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Abstract

The explicit use of partial di�erential equations (PDE's) in image processing be-

came a major topic of study in the last years. In this work we present an algorithm

for histogram modi�cation via PDE's. We show that the histogram can be modi�ed

to achieve any given distribution. The modi�cation can be performed while simulta-

neously reducing noise. This avoids the noise sharpening e�ect in classical algorithms.

The approach is extended to local contrast enhancement as well. A variational inter-

pretation of the 
ow is presented and theoretical results on the existence of solutions

are given.

Key words: Histogram modi�cation, partial di�erential equations, denoising, varia-

tional formulation.

1 Introduction

The use of partial di�erential equations (PDE's) for image processing became a major re-
search topic in the past years. The idea is not to think of image processing in the discrete

domain but in the continuous one, combined with e�cient numerical implementations. In
general, let �0 : R � R ! R represent a gray-level image, where �0(x; y) is the gray-level

value. The algorithms that we describe are based on the formulation of partial di�erential

equations of the form
@�

@t
= F [�(x; y; t)];
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where �(x; y; t) : R2 � [0; � ) ! R is the evolving image, F : R ! R is a given function

which depends on the algorithm, and the image �0 is the initial condition. The solution

�(x; y; t) of the di�erential equation gives the processed image.

Most of the use of PDE's for image processing was done for image debluring or denoising

[1, 2, 8, 13, 14, 19, 23, 24]. PDE's where recently used as well for a number of problems in

computer vision as shape analysis [9], shape from shading [10, 18], segmentation [5, 6, 12],

invariant shape smoothing [22], and mathematical morphology [1, 20]. See [17] for a recent

book on the topic.

One of the advantages of the use of PDE's for image processing is the possibility to combine
algorithms. If two procedures are given by

@�

@t
= F1[�(x; y; t)] ;

@�

@t
= F2[�(x; y; t)];

then they can be combined as

@�

@t
= �F1[�(x; y; t)] + F2[�(x; y; t)];

where � 2 R+. This was successfully used for example in [3], where F1 was the smoothing
operator in [2] and F2 the debluring one in [13].

Other advantage of this methodology is the accuracy achieved when e�cient numerical im-
plementations are used. This makes the algorithms very appropriate for example for medical

applications.

In this work we present a novel PDE for histogram modi�cation. We show how to obtain any
grey-level distribution, and present examples. Then, as an example, we combine it with the

smoothing operator proposed in [23], obtaining contrast normalization and denoising at the

same time. A variational interpretation of the histogram modi�cation 
ow and theoretical
results regarding existence of solutions to the proposed PDE's are presented as well.

Before proceeding with the algorithm we should point out that in [15] the authors recently

presented a di�usion network for image normalization. In their work, the image �(x; y) is
normalized via ���a

�M��m
, where �a, �M , and �m are the average, maximum, and minimum of

� over local areas. These values are computed using a di�usion 
ow, which minimizes a cost
functional. The method was generalized computing a full local frame of reference for the

gray level values of the image. This is achieved changing the variables in the 
ow. A number
of properties, including existence of the solution of the di�usion 
ow, were presented as well.

In contrast with their work, in our case we have full control of the �nal distribution of the

gray-levels, that means while their work is on contrast normalization, our is on histogram
modi�cation. Also, the modi�ed image is obtained in this work as the steady state solution

of the PDE, without any extra operations as required in [15]. This allows straightforward
combination with other PDE based algorithms as explained above.
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2 Histogram modi�cation

We start from the PDE for histogram equalization, and then we extend it for any distribution.

