

Sn = En + iOn (2.60)

2.3.3 Properties of the discrete Hartley transform

The discrete Hartley transform (DHT) is used in the actual software FVR implementation.
Only the DHT properties important for the implementation are discussed in this section.
These are:

� periodicity

� shifting

� convolution theorem

� scaling

The following relationship will be used to prove some of the theorems:

cas(a+ b) = cos(a+ b) + sin(a+ b) (2.61)
= cos a cos b� sin a sin b+ sin a cos b+ cos a sin b (2.62)
= fcosa+ sin ag cos b+ fcos a� sin ag sin b (2.63)
= cas(a) cos b+ fcos a+ sin�ag sin b (2.64)
= cas(a) cos b+ cas(�a) sin b (2.65)

19

The DHT is periodic in N :

HN+n =
N�1X
k=0

hkcas(2�(N + n)k=N) (2.66)

=
N�1X
k=0

hkcas(2�k + 2�nk=N) (2.67)

=
N�1X
k=0

hkcas(2�nk=N) = Hn (2.68)

The last step was derived by using Equation 2.65.

If hk has a DHT Hn then hk�a has a DHT of Hn cos(2�na=N) +H�n sin(2�na=N). Proof:

DHT of hk�a =
N�1X
k=0

hk�acas(2�nk=N) (2.69)

=
N�1�aX
k=�a

hkcas(2�n(k + a)=N) (2.70)

=
N�1�aX
k=�a

hkcas(2�nk=N) cos(2�na=N) +

N�1�aX
k=�a

hkcas(�2�nk=N) sin(2�na=N) (2.71)

=
N�1X
k=0

hk�acas(2�n(k � a)=N) cos(2�na=N) +

N�1X
k=0

hk�acas(�2�n(k � a)=N) sin(2�na=N) (2.72)

= Hn cos(2�na=N) +H�n sin(2�na=N) (2.73)

This is the shifting theorem. This theorem is needed to prove the convolution thereom. If
fk is the convolution of gk with hk, i.e.:

fk � gk � hk =
N�1X
l=0

glhk�l (2.74)

20

then Fn = HnEn + H�nOn. Fn is the DHT of fk, En and On are the even and odd part of
the DHT of gk and Hn is the DHT of hk. Proof:

DHT of fk =
N�1X
k=0

N�1X
l=0

glhk�lcas(2�nk=N) (2.75)

=
N�1X
l=0

gl

N�1X
k=0

hk�lcas(2�nk=N) (2.76)

=
N�1X
l=0

glfHn cos(2�nl=N) +H�n sin(2�nl=N)g (2.77)

= Hn

N�1X
l=0

gl cos(2�nl=N) +H�n

N�1X
l=0

gl sin(2�nl=N) (2.78)

= HnEn +H�nOn (2.79)

This is not quite the same as the convolution theorem for the Fourier transform. But in
a lot of applications, and also in FVR, at least one function used in the convolution is
even. In that case On is zero and the convolution theorem simplifies to Fn = HnGn, which
is of the same form as its Fourier transform counterpart. For image processing in two
dimensions exactly the same procedure is available.

If hk has a discrete Hartley transform Hn then h�k has a discrete Hartley transform Hn

�
.

This can be seen by:

Hn

�
=

N�1X
k=0

hxcas(2�xn=�N) x = �k (2.80)

This means that compression of the time (or spatial) scale means expansion of the fre-
quency scale and vice versa.

2.3.4 The 2-D and 3-D discrete Hartley transform

The discrete Hartley transform can be easily extended to the 2-D or 3-D case, similar to
the discrete Fourier transform. The 2-D DHT of an image of sizeM�N results in an array
of the same size of real numbers. The 2-D DHT is:

Hu;v =
M�1X
x=0

N�1X
y=0

hx;ycas[2�(ux=M + vy=N)] (2.81)

21

for u = 0; 1; 2; : : : ;M � 1 and v = 0; 1; 2; : : : ; N � 1. The inverse transform is:

hx;y =
1

MN

M�1X
u=0

N�1X
v=0

Hu;vcas[2�(ux=M + vy=N)] (2.82)

for x = 0; 1; 2; : : : ;M � 1 and y = 0; 1; 2; : : : ; N � 1.

For the 2-D DHT similar relationships as for the 1-D DHT and DFT can be derived. One
relation will be given here, as it is needed for FVR. Let hx;y = ex;y + ox;y , where ex;y and
ox;y are the even and odd parts of hx;y respectively.

ex;y =
hx;y + h�x;�y

2
=

1

MN

M�1X
u=0

N�1X
v=0

Hu;vcos[2�(ux=M + vy=N)] (2.83)

ox;y =
hx;y � h�x;�y

2
=

1

MN

M�1X
u=0

N�1X
v=0

Hu;vsin[2�(ux=M + vy=N)] (2.84)

Then the 2-D inverse DFT is given by:

sx;y = ex;y � iox;y (2.85)

Similarly the inverse DHT is given by:

hx;y = Re[sx;y]� Im[sx;y] (2.86)

Note that the 2-D DHT is not separable in two 1-D DHTs, as can be done for the DFT. A
2-D DFT is performed by calling a succession of one dimensional DFTs. First one trans-
forms all the rows using the kernel ei2�ux=M and then transforms column by column us-
ing ei2�vy=N . The results amount to transforming with the product kernel ei2�(ux=M+vy=N),
which is the 2-D DFT kernel, see Equation 2.26. However the kernel cas[2�(ux=M+vy=N)]

is not separable in a product of factors. In [17] and [14] an elegant solution to this problem
is given. Refer to [1] Chapter 19 and Chapter 20 for more information on the DHT and for
a software implementation of the Fast Hartley transform.

22

2.4 Conclusions

The Fourier Slice Theorem tells us that the Fourier transform of a projection of an object
equals to a slice out of the Fourier transform of that object itself. The Slice Theorem also
holds for the Hartley transform.

Transforming an array of real values using the Hartley transform results in an array of
real numbers, transforming the same array using the Fourier transform in general results
in a set of complex numbers. This property of the Hartley transform is very useful when
dealing with real input data, as is the case for Fourier Volume Rendering.

For each Fourier transform theorem there is an equivalent Hartley one, but it is not always
of the same form.

23

3 Processing images in frequency space

Sometimes it is easier, or less computing intensive, to perform certain filtering operation
on the frequency transform of an image, instead of on the spatial image itself. This chapter
discusses some aspects of operations in the 2-D frequency domain, and will try to make
the reader more comfortable with interpretating 2-D frequency transformed images.

