
HAMILTONIAN PATHS ALGORITHMS FOR DISK SCHEDULING

Giorgio Gallo, Federico Malucelli, Martina Marrè

Dipartimento di Informatica

Università di Pisa

Abstract - The problem of optimally scheduling the read/write requests in a

disk storage system is considered. A new class of algorithms for the disk

scheduling problem is presented, and the relations between this problem and

the shortest hamiltonian path problem on asymmetric graphs are

investigated. The problem of deriving realistic upper bounds for the disk

utilization factor, one of the main performance measure for the disk

scheduling algorithms, is also addressed.

Internal Accession Date Only

- 1 -

1. Introduction

One of the points which has attracted substantial attention in the effort to

improve the I/O performance of disk storage systems is the scheduling of

read/write accesses. An analysis of several implementations of the basic

scheduling algorithms can be found in [Seltzer, Chen & Ousterhout, 1990]

and in [Jacobson & Wilkes, 1991].

Different scheduling strategies are often compared from the point of view of

the disk utilisation they produce. Another important point is the so called

starvation that is the phenomenon of requests having to wait an exceedingly

long time to be served.

Here, after having defined the problem in section 2 and presented the basic

scheduling algorithms described in the literature in section 3, we present in

section 4 a quite general algorithmic paradigm which encompasses almost all

the scheduling algorithms considered in the literature.

In section 5 we show that a new class of algorithms can be derived from the

presented paradigm; this is the class of the algorithms in which the queue of

the requests waiting to be served is partitioned into batches and in each batch

an optimal sequencing problem is solved. Such sequencing problem can be

stated as the problem to find a shortest hamiltonian path in a asymmetric

complete graph, for which an heuristic algorithm is presented.

It is worth noting that the problem of scheduling the requests (disk accesses)

in order to maximize the disk utilization can be considered as a "on line"

shortest hamiltonian path problem on a asymmetric complete graph, that is a

problem in which the graph is not completely known "apriori" but is

dynamically updated by addition of new nodes (see for this problem

[Bertsimas & Van Ryzin, 1991]). In this perspective, all the disk scheduling

algorithms can be viewed as different heuristics for the shortest hamiltonian

path problem adapted to the "on line" case.

In order to get a first approximation idea of the relative behaviour of the

different algorithms we have compared the shortest hamiltonian path

heuristics which underlie the scheduling algorithms, on complete graphs with

distance matrices generated according to different distributions; this is done

in section 6.

- 2 -

In section 7 a rather important problem is considered, which has not been

addressed before in the literature on the disk scheduling problem; this is the

problem to find realistic upper bounds for the disk utilisation factor.

Although in principle, being an efficiency measure, the disk utilisation factor

is bounded by 1, the values which can be obtained in practice are much lower:

the simulation reported by Seltzer, Chen & Ousterhout (1990) gives values of

the order of .25 for the best performing algorithms. Obviously the value 1

cannot be never attained since some time must in any case be spent in head

movements; the amount of this portion of time depends both on the

distribution of the requests and on the technical characteristics of the disk. In

order to assess the goodness of a given scheduling algorithm it is important to

have some measure of the highest realistic value of disk utilisation which can

be obtained in a given setting. This point is addressed here by presenting

some Linear Programming relaxations of the shortest hamiltonian path

problem which can be used to get tight upper bounds of the disk utilisation

factor.

2. Problem definition and technical aspects

The disk scheduling problem is to find a sequence of the read/write requests

on a disk storage system in order to maximize the number of requests

processed in the unit of time.

We assume the characteristics of the request stream arriving to the disk to

be known. Each request can be represented as a tuple (t, s, b, l), where t is the

arrival time, s∈ {r, w} tells whether it is a read or a write request, b and l are

the address of the first block and the length of the sequence of blocks to be

read/written. By ν we denote the average number of blocks in the requests;

clearly ν depends on the type of users of the computing system.