Assume that he image �(x; y; t) : [0; N ]2! [0;M ] evolves according to

@�(x; y; t)

@t
= (N2 �N2=M �(x; y; t))�A[(v;w) : �(v;w; t) � �(x; y; t)]; (1)

where A[�] represents area (or number of pixels in the discrete case). For the steady state

solution (�t = 0) we have

A[(v;w) : �(v;w) � �(x; y)] = (N2 �N2=M �(x; y)):

Then, for a; b 2 [0;M ], b > a, we have

A[(v;w) : b � �(v;w) � a] = (N2=M) � (b� a);

which means that he histogram is constant. Therefore, the steady state solution of (1) gives

the image after normalization via histogram equalization. Note than in spite of the fact that
A[�] is a global operator, special data structures can be used which make its computation
very fast. The values of A[�] need to be updated after each iteration, and not re-computed.
This makes the algorithm very fast. As we will see in sections 3 and 4, we can also just
compute A[�] in the neighborhood of the pixel that is being updated, or just perform local

histogram equalization dividing the image into regions as in classical histogram modi�cation
algorithms.

From (1) we can extend the algorithm to obtain any given gray-value distribution h :

[0;M ] ! R+. Let H(s) :=
R s
0 h(�)d�. That is, H(s) gives the density of points between 0

and s. Then, if the image evolves according to

@�(x; y; t)

@t
= (N2 �H[�(x; y; t)])�A[(v;w) : �(v;w; t) � �(x; y; t)]; (2)

the steady state solution is given by

A[(v;w) : �(v;w) � �(x; y)] = (N2 �H[�(x; y)]):

Therefore,

A[(v;w) : �(x; y) � �(v;w) � �(x; y) + �] = H[�(x; y) + �]�H[�(x; y)]);

and tacking Taylor expansion when �! 0 we obtain the desired result. Note that of course

(1) is a particular case of (2), with h = constant.
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2.1 Existence and uniqueness of the 
ow

We present now results related to the existence and uniqueness of the proposed 
ow for

histogram modi�cation. Results on existence of the 
ow obtained when combined with a

smoothing operator will be presented in Section 3.1. Results on the smoothing operator

itself can be found in the mentioned references.

Let �0 be an image de�ned in [0; N ]2 with values in the range [a; b], 0 � a < b � M . We

assume that the distribution function of �0 is continuous, that is

A[X : �0(X) = �] = 0 (3)

for all X 2 [0; N ]2 and all � 2 [a; b]. To equalize the histogram of �0 we look for solutions of

�t(t;X) = A[Z : �(t; Z) < �(t;X)]� N2

b� a(�(t;X)� a) (4)

which also satisfy
A[X : �(t;X) = �] = 0: (5)

Hence the distribution function of �(t;X) is also continuous. This requirement, mainly tech-

nical, avoids the possible ambiguity of changing the sign \ < " by \ � " in the computation
of A. Let's recall the de�nition of sign�(�):

sign�(r) =

8><
>:

1 if r < 0
[0; 1] if r = 0
0 if r > 0

With this notation, � satisfying (4) and (5) can be written as

�t(t;X) =
Z
[0;N ]2

sign�(�(t; Z)� �(t;X))dZ � N2

b� a(�(t;X)� a): (6)

Observe that as a consequence of (5), the real value of sign� at zero is unimportant, avoiding

possible ambiguities. In order to simplify the notation, let us normalize � such that it is

de�ned on [0; 1]2 and takes values in the range [0; 1]. This is done just by the change of

variables given by �(t;X)  �(�t;NX)�a

b�a
, where � = b�a

N2 . Then, � satis�es the equation

�t(t;X) =
Z
[0;1]2

sign�(�(t; Z)� �(t;X))dZ � �(t;X): (7)

Therefore, without loss of generality we can assume N = 1, a = 0, and b = 1, and analyze
(7). For this 
ow we have the following result:

Theorem 1 For any continuous function �0 : [0; 1]
2! [0; 1] such that A[Z : �0(Z) = �] =

0 for all � 2 [0; 1], there exists a unique continuous solution �(t;X) in [0; 1]2 with range [0; 1]

satisfying the 
ow (7) with initial condition given by �0, and such that A[Z : �(t; Z) = �] = 0
for all � 2 [0; 1]. Moreover, as t!1, �(t;X) tends to the histogram equalization of �0(X).
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Proof: We start with the existence. We look for a solution �(t;X) such that for all t > 0,