3.1 Spatial frequency

In a 1-D signal (e.g. audio) high frequencies occur when the signal is fluctuating fast, and
low frequencies occur when it is fluctuating slowly. In the 2-D case (e.g. an image) there is
an equivalent, called spatial frequency. high spatial frequencies occur when the difference
in pixel-value of two neighboring pixels is large, and low spatial frequencies occur when
the difference is small. So e.g. an edge in an image will consist of high frequencies because
there is a large difference between pixel values on opposite sides of the edge (compare this
to a 1-D step-function which contains high frequencies).

3.2 Interpretation of frequency transformed images

A frequency transform in general results in a complex number, consisting of a magnitude
and a phase. This is difficult to display. In frequency domain images the phase informa-
tion is not used, only the magnitude is displayed. Sometimes the square of the magnitude
is displayed instead, which is also called the image power spectrum.

Figure 3.1 shows four images with a perfectly sinusoidal variation in brightness. The first
two vary in orientation, while the third one varies in orientation as well as in spacing
(frequency). The fourth one is the super-imposition of the first three. Below each image
their frequency transforms are shown.

The frequency transforms rotate with the spatial images in the top row in Figure 3.1.
Since a perfect sinus only has two delta functions in the frequency domain (which is the
same as saying is consists of one frequency component), the frequency transforms for
the first three images show only two dots, one for the positive and one for the negative
component. The further the dots are away from the origin in the middle, the higher the
frequency. The origin denotes the DC level, or 0 Hz. It is easiest to describe the frequency

24

 ��� �� ��� �������������������������

Figure 3.1: Three sinusoidal patterns

plots in polar coordinates. The frequency increases with r, the radius around the origin,
and the orientation depends on the angle �. The brightness of the dots denote the relative
magnitudes of each frequency component in an image.

3.3 Spatial convolution in the frequency domain

Convolution is one of the more common operations performed on an image. A small
kernel of numbers is multiplied by each pixel the kernel covers, the results summed and
that result placed in the original pixel location. Then the kernel is moved one pixel and
the process is repeated again. This goes on till all pixels in an image are processed.

Even if the kernel is not that big, it still involves quite a few operations. Increasing the
kernel size eventually reaches a point where it is computationally more economical to
perform the convolution in the frequency domain. The time it takes to do the inverse
transform from frequency space to the spatial domain is more than balanced by the speed
with which the convolution can be carried out in the frequency domain.

In Chapter 2 the relationship between convolution in the spatial domain and the equiva-
lent operation in the frequency domain is given.

gk � hk , GnHn

25

This can be easily expanded to the 2-D case:

gx;y � hx;y =
N�1X
a=0

N�1X
b=0

ha;b � gx�a;y�b , Gu;vHu;v (3.1)

where a; b are dummy variables for the summation ranging over the entire image. Thus,
convolution in the spatial domain is equivalent to multiplication in the frequency do-
main. In order to do this, the frequency transform of the convolution kernel needs to be
computed. The kernel will almost always be smaller in size than the spatial image, so it
has to be padded with zeroes to the size of the image before the discrete frequency trans-
form is calculated. This is to ensure that the frequency transform of both the kernel and
the image are of the same size.

Since discrete images are used, and a discrete frequency transform of those images, this
frequency transform really represents a continuous 2-D spatial function which is repeated
over and over in each axis. This means that the left edge of the spatial image is contiguous
with the right, and the top edge is contiguous with the bottom. This is important when a
closer look is taken at what happens at the edges of the spatial image when pixels closer to
the edge than half the kernel size are being convolved. In this case the kernel will partially
go over the edge of the image. This means that applying a convolution by multiplying in
the frequency domain is equivalent to using the pixels of the next copy of the image in
the spatial domain. This usually will produce some artifacts.

Since the Fourier and Hartley transforms are linear transformations, the above method
only works for linear filters when those transforms are used.

26

4 Fourier Volume Rendering

The projection slice theorem can be used to visualize 3-D datasets. The Fourier projection
slice theorem also holds in higher dimensions. For the 3-D case it can be stated as follows:
The 2-D Fourier transform of a 2-D projection of a 3-D object x(u1; u2; u3) at an angle �, is a 2-D
plane passing through the origin of the 3-D Fourier transform of that 3-D object, at the same angle
�.

4.1 Theory and example

Once the 3-D spatial function x(u1; u2; u3) is being transformed by a Fourier transforma-
tion, it is possible to compute projections at arbitrary angles quickly by taking 2-D slices
out of that 3-D transform and doing an inverse 2-D transform of the slice. This is called
Fourier Volume Rendering (FVR), a term adopted from Malzbender in [12]. He, and an
independent group of researchers, see [3], came up with the idea of Fourier Volume Ren-
dering at about the same time.

A big advantage of FVR is that the (computing intensive) 3-D Fourier transform only
has to be computed once. After that is done, only 2-D planes have to be extracted out
of this 3-D dataset, and these planes 2-D inverse transformed, to generate images at any
viewing angle. The complexity of FVR is O(N2logN), which is the complexity of the
inverse Fourier transform.

The steps to be taken for Fourier Volume Rendering are as follows:

� Calculate the 3-D Fourier transform X(U1; U2; U3) of the function x(u1; u2; u3).

� Make a cut-plane P�(Û2; Û3) out of this transform perpendicular to the viewing di-
rection. This involves resampling in the frequency domain.

� Calculate the 2-D inverse Fourier transform p�(û2; û3) of the cut-plane and display
it to the screen.

If the viewing angle alters only the last two steps have to be re-evaluated.

Graphically this is shown in Figures 4.1, 4.2, 4.3 and 4.4. It starts with the 3-D spatial
function, Figure 4.1.

27

 ���

u
1

3
u

2
û

^

^

u
1

2
u

3
u

Figure 4.1: The 3-D spatial function x(u1; u2; u3). The viewing direction is along the û1 axis.

Then the 3-D forward Fourier transform of it is taken, Figure 4.2:

X(U1; U2; U3) =
Z
1

�1

Z
1

�1

Z
1

�1

x(u1; u2; u3)e
2�i(u1U1+u2U2+u3U3)du1du2du3 (4.1)

 ���

1

3

2
^

^

^

1

2 3

U

U
U

U

UU

Figure 4.2: The 3-D frequency representation X(U1; U2; U3).

Then a parallel projection of x(u1; u2; u3) can be computed along an arbitrarily chosen
viewing direction û1 by making a cut-plane P�(Û2; Û3) through the origin of X(U1; U2; U3)

perpendicular to the viewing direction. This is shown in Figure 4.3.

28

 ����������������������

Figure 4.3: The 2-D frequency cut-plane P�(Û2; Û3)

The inverse 2-D Fourier transform of P�(Û2; Û3) results in the projection:

p�(û2; û3) =
Z
1

�1

Z
1

�1

P�(Û2; Û3)e
�2�i(û2Û2+û3Û3)dÛ2dÛ3 (4.2)

This is shown in Figure 4.4.