We assume the requests to be addressed to a single disk unit which is

defined by a set of technical data. The most relevant technical data are: the

number of cylinders, the number of tracks per cylinder, the number of sectors per

track, the number of bytes per sector, the rotation speed, the seek time function, ϕ,

which, for any pair of cylinders, gives the time needed for the head to move

from one to the other, and the time needed to switch from a track to another

in the same cylinder (settle time). Parameters which give a rough idea of the

technical characteristics of a given disk are the rotation time ρ, the average

- 3 -

seek time σ and the time τ needed to read/write a single block (times are

given in milliseconds). The disk utilization factor, θ, is a measure of the

efficiency of a given requests processing policy defined as the ratio between

the time used to read/write and the overall time needed to process the

requests.

Since it may happen that the time distance between two successive requests

be much shorter than the time needed to process them, as it is the case when

the requests are placed in a buffer cache, rather long queues may be present at

the disk input. So a good scheduling algorithm may have a strong effect on

the overall performance of the disk.

The problem which will be considered in the following is to schedule the

requests currently in the waiting line so as to maximize the disk throughput.

In doing that we have to keep in mind the necessity of avoiding the starvation

phenomenon which happens when a request is left waiting for an exceedingly

long time in the queue.

3. Scheduling algorithms

Different scheduling algorithms have been proposed and studied in the

literature ([Seltzer, Chen & Ousterhout, 1990]; [Jacobson & Wilkes, 1991].

The simplest algorithm one can think of is FCFS (First Come First Serve);

this algorithm processes the requests in the same order they arrive without

trying to do any optimization. If τ is the average time needed to read/write

the sequence of blocks specified by a single request, the disk utilization factor

is given by:

θ =
ντ

ντ+ρ/2+σ
.

In the case of the HP 97560 disk unit, and if the requests are uniformly

distributed among the cylinders we have θ = 8.7%.

A less simplistic algorithm, which has been widely used in practice, is the

so-called SCAN scheduling algorithm. SCAN orders the requests by cylinder

number and processes them in that order starting from the first one. When

the last cylinder has been reached the head changes direction sweeping the

cylinders in inverse order and processing all the requests arrived in the

meanwhile. Then, once the first cylinder has been reached, a new complete

cycle is performed; a shortcoming in this algorithm is that requests on the

- 4 -

edges of the disk have a waiting time variance which is almost twice the

waiting time variance for the requests on the middle cylinders. A slightly

different version, called CSCAN, guarantees a fairer distribution of the

waiting times; in it the head, once the last cylinder has been reached, moves

back to the first with a large seek and starts again processing the requests

with the same policy.

For the HP 97560 unit, the disk utilization factor of SCAN is given by

θ =
ντ

ντ+ρ/2+ϕ(1963/L)
,

where L is the average number of requests processed per sweep.

SSTF (Shortest Seek Time First) policy, each time, selects from the queue the

request that needs the shortest seek from the current head position. This

selection rule can be easily implemented maintaining the requests ordered by

cylinder. It usually gives better results than the SCAN and CSCAN policies,

however this policy is not starvation free and, under certain load conditions,

it can yield very high maximum response times.

Geist and Daniel (1987) proposed the parametric policy V(r); this policy puts

together the ideas of SCAN and SSTF. Let max_seek be the time needed by the

head to perform a full stroke seek (i.e. max_seek=ϕ(C)). At each step V(r)

selects the request that minimizes the function given by the seek time, if the

head moves along the direction of the last performed seek, the seek time plus

r times max_seek, otherwise. It is easy to see that when parameter r=1, V(r) is

SCAN and when r=0, it corresponds to SSTF.

SATF (Shortest Access Time First) is an algorithm which, at each step,

selects, among the queued requests, the one which has the minimum I/O

time, that is the one which has minimum seek plus rotation time. This policy

gives rise to higher disk utilization factors than the ones examined before, but

the starvation phenomenon may arise. The disk utilization factor grows with

the queue length. Notice that, since the selection of the request to be

processed next is performed while the request previously selected is being

processed, there is a limit to the length of the queue which can be examined in

order to find the minimum time request. Disk utilization factors of .40 have

been found in the simulation reported in [Seltzer, Chen & Ousterhout, 1990].