X;X 0 2 [0; 1]2, �(t;X) < �(t;X 0) if and only if �0(t;X) < �0(t;X
0). This assumption is

enough to prove existence. Later we will proof that it holds for any solution of (7). In that

case

A[Z : �(t; Z) < �(t;X)] = A[Z : �(0; Z) < �(0;X)]; (8)

that is, is independent of t. Let us denote this function by F0(X). Then, (7) can be re-written

as

�t = F0(X)� �(t;X); (9)

whose explicit solution is

�(t;X) = expf�tg�0 + (1� expf�tg)F0(X): (10)

Observe that the solution has range [0; 1] and satis�es

A[Z : �(t; Z) = �] = 0 ; t � 0 ; � 2 [0; 1]: (11)

Since (10) also satis�es (8), it is a solution to the histogram equalization 
ow.

In order to proof uniqueness, we need to following Lemma:

Lemma 1 Let �(t;X) be a continuous solution of (7) satisfying (11). Let X;X 0 2 [0; 1]2 be
such that �(0;X) < �(0;X 0). Then

�(t;X 0)� �(t;X) � expf�tg(�(0;X 0) ��(0;X)): (12)

Proof: Let � > 0. Then

d
dt

�
�1

2
ln(�2 + �(t;X 0)� �(t;X))2

�

= �(t;X 0)��(t;X)

�2+(�(t;X 0)��(t;X))2
(
R
sign�(�(t; Z)� �(t;X 0))dZ � R sign�(�(t; Z)� �(t;X))dZ)

+ (�(t;X 0)��(t;X))2

�2+(�(t;X 0)��(t;X))2
:

One easily veri�es that the �rst term above is negative. Therefore

d

dt

�
�1
2
ln(�2 + �(t;X 0)��(t;X))2

�
� (�(t;X 0)� �(t;X))2

�2 + (�(t;X 0)� �(t;X))2
� 1:

After integration we observeq
�2 + (�(t;X 0)� �(t;X))2 � expf�tg

q
�2 + (�(0;X 0)� �(0;X))2:

Letting � ! 0,

j�(t;X 0)� �(t;X)j � expf�tgj�(0;X 0)� �(0;X)j > 0:
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Since �(t;X) is continuous, this implies (12). 2

Together with (3), this Lemma implies that if X;X 0 2 [0; 1]2 are such that �(0;X) =

�(0;X 0), then �(t;X) = �(t;X 0). Indeed since A[Z : �(0; Z) = 0] = 0, one can �nd

sequences Xn;X
0
n 2 [0; 1]2 such that

Xn ! X ; X 0
n ! X 0

�(0;Xn) = �n > 0 ; �n ! �(0;X) = 0

�(0;X 0
n) = �0n > 0 ; �0n ! �(0;X 0) = 0

and �n > �0n. By the previous Lemma, �(t;Xn) > �(t;X 0
n). Letting n ! 1 we have

�(t;X) � �(t;X 0). The other inequality follows in the same way. Hence �(t;X) =
�(t;X 0) 8 t � 0. Using the lemma above and the last observation we see again that

[ Z : �(t; Z) < �(t;X)] = [Z : �(0; Z) < �(0;X)]

[ Z : �(t; Z) = �(t;X)] = [Z : �(0; Z) = �(0;X)] (= 0):

Therefore,Z
sign�(�(t; Z)��(t;X))dZ =

Z
sign�(�(0; Z) ��(0;X))dZ = F0(X):

The 
ow can be re-written as (9), and (10) gives the solution. Letting t!1, �(t;X) tends
to F0(X), which corresponds to the equalized histogram for �0(X). 2

Remark. The above proof can be adapted to any required gray-value distribution h, proving
the results for the 
ow

�t(t;X) =
Z
sign�(�(t; Z)� �(t;X))dZ �	(�(t;X)); (13)

where 	 is any strictly increasing Lipschitz continuous function.