In [5] use of the Wavelet transform, instead of the Fourier transform, in the projection
slice theorem is discussed. The authors of [5] conclude that there is no practical use for a
Wavelet transform in FVR.

4.2 Depth cueing

Because the projection slice theorem calculates a line integral over the function x(u1; u2; u3)

p�(û2; û3) =
Z
1

�1

x(û1; û2; û3)dû1 (4.3)

control over the transparency of the resulting image is not possible. This means that i.e.
hidden surface effects are not present. Images produced with Fourier Volume Rendering
will look like X-ray pictures.

29

 ����������������������

Figure 4.4: The 2-D spatial projection p�(û2; û3)

Depth cueing is relatively easy to implement in Fourier Volume Rendering. Depth cueing
means that voxel intensities are weighted according to their distance to the observer. let
u be a vector of three elements; u = [u1; u2; u3]. If d(u) is a depth cueing function for a
certain observer viewer position, then x(u) � d(u) is the depth cued dataset. This depth
cued dataset can then be rendered with FVR. The disadvantage of this approach is that
for each viewing angle the depth cued dataset has to be recomputed, and an expensive
forward 3-D Fourier transform has to be done, effectively countering the advantages of
FVR. There is a better way to implement depth cueing, which operates in the frequency
domain.

Let F(:) be the Fourier transform. FVR (without depth cueing) can be written as follows:

x(u) � h(u) , Ffx(u) � h(u)g (4.4)
, Ffx(u)g �H(U) (4.5)
, X(U) �H(U) (4.6)

H(U) is the reconstruction filter that extracts the 2-D plane out of the 3-D Fourier trans-
form. Now depth-cueing can be incorporated, x(u) � d(u):

30

x(u) � d(u) � h(u) , Ffx(u) � d(u) � h(u)g (4.7)
, Ffx(u) � d(u)g �H(U) (4.8)
, fX(U) �D(U)g �H(U) (4.9)
, fX(U)g � fD(U) �H(U)g (4.10)
, Ffx(u)g �G(U) (4.11)
, X(U) �G(U) (4.12)

where G(U) = D(U) �H(U). Thus by using the new reconstruction filter G depth cueing
is implemented. Note that G is dependent on the viewing angle, and thus has to be
recomputed every time the viewing angle is changed. This is not a real problem, since
the filter H is small and D can be a simple linear function. Note that d(u) can be any
function. Equation 4.12 is a 2-D operation, and the depth cueing operates entirely in the
frequency domain. [19] shows that images rendered using this method don’t look very
different from images rendered without any depth cueing though. In [19] a method also
is presented to implement a simple shading model for use with FVR, using the same
techniques.

4.3 Resampling in the spatial domain

FVR requires resampling or interpolation of the 2-D plane in the frequency domain. Nor-
mally resampling is done in the spatial domain, and its effects evaluated by looking at
the frequency response of the resampling function. An ideal interpolation and resam-
pling function is the sinc function:

sinc(x) =
sin(x)

x
(4.13)

Its transform is a rectangle with width and height of one. Unfortunately this is not a prac-
tical usable function, since it has an infinite extent. Therefore approximations of the sinc
are used, and inadvertably artifacts are introduced by resampling with these approxima-
tions of the sinc.

In general resampling works as follows. The origin of the resampling function is posi-
tioned at the sample point to be resampled, and the left and right neighboring pixel val-
ues are multiplied with the resampling function value at those pixel points, and added

31

together to form the resampled value. This is equivalent to convolving the dataset with
the resampling function. A couple of things have to be taken into account when resam-
pling an image.

� A discrete image represents an infinite continuous periodic function in the frequency
domain.

� The other way around also holds, a set of discrete frequencies, as in FVR, represents
a spatial continuous function which is infinitely periodic.

� The ideal interpolation function is a sinc. Its transform is a block function with
height and width of one.

� A spatially limited function has an infinite extent in the frequency domain, and vice
versa (This is the Uncertainty Theorem).

� Resampling in one domain means convolving the data with the interpolation func-
tion in that domain. In the other domain this means multiplication with the trans-
form of the resampling function in that other domain.

The first two items are a result of sampling a continuous function. Any continuous func-
tion that is being sampled is made infinite periodic in its transfer domain by that sam-
pling. If the function also is not bandwidth limited to the Nyquist frequency the sampling
introduces aliasing too.

-π π 3π-3π

1|H(ω)|

ω
-2 -1 1 2

1h(x)

x

P1

P2

Pint

m

Figure 4.5: Linear interpolation filter. (a) Spatial domain. P1 and P2 are known grid point values.
Pint is estimated using P1 and P2. (b) Frequency consequence of linear interpolation in the spatial
domain.

A commonly used interpolation method is linear interpolation. See Figure 4.5. From this
figure it is seen that the frequency response is not zero outside the pass band, denoted
with the dotted lines in Figure 4.5(b). Or differently phrased, the frequency response

32

is not an ideal low pass filter. An ideal low pass filter will filter out all replicas in the
frequency domain. Since this is not the case, aliasing will occur due to non perfect inter-
polation. An important design goal is to minimize the energy of the frequency response
outside the pass band. Several different interpolation function have been proposed, see
e.g. [11] and [15]. For FVR a 3-D resampling method is used. The resampling filters used
in FVR are separable. That means that 3-D resampling can be realized by 1-D resam-
pling in respect to each coordinate axis. This is the reason only the 1-D case is shown in
Figure 4.5.

4.4 Resampling in the frequency domain

Resampling in the frequency domain reverts the effects described earlier. The ideal filter
is still the sinc, since it will filter out all spatial copies that will occur due to the fact that
a set of discrete frequency points represents a continuous spatial periodic function. This
can be seen as recovering the original non-periodic spatial function by multiplying with
a cube in the spatial domain. This in effect suppresses all spatial periodic copies except
one. This amounts to convolving with the sinc in the frequency domain.

In FVR a plane out of the 3-D frequency transform is resampled. This frequency plane
represents the projection of the spatial infinite periodic copies of the original dataset.

Because of the reasons mentioned earlier, the sinc function is not a feasible filter to use for
the resampling of this plane. A tri-linear filter could be used to interpolate sample points
in the frequency domain. This will introduce aliasing in the spatial domain, which will
show up in the interpolated image as copies of the dataset are folded back into it. This
is because there is still some amount of energy outside the passband in (now) the spatial
domain. Thus this allows the periodic copies of the spatial dataset to remain (at a weaker
intensity though), and a projection of these copies will overlap each other. This is a 3-D
aliasing phenomena. See also Figure 4.5 but now Figure 4.5(a) is the frequency filter and
Figure 4.5(b) is the spatial consequence of using that filter.