- 5 -

A variant of this algorithm is GSATF (Grouped Shortest Access Time First),

where the cylinders are partitioned in groups of contiguous cylinders, and

within each group SATF is applied; the algorithm examines one group after

the other. With such a policy the maximum response time is reduced so

making less crucial the starvation phenomenon.

Another variant of SATF is WSATF (Weighted Shortest Time First). In this

algorithm the request which is selected is the one with minimum weighted

time, Tw, defined as follows:

Tw = Ti/o (Max - Elap)/Max,

where Ti/o is the actual I/O time, Max is the maximum allowed response time

and Elap is the time elapsed since the requests was inserted in the queue. This

policy at the cost of some bad seeks is quite efficient in avoiding the

starvation phenomenon.

The results of a simulation study aimed to analyzing the relative behavior of

these algorithm is reported in [Seltzer, Chen & Ousterhout, 1990] and in

[Jacobson & Wilkes, 1991].

4. A general scheduling algorithm

Here we present an approach to the disk scheduling problem which includes

as particular cases the algorithms described in the previous section, and

which may lead to a host of different algorithmic implementations. This new

approach is described by the following general algorithmic paradigm, GDSA

(General Disk Scheduling Algorithm):

GDSA
1) Extract, using some given rule R, L requests from the current queue Q

of requests, with L = min{|Q |, Lmax} and Lmax a given integer
parameter ≥1).

2) Find the ordering of the requests selected in order to minimize the
total processing time (seek plus rotation times);

3) If the queue is empty pass the complete sequence to the disk unit for
processing; else, pass to the disk unit the first α L requests in the
sequence, where α ∈ [0,1] is a parameter to be chosen a-priori, and
insert again in Q the last L - α L . Go to step 1.

Notice that, at each iteration of the algorithm, the computations needed to

find the optimal ordering of the currently selected requests are performed

while the disk unit processes the requests selected at the preceding iteration;

- 6 -

then, L, at each step, should be chosen in such a way that the cpu time needed

to solve the optimal sequencing problem be not larger than the time needed

to process the requests selected at the preceding iteration.

Variants of the basic algorithm can be obtained by allowing the insertion in

the currently processed sequence of newly arrived requests if that can be

done at (almost) zero cost, i.e. if the new request can be processed during the

rotation latency between two consecutive requests already in the sequence.

In the version of the algorithm described above the starvation phenomenon

may occur. The basic algorithm can be modified in order to take into account

starvation by forcing the process of the requests whose age (time of

permanence in Q) is larger than a fixed value, say t*.

It is easy to see that the algorithms presented in the previous section are all

implementations of our general method:
i) FCFS is simply obtained from GDSA by setting Lmax = 1, α = 1 and

R="take always the element which is the eldest in Q";

ii) SCAN and CSCAN are obtained from GDSA by setting Lmax = +∞,
α=1 and R = "take all the elements whose position is in the first non
empty cylinder starting from the current one" (L is the number of such
elements); the two algorithms differ in the order in which the
cylinders are scanned;

iii) SSTF is obtained from GDSA by setting Lmax = 1, α = 1 and R = "take
all the elements whose cylinder is nearest to the current head
position"; V(r) is obtained in a similar way;

iv) SATF is obtained from GDSA by setting Lmax = 1, α = 1 and R = "take
the element whose position in the disk is the nearest to the current
head position"; similarly one can obtain GSATF and WSATF.

In all these implementation there is no real need of the optimal sequencing

computations of step 2; in fact in all algorithms but SCAN and CSCAN the set

of elements to be sorted has cardinality 1, and in SCAN and CSCAN there is

an optimal trivial solution given by the order in which the blocks pass under

the reading/writing head.