2.2 Variational interpretation of the histogram 
ow

The formulation given by equations (6) and (7) not only helps to prove the theorem above,

also gives a variational interpretation of the histogram modi�cation 
ow. Variational ap-
proaches are frequently used in image processing. They not only give explicit solutions for
a number of problems, also help very often to give an intuitive interpretation of the so-

lution, interpretation which is many times not so easy to achieve from the corresponding

Euler-Lagrange or PDE. Variational formulations help to derive new approaches as well.

Let us consider the following functional

U(�) = 1

2

Z �
�(X)� 1

2

�2
dX � 1

4

Z Z
j�(X)� �(Z)jdXdZ; (14)

where � 2 L2[0; 1]2, 0 � �(X) � 1. U is a Lyapounov functional for the equation (7).
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Lemma 2 Let � be the solution of (7) with initial data �0 as in Theorem 1. Then

dU(�)
dt

� 0:

Proof:

dU(�)
dt

=
Z �

�(X) � 1

2

�
�t(X)dX � 1

4

Z Z
sign(�(Z) ��(X))(�t(Z)� �t(X))dXdZ:

Let's denote the �rst integrand in the equation above by A and the second by B. Observe

that due to (11), part B of the integral above is well de�ned. Let us re-write B as

B =
1

4

Z Z
sign(�(Z)� �(X))�t(Z)dXdZ �

1

4

Z Z
sign(�(Z) ��(X))�t(X)dXdZ:

Interchanging the variables X and Z in the �rst part of the expression above we obtain

B = �1
2

Z Z
sign(�(Z)� �(X))�t(X)dXdZ:

Fixing X we haveZ
sign(�(t; Z)��(t;X))dZ = 1� 2

Z
sign�(�(t; Z)� �(t;X))dZ;

and we may write

B = �1
2

Z
�t(X)dX +

Z Z
sign�(�(Z) ��(X))�t(X)dZdX:

Hence

dU(�)
dt

=
Z
�(t;X)�t(t;X)dX �

Z Z
sign�(�(t; Z)� �(t;X))�t(t;X)dXdZ

=
Z �

�(t;X)�
Z
sign�(�(t; Z)� �(t;X))dZ

�
�t(t;X)dX

= �
Z
�t(t;X)2dX � 0:

This concludes the proof. 2.

Therefore, when solving (7) we are indeed minimizing, by the steepest descent method, the
functional U given by (14) restricted to the condition that the minimizer satis�es (11). That

means, (7) is

�t = U 0:
The �rst term in U stands for the variance of the signal, while the second one gives the

correlation between values at di�erent positions. Having this in mind, other functionals
might be proposed to achieve contrast modi�cation.

7



3 Simultaneous anisotropic di�usion and histogram

modi�cation

We present now a 
ow for simultaneous de-noising and histogram modi�cation. This is just

an example of the possibility of combination of di�erent algorithms in the same PDE.

In [23], we presented a geometric 
ow for edge preserving anisotropic di�usion, based on the

results in [1, 2] and [21, 22]. The idea is to smooth the image only in the direction parallel

to the edges, achieving this via curvature 
ows. The 
ow is given by

@�

@t
=

1

1+ k r(G � �) k �
1=3 k r� k; (15)

which is equivalent to

@�

@t
=

1

1+ k r(G � �) k(�
2
x�yy � 2�x�y�xy + �2

y�xx)
1=3; (16)

where � is the Euclidean curvature of the level-sets of �, G is a Gaussian, and (16) is obtained
from (15) via explicit computation of this curvature. The above equation means that each

one of the level sets of � is evolving according to the a�ne heat 
ow developed in [21, 22] for
planar shape smoothing, with the velocity \altered" by the function 1

1+kr(G��)k
as in [2] in

order to reduce smoothing in the edges. This 
ow, and its Euclidean version (with � instead
of �1=3 in (15)), were tested in [1, 2, 23], and proved to give very satisfactory results. See
the mentioned references for more details.