Another point to take into account is that the resampling should be done quickly enough
to prevent spatial copies of the periodic projections overlapping each other, and introduc-
ing aliasing. This effect is called 2-D aliasing. The widest one copy in the spatial domain
gets is

q
(3) times N . N is the length of one side of the 3-D spatial dataset. The factor ofq

(3) is the diagonal through a cube of size 1� 1� 1. By using the scaling property of the
Fourier transform it is found that the resampling has to be done at at least a spacing of
s=
q
(3) in the frequency domain. s is the spacing of the 3-D frequency transform in each

axis. This will ensure that no overlap will occur. It is of course possible to resample at a
higher rate.

33

 ��� �������������������������������������� ���������������������

Figure 4.6: Aliasing. Left: tri-linear interpolation, middle: POCS 3�3�3 right: POCS 5�5�5

Resampling in the frequency domain has to be done very accurately. In [12] several dif-
ferent filters are discussed. If a tri-linear interpolating function is used then the energy
in the passband is more than enough to introduce very noticeable artifacts in FVR. See
Figure 4.6 left image. Parts of the skull are aliased back into the image, e.g. the back of
the skull is aliased right into the front of the nose.

In [12] a far better resampling filter is designed, using a method called Projection on Con-
vex Sets (POCS). In short POCS works as follows. POCS allows constraints in both the
spatial and frequency domain to be optimized. The resampling filter that has to be de-
signed has two constraints. First it should be of a limited size and box shape in the spatial
domain, to filter out the periodic copies of the dataset. Second, the filter should be small
in the frequency domain, because that limits computing time and complexity. Unfor-
tunately these two constraints can never be met exactly, since the Uncertainty Theorem
states that a spatially limited function has an infinite extent in the frequency domain, and
vice versa. But those constraints can be approximated by using POCS. In [12] Malzben-
der starts with a Hamming windowed sinc in the frequency domain. Then he transforms
it to the spatial domain, yielding a transform of an infinite extent. Now he applies the
spatial domain constraint by chopping off the tails outside the first periodic copy. This
results in a space limited filter. He transforms this (truncated) filter back to the frequency
domain. Then he applies the frequency domain constraint by chopping off the tails again.
This completes one iteration. This process can be repeated till one is satisfied with the
resultant filter. Malzbender designed several filters, including one of an extent of 3�3�3

frequency samples, and one of 5 � 5 � 5 frequency samples. The former has the same
extent as the tri-linear interpolation function, but is much better, see Figure 4.6 left and
middle image. The result of using a 5 � 5 � 5 POCS filter is shown in the same figure,
right image. This filter performs even better than the previous two, but takes more time
to evaluate, and is more complex to implement in hardware. See also Section 4.9. See the
appendix for a table of the used POCS filters.

34

4.5 Spatial premultiplication

Any practical interpolation filter is an approximation of a box function at its best. They
are not of a constant amplitude in the pass band, see e.g. Figure 4.5. If the tri-linear inter-
polation function is used in FVR then the outer regions of the dataset will be attenuated.
See Figure 4.7 for an example of this effect. The right image has been compensated for
this. It can be compensated for by premultiplying the spatial dataset (before it is 3-D
transformed) by the inverse of the resampling filter. This is shown in Figure 4.8(a). Note
that the stop band energy is somewhat increased in Figure 4.8(c). This is due to the fact
that all periodic copies of the spatial dataset are premultiplied with the function in Fig-
ure 4.8(a), which can be seen as multiplying the original resampling filter in Figure 4.5(b)
with an infinitely periodic version of the spatial premultiplication function, as shown in
Figure 4.8(b).

 �� �����������������������������

Figure 4.7: Left: Attenuation of outer regions. Right: Compensated for by using spatial premul-
tiplication

1-1

12

1-1 2-2

(a) (b)
1-1

12

(c)

Figure 4.8: (a) Spatial premultiplication function for the linear interpolation function. (b) Spatial
premultiplication can be seen as multiplying the transform of the original resampling function
with an infinitely periodic version of the function in (a). (c) Resultant spatial function.

35

4.6 Zero padding of the 3D spatial dataset

One can think of FVR as making one projection of all the periodic copies of the spatial
dataset, albeit at a lower amplitude outside the first periodic copy. Resampling in the fre-
quency domain introduces aliasing artifacts, because the resampling filter is not perfect.
There still is energy in the stop band of the resampling filter. This error can be reduced
by designing a good filter, and by zero padding the original dataset. This will ensure that
part of the energy outside the passband of the resampling filter is used to project those
zeros, which obviously will not add up to any artifacts. Note that most of the energy in
the stop band is right after the passband, or right at the edge of the first periodic copy
of the dataset. See e.g. Figure 4.5(b). By zeropadding the image all this energy will be
nullified.

4.7 Maximum intensity projection with FVR

A different volume rendering technique is called Maximum Intensity Projection (MIP).
Normally this is done in the spatial domain, by casting rays through the 3-D dataset
and displaying the maximum value found on the ray to the screen. The complexity is
of O(N3). This is a time consuming operation since the complete 3-D dataset has to be
traversed. Physicians often like to look at MIP images because those images look like
X-ray images, and the blood vessels show up very clearly in MIP images.

If the original 3-D spatial dataset is preprocessed the following way, MIP images can be
approximated by using FVR. Let v be the value of one voxel of the 3-D dataset. Then
create a new 3-D dataset by replacing all voxel values by:

v = bv (4.14)

b is some small number, e.g. 2. The idea behind this is to emphasize the high voxel
values in the original dataset, by replacing them with much bigger numbers than the low
voxel values. Then if a projection of this dataset is made it will look like a MIP image
because the maximum voxel value will be so much bigger than the other voxel values
on the projection ray. Of course the blog of the resulting projection has to be taken before
displaying it to the screen.

Unfortunately the resulting image is full of artifacts. See Figure 4.9.

For the FVR rendered image in Figure 4.9 a 5 � 5 � 5 POCS filter was used, and b was
set to 1:1 in Equation 4.14. As this figure shows, artifacts are everywhere. This is due to

36

 �� �����������������������������

Figure 4.9: MIP projection. Left: Image rendered by FVR. Right: Same image rendered by a
conventional MIP ray caster

a fundamental problem. Since the log of the projection has to be taken, the resampling
filter is compressed with that same log. This is a non-linear compression, and this means
that the tails of the resampling filter (i.e. the stop band) will be amplified compared to the
passband. In other words, the signal to noise ratio of the resampling filter gets worse by
taking the log of the projection.

Thus a far better resampling filter is needed to overcome this problem. If such a filter is
used, the advantage of doing a MIP projection by using FVR will probably be nullified.
This new filter will be of a bigger extent than the one used now, and resampling a plane
in the frequency domain will take considerably longer to compute. Possibly even longer
than rendering the MIP image with a conventional ray caster.