Now, we consider the class of those algorithms which can be derived from

GDSA by selecting at step 1 a set of requests of cardinality greater than 1 in

such a way that the problem of finding an optimal sequence for them is not

trivial. Clearly, the most costly operation in algorithm of this type is the

optimal sequencing computation. This problem can formulated as a shortest

- 7 -

Hamiltonian path on a properly defined graph, as it will be shown in the next

section. Being such a problem a rather difficult one, in practice, instead of

exact algorithms, heuristic methods will be used.

5. Shortest Hamiltonian path algorithms

Let the integers 1, 2,… , L denote the requests selected at the current

iteration and G = (N, A) be the graph whose nodes are the requests together

with a node, 0, representing the last request of the previous sequence, N = {0,

1, 2,… , L}, and whose arcs are all the pair (i,j) with i,j ∈ N, and i≠j. Each arc

(i,j) is assigned a real weight, w(i,j), equal to the minimum time needed for the

head to move from the last block to be read/written when processing request

i to the first block to be read/written in order to process request j.

The problem of optimally sequencing the requests is equivalent to the

problem of finding a Hamiltonian path of minimum total weight starting at

node 0, where a Hamiltonian path is one which passes through each node

exactly once. This problem is well known to belong to the class of NP-hard

problems, so little hope there is to find a polynomial algorithm for its

solution. On the other side good heuristic algorithms are available; in the

following we shall describe some algorithms of this type.

Most often, the shortest Hamiltonian path problem has been considered in

the literature as a variant of the more studied Travelling Salesman problem,

that is the problem of finding a Hamiltonian cycle of minimum weight in a

graph. Actually algorithms that solve the latter problem can easily be adapted

to solve the former too.

Shortest Hamiltonian Path (SHP)
1) Find, by means of an Assignment algorithm, a shortest cycle cover of

the nodes of G. Let C1, C2, …, Ck be the cycles obtained, where each
cycle is defined by a set of nodes and a predecessor function p(.) We
assume w.l.o.g. node 0 to belong to cycle C1.

2) Define I = { 2, 3, …, k} and u = p(0). While I ≠ Ø do: find an index i ∈ I
and a node v ∈ Ci such that w(u, v) - w(p(v), v) be minimum, set s =
p(v), p(v) = u , u = s and I = I\{i}.

3) Return the sequence defined by the function p(.) with node 0 as the
first node.

- 8 -

The complexity of this algorithm is O(n3); in fact the cost of step 1 (the

assignment routine) is O(n3) being the graph complete, while the overall cost

of step 2 is O(n2).

SHP can be refined considering the following variant of step 2):
2’) Define I = { 2, 3, …, k} and C= C1. While I ≠ Ø do: find an index i ∈ I, a

node u∈ C and a node v ∈ Ci such that w(p(u),v) + w(p(v),u) - w(p(v),v) -
w(p(u),u) be minimum, set s =p(v), p(v) = u , C=Ci and I = I\{i}.

The complexity of this algorithm (SHP’) is unchanged even though the

complexity of step 2’) is increased.

6. Performance of Shortest Hamiltonian Path heuristics

In this first phase of computational experiments, some of the most known

heuristics for shortest Hamiltonian path have been compared; we considered

asymmetric distance matrices whose elements have been generated with

uniform, exponential and normal distributions. These tests do not take into

account the dynamic arrival of requeststhe other peculiarities of out problem.

In the following tables, the algorithms SHP and SHP’ presented in the

previous section, are considered. Column NN refers to the classical greedy

algorithm that, at each step, selects the nearest node among the neighboring

unvisited ones. Algorithm NN has been improved including a local search

phase that, once the path has been constructed, tries to decrease the path

length by means of exchanges of pair of nodes in the sequence (NN+exch.).

Problems with 100, 200, 500 and 1000 nodes have been considered. For each

size the average path length over ten problems is reported. The distance

matrices have been generated according to the following distributions:
- uniform in the set {0,…,30};

- exponential with mean λ=10;

- normal with mean µ=10 and standard deviation σ=5;

- normal with mean µ=14 and standard deviation σ=5;

size SHP SHP’ NN NN+exch.