As we pointed out in the Introduction, the 
ows (2) and (15) can be combined to obtain a
new 
ow which performs anisotropic di�usion (denoising) while simultaneously modi�es the
histogram. The 
ow is given by

@�

@t
=

��1=3 k r� k
1+ k r(G � �) k + (N2 �H[�(x; y; t)])�A[(v;w) : �(v;w; t) � �(x; y; t)] (17)

where � 2 R+ is a parameter which controls the trade-o� between smoothing and histogram
modi�cation. This 
ow is tested in Section 4.

Note that other smoothing operator can be used as well. For instance, in [19] (see also [11]
for theoretical results), the authors proposed to minimize the total variation of the image,

given by Z
k r�(X) k dX:

It is easy to show that the Euler-Lagrange of this functional is given by the curvature � of
the level-sets, that is

div

 r�
k r� k

!
= �;
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which leads to the 
ow

�t = �:

Using this smoothing operator, together with the histogram modi�cation part, gives very

similar results as those obtained with the a�ne based 
ow. If this smoothing operator is

combined with the histogram 
ow, the total 
ow

@�

@t
= ��+ (N2 �H[�(x; y; t)])�A[(v;w) : �(v;w; t) � �(x; y; t)] (18)

will therefore be such that it minimizes

�
Z
k r�(X) k dX + U ; (19)

where U is given by (14), obtaining a complete variational formulation 1 of the combined
histogram-equalization/smoothing approach. This is precisely the formulation we analyze
below.

Before going into the proof let us mention that the PDE formulation above permits also to
consider simultaneous denoising and local histogram modi�cation. Indeed, we may consider

the model

@�

@t
= �� + (N2 �H[�(x; y; t)])�A[(v;w) 2 B(v;w; �) : �(v;w; t) � �(x; y; t)]; (20)

where B(v;w; �) is a ball of center (v;w) and radius �. B(v;w) can also be any other
surrounding neighborhood, obtained from example from previously performed segmentation.
Experiments with this model are presented in Section 4 as well.

3.1 Existence of the 
ow

We present now a theoretical result related to the simultaneous smoothing and contrast

modi�cation 
ow (18).

Before proceeding with the existence proof of the variational problem (19), let's recall the

following standard notation:

1. C([0; T ];H) := f� : [0; T ] ! H continuous g, where T > 0 and H is a Banach space

(and in particular for a Hilbert space).

2. Lp([0; T ];H) := f� : [0; T ]! H such that
R T
0 k � kp<1g, with 1 � p <1.

3. L1([0; T ];H) := f� : [0; T ]! H such that ess sup t2[0;T ] k � k<1g.

4. � 2 Lp
loc([0;1);H) means that � 2 Lp([0; T ];H) for all T > 0.

1The a�ne 
ow has a variational interpretation as well, but much more complicated.
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5. W 1;2([0; T ];H) := f� : [0; T ]! H such that �;�t 2 L2([0; T ];H)g.

In order to simplify notations, later we will assume 
 =]0; 1[2 and H = L2(
).

We proceed now to prove existence of the solution to the Euler-Lagrange equation corre-

sponding to the variational problem (19), given by (� = 1)

�t = div

 
r�
k r� k

!
+
Z
[0;1]2

sign�(�(t; Z)� �(t;X))� �(t;X); (21)

together with the initial and boundary conditions

�(0;X) = �0(X) ; X 2 [0; 1]2;
@�

@~n
(t;X) = 0 ; t > 0; X 2 @[0; 1]2;

where ~n stands for the normal direction. We shall use results from the theory on non-
linear semigroups on Hilbert space [4]. Before proceeding, we need a number of additional

de�nitions. A function � 2 L1(
) whose derivatives in the sense of distributions are measures
with �nite total variation in 
, is called a function of bounded variation. The class of such
functions will be denoted by BV(
). Thus, � 2 BV(
) if there are Radon measures �1; :::; �n
de�ned in 
 � Rn such that its total mass jD�ij(
) is �nite andZ



�(X)Di�(X)dX = �

Z


�(X)d�i(X)

for all � 2 C10 (
). The gradient of � will therefore be a vector valued measure with �nite

total variation

k r� k= sup

�Z


�divvdX : v = (v1; :::; vn) 2 C10 (
;Rn); jv(X)j � 1; X 2 


�
:

The space BV(
) will have the norm

k � kBV=k � k1 + k r� k :

The space BV(
) is continuously embedded in Lp(
) for all p � n
n�1

. The inmersion is

compact if p < n
n�1

([25], Theorem 2.5.1). If �i is a sequence of functions in BV(
) converging

to the function � in L1(
), then k r� k� limi inf k r�i k ([25], Theorem 5.2.1). Moreover,
given a function � 2 BV(
), there exists a sequence of functions � 2 BV(
) such that

�i ! � in L1(
) and such that k r� k= limi k r�i k ([25], Theorem 5.2.3).

Let H be a Hilbert space and let � : H !]�1;+1] be convex and proper. Given X 2 H,
the subdi�erential of � at X, @�(X), is given by

@�(X) = fY 2 H : 8� 2 H �(�) � �(X) �< Y; � �X >g:
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We write dom(�) := fX 2 H : �(X) < +1g, dom(@�) := fX 2 H : @�(X) 6= ;g. From
now on we shall write, as we mentioned before, 
 =]0; 1[2 and H = L2(
). We also de�ne

the functionals �; : H !]�1;+1] by

�(�) :=

(
k r� k+ 1

2

R

(�(X) � 1

2
)2dX � 2 BV(
)

+1 otherwise;

 (�) :=
1

4

Z



Z


j�(Z)� �(X)dXdZ:

Note that both functionals are convex, lower semicontinuous, and proper on H. We intro-

duced both functionals since formally (21) is associated with the following abstract problem:

�t + @�(�) 3 @ (�): (22)

To make such formulation precise, let us recall the following ([4], De�nition 3.1): Let T > 0,
f 2 L1([0; T ];H). We call � 2 C([0; T ];H) a strong solution of

�t + @�(�) 3 f(t) (23)

is � is di�erentiable almost everywhere on ]0; T [, � 2 dom(@�) a.e. in t and

� �t + f(t) 2 @ (�(t)) (24)

almost everywhere (a.e.) on ]0; T [. In particular, if � 2 W 1;2([0; T ];H), �(t) 2 dom(@�) a.e.
and (24) holds a.e. on ]0; T [, then � is a strong solution of (23). We say that � 2 C([0; T ];H)
is a strong solution of (22) if there exists !(t) 2 L1([0; T ];H), !(t) 2 @ (�(t)) a.e. in ]0; T [,
such that � is a strong solution of

�t + @ (�) 3 !: (25)

With these preliminaries, we reformulate (21) as an abstract evolution problem of the form

(22) and use the machinery of non-linear semigroups on Hilbert spaces to prove existence of
solutions of (22).

Theorem 2 For any �0 2 BV(
), 0 � �0 � 1, there exists a strong solution � 2
W 1;2([0; T ];H), 8T > 0, of (22) with initial condition �(0) = �0, and such that 0 � � � 1,

8t > 0. Moreover, the functional V(�) = �(�)�  (�) is a Lyapounov functional for (22).

Proof: The proof is divided in a number of steps.
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1st Step. Regularization:

De�ne for each � > 0, the following functionals

��(�) :=

8<
:

�
2

R

 k r� k2dX + �

2

R



q
�2 + k r� k2dX + 1

2

R



�
�(X)� 1

2

�2
dX � 2 BV(
)

+1 otherwise;

 �(�) :=
1

4

Z



Z


��(�(Z)� �(X))dXdZ;

where ��(r) :=
p
�2 + r2, r 2 R. Observe that �� is smooth, �0� is an odd function, and j�0�j �

1. Both �� and  � are convex, lower semicontinuous, and proper on H. Let ��0 2 W 1;2(
)

be such that 0 � ��0 � 1, ��0 ! �0 in H,
R

 k r��0 k!k r�0 k, and �

R

 k r��0 k2! 0

as � ! 0. Hence ��(��0) ! �(�0) as � ! 0 (such sequence exists from Lemma 3.1 in [7]).
Since �� is convex, lower semicontinuous, and proper, @�� is a maximal monotone operator
on H ([4], 2.3.4). On the other hand, letting