4.8 Software implementation of FVR

This section will briefly outline the software program hvr used to generate all FVR images
in this report.

The discrete Hartley transform is used in the program, since it is a real transform if the
input data is real (and that is the case), and the fast Hartley transform (FHT) is as fast or
faster than the FFT. Because the 3-D FHT will result in real data no separate imaginary
and real part have to be taken into account during the resampling stage. The DHT of N
real numbers results in a transform of N real numbers. The DFT of the same N numbers
in general results in N complex numbers, which are 2N real numbers. This may seem
strange, but since the input values are real, S0 and SN=2 don’t have an imaginary part
and half the remaining values of Sn are complex conjugates of the other half S�N�n =PN�1

k=0 ske
i2��(N�n)k=N = Sn. This is the hermitian property of the Fourier transform. Thus

the positive frequency half is sufficient to determine the DFT completely, which are N=2

37

complex numbers or N real ones, the same number as in the Hartley case.

4.8.1 Features

The hvr program has the following features:

� The input is the 3-D forward discrete Hartley transformed dataset in floats, which
has to be premultiplied with the inverse of one of three resampling filters, tri-linear,
POCS 3� 3� 3 or POCS 5� 5� 5, and optionally zero padded.

� Displays the 2-D resampled Hartley plane and the resulting projection in 8 bits.

� User interface is either by keyboard or by the nine dial knob-box.

� Image can be rotated over x,y and z axis.

� Zooming in and out by compressing or expanding the frequency plane.

� Auto scaling of brightness.

� Screen image can be resized by resizing the hvr window.

� MIP projection support.

The program was written in C, and uses Motif and starbase calls to handle its graphics.

4.9 Hardware implementation considerations

A block diagram of a possible hardware realization of the FVR algorithm is shown in
Figure 4.10. The memory block holds the 3-D Hartley (or Fourier) transform of the dataset
being rendered. The resampling block does the interpolation and resampling of a 2-D
plane out of the 3-D transform. It puts its output in the buffer. The Inverse FHT/FFT
block performs the inverse discrete Hartley (or Fourier) transform in place. The resulting
image can be output to screen directly or to a frame buffer, which is not necessary a part
of a FVR hardware realization.

The building blocks will be discussed in more detail in separate sections.

To build a hardware FVR rendering engine the resampling hardware and memory ad-
dressing logic needs to be designed. The rest of the hardware needed can be put together

38

Memory

Interpolation/
Resampling

Inverse FHT/FFT
Buffer

Screen/Frame buffer

NxNxNx16 bits

2Nx2N complex

2Nx2N

Figure 4.10: Block diagram of a hardware FVR engine.

39

using commercially available chips, like (S)(D)RAMs and FFT chips. The final version
of the FVR rendering engine depends largely on the application needs. It might e.g. be
feasible to design a PC board, where the PC will do the forward 3-D transform in soft-
ware, and supply the viewing parameters to the board which will do the resampling and
inverse transform.

For now the following specifications will be assumed. These will be reconsidered later.

� Dataset size is 2563 16 bits wide (32 Mb) This is the 3-D Hartley or Fourier trans-
formed data.

� Frame rate is 25 frames/sec.

� Screen resolution is 512� 512 pixels.

4.9.1 The interpolation unit and memory access

Using the specifications given in the previous section the following calculations can be
made. 25 frames per second means that there is 40 ms to resample one plane. One in-
terpolation step in this plane should be done within 0:04 � 1=(512 � 512) � 150 ns. For
todays technology 150 ns is a lot of time. This means that the resampling option does not
need to be parallelized. One interpolation unit and memory addressing logic is all that it
takes for the resampling hardware.

Often a tri-linear interpolation is used when a hardware implementation is build. Tri-
linear interpolation is easy to implement in hardware and very fast. See e.g. [13]. Unfor-
tunately the software simulations clearly showed that tri-linear interpolation is not good
enough. A hardware implementation of a POCS 5 � 5 � 5 filter is preferred. This can be
realized by using a lookup table. The POCS function values can be precomputed for a
certain desired precision and those stored in a lookup table (EPROM o.i.d.). A 3 � 3 � 3

filter, like the tri-linear or the 3�3�3 POCS filter, needs 8 surrounding voxels to compute
one sample point. A 5� 5� 5 filter, like the tri-cubic spline or 5� 5� 5 POCS filter, needs
64 surrounding voxels to compute one sample point.

First the 8 voxel case will be considered. It is assumed that expensive static RAM is not to
be used, but instead the cheap standard DRAMs with a 100 ns access time. Since 8 voxels
have to be fetched within 150 ns, 8 RAM banks instead of one can be used, and each of
the 8 voxels stored in a different bank. The 8 banks can be accessed in parallel and the
voxels fetched within 150 ns. To ensure all voxels are in a different bank the address of
each voxel is divided in odd and even rows, odd and even columns and odd and even
depth, and this information is used to divide the voxels over the 8 RAM banks. See also
Figure 4.11. The cost for this is some extra addressing hardware.

40

A B

C D

E F

G H

P
1

C

E

G

P
2

A

Figure 4.11: Fetching 8 voxels (A-H) in parallel

The 8 RAM banks in Figure 4.11 are labeled A to H. P1 and P2 are two points to be sam-
pled. Since sampling takes place on a voxel sub-cube level, the addresses of P1 and P2

in general will be fractional. The truncated address of P1 can be used to fetch all its 8
surrounding voxels, but the truncated address of P2 cannot be used to fetch all its 8 sur-
rounding voxels, since 4 of those 8 banks (RAM banks B,D,F and H) were addressed by
the truncated address of P1, which is a different address than the truncated address of P2.
Some extra addressing logic is needed to distinguish between the different cases. This
logic is very simple though, since the situation depends on if the truncated address is odd
or even in any one of the three directions.

In the 64 voxel 64 voxels have to be fetched from memory at once. A solution would be
to use the same scheme for the RAM banks as in the 8 voxel case. Thus using 64 RAM
banks and fetching all voxels in parallel. This imposes a problem on the width of the data
path. At 16 bits for each voxel, fetching 64 voxels at once means a 1024 bits wide data
path, and an interpolation chip with at least that many pins. This is not feasible with the
current VLSI technology, so the voxels have to be time multiplexed and clocked into the
interpolation chip in smaller quantities. This can be done by clocking the RAM banks at a
4 times higher speed. It is then possible to reduce the number of RAM banks by the same
factor of 4. This still means a 256 bits wide data path. It would be desirable to reduce
that even further. This can be achieved by caching voxels in the interpolation chip, and
by using the fact that there always will be 4 resampling points within the space of a sub-
cube of 8 voxels. This means that the same set of 64 voxels will be used for interpolating
4 resampling points. The proof for this is as follows:

Given is a n�n�n cubed dataset. A plane out of this dataset will be resampled a a rate of
2n in x and y. The step size between the resampling points depends on the orientation of
the plane to be resampled out of the dataset. If the resampling plane is oriented parallel
to one of the main axis, the step size will be minimal. The length of one side of the dataset
is n� 1. The number of steps to take in one direction is 2n� 1 in this case resulting in 2n

41

sample points. The step size thus is (n� 1)=(2n� 1). See also Figure 4.12(a).