Unif {0,…,30} 100 23.5 19.4 82.2 56.7

Unif {0,…,30} 200 13.9 5.7 89.3 59.5

Unif {0,…,30} 500 23.8 8.3 84.1 53.9

Unif {0,…,30} 1000 23.8 6.8 86.3 39.0

table 6.1

- 9 -

size SHP SHP’ NN NN+exch.

exp λ=10 100 5.2 3.7 25.0 14.0

exp λ=10 200 4.2 0.1 21.7 12.2

exp λ=10 500 7.1 1.5 24.3 7.4

exp λ=10 1000 10.8 4.3 27.5 13.3

table 6.2

size SHP SHP’ NN NN+exch.

N: µ=10, σ=5 100 67.7 68.6 119.8 111.5

N: µ=10, σ=5 200 42.7 41.1 138.8 121.7

N: µ=10, σ=5 500 9.2 4.9 153.8 127.2

N: µ=10, σ=5 1000 15.7 10.3 160.4 130.1

table 6.3

size SHP SHP’ NN NN+exch.

N: µ=14, σ=5 100 269.0 266.4 348.9 336.5

N: µ=14, σ=5 200 351.6 350.6 516.7 487.5

N: µ=14, σ=5 500 376.8 374.0 694.8 676.2

N: µ=14, σ=5 1000 291.2 286.6 322.2 301.7

table 6.4

The results emphasize that, when uniform, exponential and normal

distributions are considered, SHP and SHP' outperform Nearest Neighbor,

also when the latter includes a local search phase. The global percent gap

between NN+exch. and SHP' is 420%, 389%, 293%, 41%, for tables 6.1, 6.2, 6.3

and 6.4, respectively. Very often SHP and SHP' give the optimal solution

(path length equal 0) especially when the size of the problem is sufficiently

large.

In a second set of experiments, distance matrices which take into account

some of the characteristics of the disk scheduling problem have been used.

Table 6.5 refers to problems obtained by generating, randomly with uniform

distribution, the location in the disk surfaces of the requests and then by

computing the distances based on the technical characteristics of the disk (HP

97560) Table 6.6 refers to problems obtained from real life traces of requests.

In both cases we assume that all the requests arrive at the same time; in fact

our goal here is only to compare the shortest Hamiltonian path algorithms

studying the effects of the type of distances used on their relative behavior.

- 10 -

size SHP SHP’ NN NN+exch.

100 904.0 876.9 923.2 923.8

200 1600.8 1449.6 1647.4 1639.0

500 3448.2 3353.6 3581.8 3573.5

1000 6075.0 5930.0 6390.8 6365.4

table 6.5

size SHP SHP’ NN NN+exch.

100 555.2 534.1 562.9 560.1

200 1099.5 1081.9 1154.8 1150.5

500 2401.9 2371.0 2550.3 2537.0

1000 4456.0 4405.4 4830.6 4820.4

table 6.6

The results point out that the differences between SHP and Nearest

Neighbor algorithms are not so evident as it was in the previous case. The

global percent gap between SHP' and NN+exch. is 7.7 and 8.1 in tables 6.5

and 6.6, respectively. Moreover, it should be noted that, when real traces are

considered, the length of the path can be much shorter that in the uniformly

generated cases, due to the “locality” of requests.

The results presented in this section are quite interesting as far as our

problem is concerned. In fact, algorithm NN is nothing more than SATF.

Namely, they use the same strategy, the only difference being in the problem

they are intended for: SATF is applied to a shortest hamiltonian path problem

in which the graph is incrementally constructed by adding one node at time.

The experimental results show that with distance matrices that are similar to

the ones derived from the disk scheduling problem, NN, which is in general a

poor heuristic, becomes quite good. That suggests that the improvements

which one can espect from more sophisticate heuristics may not balance the

increased computational cost.