B� :=  0�(�) = �
1

2

Z


�0�(�(Z)� �(X))dZ; � 2 H

B� : H ! H satis�es

k B�(�)�B�(�̂) k2�k �00� k1k �� �̂ k2; �; �̂ 2 H:

That is B� is a Lipschitz operator on H. Hence, @ � + B� generates a strongly continuous
semigroup onH ([4], Proposition 3.12). Therefore, there is a strong solution �� 2 C([0; T ];H)
of

�t + @��(�) +B�(�) = 0

such that ��(0) = ��0. Writing f�(t) = �B�(��(t)) =  0�(��(t)), jf�j � 1
2
. Therefore

f� 2 L1([0; T );H) and we see that �� is a strong solution of

�t + @��(�) = f�(t) (26)

with ��(0) = 	�0. Since ��0 2 dom(��), using the regularization properties of semigroups
generated by subdi�erentials ([4], Theorem 3.6), we have the following estimates: �� 2
W 1;2([0; T ];H), t! ��(��(t)) is absolutely continuous on [0; T ] and

Z


j��tj2 +

d

dt
��(��) =< f�;��t >=

d

dt
 �(��): (27)

In particular, from (27)

Z


j��tj2 +

d

dt
��(��) �k f� k2k ��t k2�

(k f� k2)2 + (k ��t k2)2
2

: (28)
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Integrating the equation above from 0 to T we obtain

1

2

Z T

0

Z


j��tj2dXdt+ ��(��) � ��(��0) +

T

8
: (29)

We have the following bounds independent of �:Z


k r�� k�M ;

Z


k �� k2�M ;

Z


k ��t k2�M; (30)

8t > 0, 8� > 0, and some M > 0. The bounds above mean that �� 2 W 1;2([0; T ];H) \
L1([0; T ];BV(
)) for any T > 0.

2nd Step. Uniform bounds on ��:

To get the bounds 0 � �� � 1, let us observe that since �� is strictly convex and  � is
smooth, �� is the classical solution of the corresponding PDE

�t = div

0
@�r� +

r�q
�2 + k r� k2

1
A � �� � 1

2

�
� 1

2

Z


�0�(�(t; Z)� �(t;X))dZ: (31)

It will be important to re-write (31) as

�t = div

0
@�r�+

r�q
�2 + k r� k2

1
A � 1

2

Z


(1� �0�(�(t; Z)��(t;X))dZ � �: (32)

To prove that �� � 0, let j 2 C1(R), j � 0, j0 � 0, j00 � 0, j(X) = 0 8X � 0, and
0 < j(X) � jXj 8X < 0. Then

d

dt

Z


j(��) =

Z


j0(��)��t: (33)

Based on (32), and integrating by parts, we obtain that the expression above is equal to

�
Z


j00(��)r��

2
4�r�� +

r��q
�2+ k r�� k2

3
5 dX

+
1

2

Z


j0(��(t;X))

Z


(1� �0�(��(t; Z)� ��(t;X))dZdX �

Z


j0(��)��:

The �rst term is negative by de�nition. Since j�0�j � 1, and j0 � 0, so is the second term.

Since j0 � 0 and j(X) = 0 for x � 0, the third term is negative as well. Hence, integrating
(33) from 0 to T Z



j(��(T;X)dX �

Z


j(��(0;X))dX:
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In particular, if ��(0) � 0, j(��) = 0. Hence �� � 0.