3

3

3

f

1

1

1

(a) (b)

Figure 4.12: (a) A n = 4 � 4 � 4 cube has side lengths of 3. (b) f is the length of a ray through
one voxel sub cube

If the resampling plane is oriented along one of the diagonals of the cube, the step size
will be maximal. It will be a factor of

p
3 times bigger than for the minimal case. For an

arbritary orientation of the resampling plane the step size will be:

s = f �
n� 1

2n� 1
n > 1 1 � f �

p
3 (4.15)

Where f is the length of the part of the ray which goes through one voxel sub cube. If
it can be proven that s < f=2 then there always will be 4 resampling points within one
voxel cube since the step size is the same in both directions. See also Figure 4.12(b).

s = f �
n� 1

2n� 1
<

f

2
(4.16)

n� 1

2n� 1
<

1

2
(4.17)

n� 1 < n�
1

2
q:e:d: 2 (4.18)

Since the same 64 voxels will be used 4 times it is possible to reduce the number of RAM
banks by another factor of 4, while clocking them at the same speed. This results in 4
RAM banks clocked at 150=4 = 37:5 ns. The interpolator needs two voxel cache banks
of 64 voxels each. While one cache bank is used to calculate the 4 resampling points the
other bank will be filled with the new set of 64 voxels. This means a total of 2�64�2 = 256

bytes of on chip cache is needed.

42

(a) (b) (c) (d)

Figure 4.13: Voxels that have to be fetched from memory if a resampling step in x, xy or xyz is
taken and a voxel sub cube boundary is crossed. (a) A 4 � 4 � 4 set of voxels. (b) 16 new voxels
have to be fetched from memory when a step in x only is taken. (c) 28 new voxels have to be fetched
when a step of one voxel sub cube in x and y is taken. (c) 40 new voxels have to be fetched when a
step in all three directions is taken.

2 � 64 = 128 different voxels are not needed to calculate 8 consecutive sample points.
Suppose 64 voxels where fetched to calculate a sample point. If an adjacent voxel sub
cube boundary is crossed to calculate the next sample point, a minimum of 16 voxels and
a maximum of 40 voxels have to be fetched from memory, instead of all 64. The remaining
voxels are already present in the voxel cache. See Figure 4.13. By taking this into account
it will be possible to clock the RAM banks at an even lower speed but the addressing logic
will become more complex. This approach is not pursued further.

Because the resampling plane can have any arbritary orientation, points of the plane can
fall out of the 3-D dataset. It is assumed that those points have a value of zero (the hvr
program does this too). Since points outside the 3-D dataset represents frequencies higher
than the ones in the dataset, and since those frequencies components are not known, it is
legitimate to assume that they are zero.

Currently the fastest available SDRAMs can supply data at a rate of about 30 ns. The
fastest static RAM can supply data at a rate of about 10 ns.

4.9.2 The inverse discrete Hartley or Fourier transform

The interpolator stores its output in the buffer. The last step to take before it can be
displayed to the screen is the inverse discrete Hartley or Fourier transform of the data in
the buffer.

43

Using the Hartley transform for the software implementation had numerous advantages,
for a hardware implementation that might not be the case.

Hartley transform chips are not commercially available. But a wide range of Fast Fourier
transform (FFT) chips are. These chips also can perform an inverse FFT (IFFT). The Hart-
ley transform can be easily obtained by subtracting the real and imaginary output of the
IFFT. See Section 2.3.4.

A hardware implementation using the Hartley transform and FFT chips and an imple-
mentation using the Fourier transform and FFT chips are discussed next.

4.9.2.1 2-D inverse Hartley transform using a FFT chip

The fastest FFT chips available typically perform a FFT or IFFT on 1024 complex points
in about 100�sec. For example the PDSP16510/A stand alone FFT processor made by
GEC Plessey. If the chip can handle two 512 point complex arrays in the same amount
of time one row of 512 complex points can be inverse transformed in 50�sec. A 2-D
FFT can be split into 1-D transforms. First transform all rows of one image, and then
transform all columns. The input data to the FFT chip is real. (The original 3-D spatial
dataset is real, and the forward 3-D Hartley transform results in a real 3-D dataset in the
frequency domain.) Since a FFT requires a real and an imaginary part, the input array for
the real and imaginary part can be filled with a set of two 512 point arrays each. Thus it
is possible to perform the IFFT on 4 rows in 100�sec. The PDSP16510/A has support for
this on chip. See also [16] pages 414-417. This approach can be taken for the rows only,
since the resulting transform of the rows is complex. (A FFT of a array of real numbers is
in general complex). This means that 2 columns can be transformed in 100�sec. But the
FFT of a real signal was computed (for the rows) so the hermitian property can be taken
into account, and only half of the columns have to be transformed. See also Figure 4.14.
This results in 512=4 � 100� + 512=4 � 100� = 25; 6msec for one 512 � 512 image, or 39
frames/sec. The time to ungarble the 4 arrays of 512 points into 4 separate transforms
is not taken into account, so it might not be possible to transform 4 rows in 100�sec, but
in a slightly longer time. The resulting frame rate is much higher than the required 25
frames/sec.

After the IFFT is performed 512� 512 subtractions have to be performed. This cannot be
done by performing an IFFT on one row, subtracting the imaginary part from the real part,
storing this row and continuing with the next row. The Hartley transform is not separable
like the Fourier transform. This means that first all rows have to be Fourier transformed,
then all columns and then the subtraction can take place. Alternatively, after all rows and
one column is Fourier transformed the subtraction can be done on that column, saving
some time by not waiting till all 512 columns are Fourier transformed.

44

4.9.2.2 2-D inverse Fourier transform using a FFT chip

Another option is not to use the Hartley transform at all, but storing the 3-D discrete
Fourier transform, and resampling this 3-D dataset. The advantage of doing this is that no
subtractions have to be performed after the 2-D IFFT step is completed. The disadvantage
is that the 3-D transform will have an imaginary part not equal to zero. Thus to save
memory, the hermitian property has to be taken into account. See also Figure 4.14.

u

v

0

Figure 4.14: Hermitian property of the FFT for a 2-D dataset. The points in the upper half are
point symmetrical with their complex conjugates in the lower half. The origin is in the middle.