7. Determination of lower bounds

A crucial point for the Disk Scheduling problem seems to be the
determination of lower bounds that can give a measure of algorithms
efficiency. In particular, if we can estimate from below the time needed to
access data (seek plus rotation time) for a given sequence, we can give a
measure of the best disk utilization factor for that sequence. In the following

- 11 -

we will propose several mathematical models that provide a lower bound of
the total time in accessing data for a given request sequence, and, as a
consequence, an upper bound for the disk utilization factor. All the proposed
models assume that the inter-arrival time is not influenced by the sequence of
served requests and that the arrival times of the requests are known in
advance.

Let dij represent the time needed to move the head from the ending block of

request i to the first block of request j, and Π be the rotation period of the disk

(i.e. Π=1/ρ). Moreover let si denote the time needed to read or write request i,

ai denote the arrival time of request i and δi be the time needed by the head of

the disk to reach the beginning of request i considering a null seek time (i.e. δi

is the min waiting time for request i). Let us fix K as the maximum number of

disk revolutions a request is allowed to wait in the queue; as a consequence

for each request i we can define a due date bi=ai + δi + KΠ. Moreover let T be

an upper bound of the completion time of the whole sequence of requests.

Integer linear programming formulation

Consider a graph G = (N ,A) where N={0,…,n+1} each node represents a

request; 0 and n+1 are two dummy requests that represent the beginning and

the end of the sequence processing, respectively (a0=s0=sn+1=0, an+1=T).

There is an arc (i,j)∈ A if two requests i and j can be processed consecutively

(i.e. bj≥ai + δi + si + dij). The forward star and backward star of node i are

defined as FS(i)={j∈ N,(i,j)∈ A}, BS(i)={j∈ N,(j,i)∈ A}, respectively (obviously

BS(0)=FS(n+1)=Ø). A 0-1 variable xij is associated to each arc (i,j)∈ A; x ij=1 iff

request i is processed immediately before request j. Variable ti, denotes the

starting time of execution of requesti, i∈ N,. Note that if G is not connected, we

can identify an independent scheduling problem for each connected

component, and solve it separately. Disk Scheduling constraints can be

expressed as follows:

∑
j∈ FS(i)

xij =1, i=0,…,n, (7.1)

∑
i∈ BS(j)

xij =1, j=1,…,n+1, (7.2)

ti + si + dij ≤ tj + T(1-xij), ∀ (i,j)∈ A, (7.3)

ai + δi ≤ ti ≤ bi, i=0,…,n, (7.4)

xij∈ {0,1}, ∀ (i,j)∈ A,

ρ(ti-ai-δi)∈ Z. i=0,…,n+1.

- 12 -

Constraint (7.3) states that if request i and j are processed consecutively then

the difference between ti and tj must be greater that or equal to the time

needed to execute request i plus the distance dij; in practice these constraints

play the role of subtour elimination constraints in usual TSP formulations.

Moreover constraints (7.4) together with integrality of ρ(ti-ai-δi) state that

requests can be accessed only at fixed periodic instants.

Several objective functions can be defined depending on the chosen

optimization criterion. In the case of disk utilization factor maximization we

are interested in minimizing the total sum of seek plus rotation times. Hence

the objective function is:
min ∑

(i,j)∈ A
dij xij.

On the other hand, if we want to arrange the sequence in such a way that
the average response time is minimized, the objective function turns out to be
the following:

min ∑
i∈ Ν

t i - (ai + δi).

Finally if we want to minimize the maximum response time, we need to

introduce a new variable r and the following constraints:
ti - (ai + δi)≤r, i=1,…,n,

and the objective function to minimize is r.

The continuous relaxation of the problem defined by constraints

(7.1),…,(7.4) and any one of the above objective functions yields a lower

bound for the Disk Scheduling problem. The size of the problem is quite

reasonable (O(n2) constraints and O(n2) variables), and it can be efficiently

solved by means of Linear Programming techniques. Let us call ub1 the disk

utilization factor upper bound obtained solving the previous continuous

relaxation.