The hermitian property means that one half of the 3-D Fourier dataset is the complex
conjugate of the other half. Another way to look at this is that a point and its complex
conjugate are point symmetrical through the origin. This means only e.g. the upper half
of the dataset has to be resampled to get all the information needed. Note that this does
not mean that less points are resampled compared to the Hartley case, since the Fourier
dataset is complex. The steps to take are the following:

1. Take N � 2N steps through one half of the 3-D Fourier dataset (of course only this
half will be stored in memory) and fetch the 64 voxels needed to interpolate the real
and the 64 voxels needed for the imaginary part out of memory.

2. Resample the real value for each step.

3. Resample the imaginary value for each step.

4. Store this complex resampled number in the buffer.

5. Repeat this till N � 2N steps are taken (and thus 2N � 2N points resampled). This
results in a buffer of size N � 2N with complex numbers.

45

6. Perform the inverse 2-D FFT.

For the The 2-D IFFT the hermitian property again can be used. (The 2-D IFFT is split
into two 1-D IFFTs, first transform all the rows and then all the columns). The 1-D IFFT
for the rows has to be done on N rows only to generate 2N complex inverse transformed
rows. But this property cannot be used on the columns. If that would be the case it
would mean that in the resulting spatial image, the projection, columns would have a
relationship to each other, which cannot be true (a projection of an arbitrary object does
not have to have any symmetry at all). Thus a 1-D IFFT has to be done on all 2N columns.
This means the buffer should hold 2N�2N complex numbers. Using the same scheme as
for the Hartley transform (storing two 512 complex arrays in one 1024 complex array and
performing the transform on those two at the same time) the transform will take about
N=2� 100�+2N=2� 100� = 38; 4msec, or 26 frames/sec, slower than in the Hartley case.
The result of the 2-D IFFT is a 2N � 2N plane of real numbers, which can be output to a
frame buffer or screen. The numbers should be real because a projection of an object of
real data is real. But because of resampling artifacts there will be a small imaginary part
too.

The number of memory accesses and number of resampling points is the same as in the
Hartley case. The same memory fetching scheme can be used, since the same number of
resampling points are calculated.

4.9.2.3 Conclusions

Using the Fourier transform instead of the Hartley transform for a hardware implemen-
tation of FVR will save some hardware. No more subtractions have to be performed to
get the DHT out of the DFT. The resulting frame rate for the Hartley case is 50% higher
than in the Fourier case. 39 frames/sec as opposed to 26 frames/sec. The 26 frames/sec
is close to the specifications of 25 frames/sec, but the time needed to split the resulting
arrays into the individual transforms is not taken into account, so the actual frame rate
will be less than those 26 frames/sec.

Although for the software implementation the discrete Hartley transform has advantages
over the discrete Fourier transform, the lack of fast Hartley transform VLSI chips make
using the DFT a logic choice.

The size of the buffer in Figure 4.10 is 2� 512� 512� 16 bits = 1 Mb. Note that the buffer
has to be a double buffer. While one part is being filled by the interpolator, the other part
is being transformed by the IFFT block. Thus the buffer has to be 2 Mb in size.

A FFT chip that can handle 1024 points in 100�sec, like the PDSP16510/A, costs about
$1100. It might be more cost effective to use two or maybe 4 slower chips, and have them

46

work on the transform in parallel. More research into available FFT chips has to be done.
The numbers given in this section are estimates, but they do show that a 2-D real time
FFT is possible.

4.9.3 Specifications reconsideration

The FFT chips typically expect 16 bits wide input data. This is the main reason why 16
bits was chosen in the design specifications. Furthermore, the data path should not get
too wide, as explained earlier. The width of the input data also affects the pin count of the
interpolator. Certainly if a 5� 5� 5 filter will be used, more bits will have a big impact on
the design of the interpolator.

 ��� �������������������������������������� ����������������������

Figure 4.15: Results of storing the 3-D forward Hartley transform in 8, 12 and 16 bits

Some software simulations were done where the 3-D forward Hartley transform was
stored into 8 to 16 bits integers. The FVR software program (used to generate all images
in this report) normally uses 32 bit floats for this. The reducing was done by replacing
each value by:

h = round(
h

hmax

� 2bits) (4.19)

hmax is the maximum value in the 3-D forward Hartley transform. See Figure 4.15 for
results of storing the transform in 8,12 and 16 bits. Note that the inverse Hartley transform
still was performed in 32 bits floats, as was the resampling. This visual test shows that
16 bits are enough to store the forward 3-D Hartley transform in. The PDSP16510/A FFT
processor uses 19 bits internally to compensate for loss of precision while performing the
FFT.

Without parallelizing the interpolation operation it doesn’t look feasible to go to a 5123

cubed dataset, and a 1024� 1024 output image. This means that all operations (memory

47

fetches, interpolation steps, IFHT) have to be done four times as quickly as for the 2563

case. If designed properly this means that four interpolation chips and 4 FFT chips are
needed. Furthermore a different memory fetching scheme probably is needed. Fetching
e.g. 64 voxels using the same proposed memory scheme means clocking the memory at
37:5=4 �= 9 ns. Only the fastest and very expensive static RAM might be able to meet this
speed requirement. For a 5123 cubed dataset one needs 512� 512� 512� 2 = 256 Mb of
memory!

4.10 Rendering times

This section discusses the times it took to render the images in Figure 1.1. All timings are
performed on a HP 9000/735 running at 99 MHz with a CRX48Z graphics accelerator and
144 Mb of RAM. All timings are given for the same dataset of 256 � 256 � 256 voxels, 8
bits per voxel.

The 3-D forward Hartley transform takes about 5 and a half minutes. Calculating a pro-
jection using FVR and linear interpolation takes about 9 seconds. The 2-D inverse Hart-
ley transform takes about 4 seconds out of those 9. Calculating a projection of the same
dataset using a POCS 3 � 3 � 3 filter takes about 30 seconds. This is much longer due to
the fact that the POCS filter implementations were not optimized for speed. E.g. only the
1-D positive half of the filter is stored in a lookup table, instead of the full 3-D filter. Cal-
culating a projection using a POCS 5� 5� 5 filter takes about 100 seconds. These timings
show that the resampling step in FVR takes the most time. Optimizing the resampling
filter for speed will certainly reduce the rendering time.

Splatting the lower right image in Figure 1.1 takes about 15 seconds, but the gradient
information was precomputed which took about 75 seconds.

Surface rendering the lower middle image with marching cubes takes about 3 seconds for
about 50000 polygons.