Flow model

Consider the graph G = (N ,A) defined above. Flow variables zij are

associated to each arc (i,j)∈ A and they are such that the total amount of flow

exiting from each node i gives the point in time at which request i is
completed (i.e. ∑

j∈ FS(i)
zij =ti+si). At each node the flow increases at least of si +

dji, where j is the request that precedes i in the sequence. Problem constraints

are the following:

- 13 -

∑
j∈ FS(i)

xij =1, i=0,…,n, (7.5)

∑
i∈ BS(j)

xij =1, j=1,…,n+1, (7.6)

ti ≤ ∑
j∈ FS(i)

zij - si, i=0,…,n, (7.7)

ti ≥ ∑
j∈ BS(i)

zji + ∑
j∈ BS(i)

dji xji, i=1,…,n+1, (7.8)

ai + δi ≤ ti ≤ bi, i=0,…,n, (7.9)

zij≤Txij, ∀ (i,j)∈ A, (7.10)

xij∈ {0,1}, ∀ (i,j)∈ A,

ρ(ti-ai-δi)∈ Z. i=0,…,n+1.

As in the previous case, several objective functions can be defined. In the

case of disk utilization factor maximization we have:
min ∑

(i,j)∈ A
dij (xij).

Considering average response time minimization, the objective function is:
min ∑

i∈ Ν
t i - (ai + δi).

Finally if we want to minimize the maximum response time, we need to

introduce a new variable r and the following constraints:
ti - (ai + δi)≤r, i=1,…,n,

and the objective function to minimize is r.

Also in this case, the continuous relaxation of the problem defined by

constraints (7.5),…,(7.10) and any one of the above objective functions yields a

lower bound for the Disk Scheduling problem. The size of the problem is

O(n2) constraints and O(n2) variables, and it can be efficiently solved by

means of Linear Programming techniques.

Let us call ub2 the disk utilization factor upper bound obtained solving the

previous continuous relaxation.

Shortest Path with side constraints formulation

Consider the directed graph G’=(N’,A’) where N’ is given by a source s, a

sink t and the nodes h=(i,ti) that represents a request i and a possible

accessing time ti for it (i.e. ai + δi ≤ ti ≤ bi, and ti/Π∈ Z). The number of nodes

is O(Kn). There is an arc (h,k)∈ A’ (with h=(i,ti), k=(j,tj)) if i≠j and ti + dij + si ≤

tj, and either tj-Π<aj or ti + dij + si > tj-Π; the length lhk associated to arc (h,k) is

- 14 -

dij. Moreover (s,h) and (h,t) are in A’ for each h∈ N’, h≠s,t, and their length is

null. Let us call level li the set of nodes related to request i. The number of arcs

is bounded by O(Kn2). Note that G’ is acyclic.

The problem of finding the rearrangement of the sequence that gives the

best utilization factor can be reduced to finding the shortest path between the

source s and the sink t that selects exactly one node from each level. The

problem can be formulated as follows:
min ∑

(h,k)∈ A’
dhkxhk

∑
h∈ BS(k)

xhk - ∑
h∈ FS(k)

xkh = 0 ∀ k∈ N’, k≠s,t,

∑
h∈ FS(s)

xsh = 1

∑
h∈ BS(t)

xht = 1

∑
h∈ l(i)

 ∑
k∈ BS(h)

xht = 1 i=1,…,n.

xhk∈ {0,1}, ∀ (h,k)∈ A’.

Two relaxations of the above problem can be considered. The first relaxation

SP1 is obtained by dropping integrality constraints and solving the resulting

Linear Programming problem.

Another lower bound SP2 is given by the following Lagrangean relaxation:

SP2=max{L(λ): λ∈ Rn}
L(λ)=min ∑

(h,k)∈ A’
dhkxhk + ∑

i
λi (∑

h∈ l(t)
 ∑

k∈ BS(h)
xht -1)

∑
h∈ BS(k)

xhk - ∑
h∈ FS(k)

xkh = 0 ∀ k∈ N’, k≠s,t,

∑
h∈ FS(s)

xsh = 1

∑
h∈ BS(t)

xht = 1

xhk∈ {0,1}, ∀ (h,k)∈ A’.