Raycasting the upper left image in Figure 1.1 takes about 25 minutes, and computing the
MIP image at the upper right takes about 8 minutes. In each case the resulting image was
256� 256 pixels in size. Computing the raycasted image is about three times slower than
computing the MIP image because the dataset is first classified and colorized into three
bytes for each voxel, one byte each for red, green and blue. This results in 3 datasets of
size 256 � 256 � 256 which have to be traversed. The MIP image was computed using
one byte for each voxel. These implementations do not perform any optimization, so the
complete dataset is traversed for each ray. Each ray has 512 sample points.

The marching cubes implementation and the splatting implementation benefit from the

48

CRX48Z graphics accelerator. The other algorithms do a direct pixel write to the screen,
and thus do not use the accelerator.

4.11 Conclusions and recommendations

Fourier Volume Rendering generates projections of a 3-D dataset. The resulting images
look like X-ray pictures. In [12] is shown that FVR typically is a factor 100 to 1000
times faster than conventional ray casting. This is supported by the timings given in
Section 4.10.

Control of the opacity of the dataset is a problem with FVR. Linear depth cueing and
shading can be implemented relatively easily.

Interpolation in the frequency domain has to be done very accurately. A 5 � 5� 5 POCS
filter seems necessary to minimize aliasing artifacts. A filter of this size will make a hard-
ware design a lot more difficult, due to the fact that 64 voxels are needed for this filter.

There are two different aliasing mechanisms to take into account when resampling a plane
out of the 3-D frequency transform. 3-D aliasing will occur due to the fact that an imper-
fect resampling filter is used. 2-D aliasing will occur when the 2-D plane is not resampled
quickly enough out of the 3-D frequency dataset.

A more in depth study of filters designed with the POCS method should be made. E.g.
a comparison between a filter designed with the POCS method and the commonly used
cubic spline filters could be done.

An attempt was made to implement Maximum Intensity Projection by using FVR. The
resulting images unfortunately show too much artifacts.

A hardware implementation of FVR largely means designing an interpolation chip, which
preferably can use a filter of size 5� 5� 5. This is not a trivial task.

A memory fetching scheme to fetch the necessary 64 voxels quickly enough has been
proposed.

The inverse discrete Hartley or Fourier transform can be realized by using commercially
available FFT processors. For a hardware implementation it makes more sense to use the
Fourier transform instead of the Hartley transform, since it saves extra hardware to do
the additions after the 2-D IFFT is done.

The artifacts shown when doing MIP projections with FVR have to researched further.
Maybe it is possible to come up with a better filter that will overcome this problem, or
another way to approximate MIP images with FVR.

49

A Images

In this appendix a high-resolution and bigger version of some of the images in this report
are reprinted.

 ���

Figure 1.1:Five different volume visualization methods. The lower left image was segmented by
hand. The lower middle image is the only image rendered with a surface rendering technique.

50

 �������������������

Figure 4.6(a):Aliasing. trilinear interpolation

51

 �������������������

Figure 4.6(b):Aliasing. POCS 3� 3� 3

52

 �������������������

Figure 4.6(c):Aliasing. POCS 5� 5� 5

53

 �������������������

Figure 4.7(a):Attenuation of outer regions

54

 �������������������

Figure 4.7(b):Compensated for by using spatial premultiplication

55

 �������������������

Figure 4.9(a):MIP projection. Image rendered by FVR

56

 �������������������

Figure 4.9(b):MIP projection. Same image rendered by a conventionel MIP raycaster

57

 �������������������

Figure 4.15(a):Results of storing the 3-D forward Hartley transform in 8 bits

58

 �������������������

Figure 4.15(b):Results of storing the 3-D forward Hartley transform in 12 bits

59

 �������������������

Figure 4.15(c):Results of storing the 3-D forward Hartley transform in 16 bits

60

Bibliography

[1] Ronald N. Bracewell. The Fourier Transform and its Applications. McGraw-Hill, 1986.

[2] Dan E. Dudgeon and Russell M. Mersereau. Multidimensional Digital Signal Process-
ing. Prentice-Hall, 1984.

[3] S. Dunne, S. Napel, and B. Rutt. Fast reprojection of volume data. In Proceedings of
the First Conference on Visualization in Biomedical Computing, pages 11–18, 1990.

[4] Rafael C. Gonzales and Richard. E. Woods. Digital Image Processing. Addison Wesley,
1992.

[5] Taosong He and Arie Kaufman. Non-existence of the wavelet slice-projection theo-
rem. Technical report, State University of New York at Stony Brook, October 1994.

[6] A. Kaufman. Volume Visualization. IEEE Computer Society Press, 1991.

[7] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp factorization
of the viewing transformation. Computer Graphics, pages 451–458, July 1994.

[8] M.S. Levoy. Display of Surfaces from Volume Data. IEEE Computer Graphics and
Applications, pages 29–37, May 1988.

[9] Jae S. Lim. Two-Dimensional Signal and Image Processing. Prentice-Hall, 1990.

[10] W.E. Lorensen and H.E. Cline. Marching Cubes: A High Resolution 3D Surface
Construction Algorithm. Computer Graphics, 21(4):163–169, July 1987.

[11] Einar Maeland. On the comparison of interpolation methods. IEEE Transactions on
Medical Imaging, 7(3):213–217, September 1988.

[12] T. Malzbender. Fourier Volume Rendering. ACM Transaction on Graphics, 12(3):233–
250, July 1993.

[13] C.H. Slump M.J. Bentum, M.M. Samson. A multi-asic real-time implementation of
the two dimensional affine transform with a bilinear interpolation scheme. submitted
to the Journal of VLSI Signal Processing, June 1993.

[14] C.H. Paik and M.D. Fox. Fast hartley transforms for image processing. IEEE Trans-
actions on Medical Imaging, 7(2):233–250, June 1988.

61

[15] J. Anthony Parker, Robert V. Kenyon, and Donald E. Troxel. Comparison of inter-
polating methods for image resampling. IEEE Transactions on Medical Imaging, MI-
2(1):31–39, March 1983.

[16] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Nu-
merical Recipes in C, the Art of Scientific Computing. Press Syndicate of the Univeristy
of Cambridge, 1989.

[17] H.Hao J.Villasenor R.N. Bracewell, O.Bunemn. Fast two-dimensional hartley trans-
form. In Proceedings of the IEEE, volume 74, pages 1282–1283, September 1986.

[18] Richard A. Roberts and Clifford T. Mullis. Digital Signal Processing. Addison Wesley,
1987.

[19] Takashi Totsuka and M. Levoy. Frequency domain volume rendering. Computer
Graphics, pages 271–278, August 1993.

[20] Lee Westover. Interactive volume rendering. In Chapell Hill Workshop on Volume
Visualization, pages 9–16, May 1989.

62