Note that the evaluation of L(λ) for a fixed λ can be carried out solving a

Shortest Path problem on an acyclic graph that can be done very efficiently in

O(|A’|) time. Moreover, since L(λ) has the integrality property, according to

[Geoffrion, 1974] SP2=SP1.

- 15 -

8. Preliminary experimental results

In the experiments, requests obtained from real traces have been considered.

The real traces have been provided by the CSP group of Hewlett Packard

Laboratories (Palo Alto).

In the following table we compare the disk utilization upper bound ub1 and

ub2 defined in the previous section, with the solution yielded by SHP’ and the

optimal disk utilization factor, for request sequences of increasing length.

Parameter K has been fixed to 200.

size ub1 ub2 SPH’ opt

5 .25 .25 .25 .25

10 .24 .24 .20 .22

15 .25 .25 .20 -

20 .28 .28 .20 -

30 .27 .27 .18 -

50 .27 .27 .16 -

100 .30 .25 .14 -

150 .33 .26 .14 -

table 8.1

For sequences with more than 10 elements it has not been possible to solve

exacly the problem in a reasonable time.

The results show that when the size is sufficiently large ub2 is tighter than

ub1. When the size of the sequence is small the boound seems to be fairly

close to the optimal value; however for large sequences the upper bound is

rather far from the value given by the heuristic SHP’.

7. Conclusions and further developments

The contribution of this paper is threefold: (i) we have introduced a new class

of algorithms for the disk scheduling problem; (ii) after pointing out that the

disk scheduling algorithms are based on some heuristics for the shortest

hamiltonian path problem, we have tried to compare the performance of such

heuristics under different hypotheses on the distance metric; (iii) we have

addressed the problem of deriving realistic upper bounds for the disk

utilization factor.

The experimentation presented in the paper is still uncomplete; for instance,

the Linear Programming models presented need further study since they lead

- 16 -

to exceedingly large scale problems as the number of requests increases. The

development of special algorithms based on Lagrangean relaxation for the

third model presented in section 7 is currently under study and will be

presented in a forthcoming paper.

Although still preliminary, the results obtained may lead to some first

approximation conclusions. A first conclusion is that as the distance metric

approaches the ones which can be derived from real life problems the

differences in the performances of the different algorithms seem to almost

disappear. This result is consistent with the results from a large simulation

described in a joint paper of one of the authors, which is currently in

preparation [Cao, Malucelli & Wilkes, 1993]. A second conclusion, or better a

conjecture which can be derived from the first upper bounds on the disk

utilization obtained is that the best algorithms under study (not the ones used

in practice!) yield disk utilization values that are not too far from optimality.

References
D. J. Bertsimas and G. Van Ryzin, “A stochastic and dynamic vehicle routing problem in

the Euclidean plane”, Operations Research, 39 (1991) 601-615.
P. Cao, F. Malucelli, J. Wilkes, “An experimental comparison of disk scheduling

algorithms”, in preparation.
R. Geist and S. Daniel, “A continuum of Disk Scheduling Algorithms”, ACM Transactions

on Computer Systems, 5 (1987) 77-92.
A. M. Geoffrion, “Lagrangean relaxation for integer programming”, Mathematical

Programming Study, 2 (1974) 82-114.
D. M. Jacobson and J. Wilkes, “Disk Scheduling algorithms based on rotational position”,

Technical report HPL-CSP-91-7, Febuary 1991, Hewlett Packard Company
M. Seltzer, P. Chen and J. Ousterhout, “Disk scheduling revisited”, USENIX, Winter 1990,

313-323.
T. J. Teorey and T.B. Pinkerton, “A comparative analysis of disk scheduling policies”,

Communications of the ACM, 15 (1972) 177-184.