To prove that �� � 1, let us compute for p > 2

d

dt

Z


��(t;X)pdX = p

Z


�p�1
� ��tdX:

Using (32) and integrating by parts, this expression is equal to

� p(p � 1)
Z


��(t;X)p�2r��

2
4�r�� +

r��q
�2+ k r�� k2

3
5 dX

+
1

2
p

Z


��(t;X)p�1

Z


(1� b0�(��(t; Z)� ��(t;X))dZdX � p

Z


��(t;X)pdX:

It is clear that the �rst term is negative. The second term can be majorized using (1�� 0�) � 2.
Hence

d

dt

Z


��(t;X)pdX � p

Z


��(t;X)p�1dX � p

Z


��(t;X)pdX

� p

�Z


��(t;X)pdX

� p�1

p � p
Z


��(t;X)pdX;

where H�older inequality has been used. De�ning A�p(t) := (
R

 ��(t;X)pdX)1=p, we have

d

dt
A�p(t)

p � pA�p(t)
p�1 � pA�p(t)

p:

It follows that, where A�p(t) > 0,

d

dt
A�p(t) � 1 �A�p(t);

A�p(t) � 1 + expf�tg(A�p(0)� 1):

If p!1, A�p(t)!k ��(t) k1, A�p(0)!k ��(0) k1, we have

k ��(t) k1� 1 + expf�tg(k ��(0) k1 �1) � 1:

Hence
0 � �� � 1; a.e. � > 0 (34)

3rd Step. Letting �! 0:

From (30), we know that there exists a sequence �� such that �� ! � in L1loc([0;1[��
).
From (34) we also have that �� ! � in Lp

loc([0;1[��
), 8p < 1, and �� ! � weak-* in

L1loc([0;1[��
). Therefore,

� 2 W 1;2
loc ([0;1[;H) \ L1loc([0;1[;BV(
)):

14



(The subindex \loc" could be omitted as we will see below). We also have 0 � � � 1 almost

everywhere. Now, since �� is a strong solution of (27)

��(�̂)� ��(��) �< ��t �  0�(��);�� � �̂ >; 8�̂ 2 H: (35)

Let ��(t; Z;X) := ��(t; Z)���(t;X). Since ��(t; Z;X)! �(t; Z)��(t;X) in L1loc([0;1[��
),
there exists a subsequence (call it again ��(t; Z;X)) such that �0�(��) converges to s(t;X;Z) 2
sign(�(t; Z) � �(t;X)) weakly-� in L1([0; T ]� �
) for all T > 0. Let ! :=

R

 s(t; Z;X)dZ.

We have

<  0�(��);�� >!< !;� > ; <  0�(��); �̂ >!< !; �̂ >

weakly-� in L1([0; T ]) for all T > 0. Therefore, converges also weakly in L1([0; T ]) for all
T > 0. On the other hand, since �� ! � in L2([0; T ];H),

< ��t;�� >= �1
2

d

dt
< ��;�� >!

1

2

d

dt
< �;� >

weakly in L1([0; T ]) for all T > 0. Similarly, < ��t; �̂ >!< �t; �̂ > weakly in L1([0; T ]) for
all T > 0. Finally, since �(�(t)) � limi inf ��(��), �(�̂) = lim� ��(�̂) for all �̂ 2 W 1;2(
),
letting �! 0 in (35) we obtain

�(�̂)� �(�(t)) �< �t � !;� � �̂ >; 8�̂ 2 W 1:2(
)

Now it is straightforward to see that

�(�̂(t))� �(�) �< �t � !;�� �̂ >; 8�̂ 2 H:

That is �(t) 2 dom(@�) and

��t + !(t) 2 @�(�(t)) a:e:

To justify the last assertion of Theorem 1, let us observe from (27)

d

dt
(��(��)�  �(��)) � 0;

that is

��(��(t))�  �(��(t)) � ��(��(0)) �  �(��(0)): (36)

Since  �(��(t)) !  (�(t)),  �(��(0)) !  (�(0)), ��(��(0)) ! �(�(0)), and � is lower

semicontinuous, we get (�! 0)

�(�(t))�  (�(t)) � �(�(0))�  (�(0)) a:e:: (37)

Since � is a continuous function of t, we may assume that (37) holds for all t. Hence, ��  
is a Lyapounov functional for the problem (22). 2.
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Note that the Theorem above proofs existence of the solution. There is no result so far

related to uniqueness.

Before concluding this sections, let's make some remarks on the asymptotic behavior of �

as t!1. Integrating (10) we have

Z T

0

Z


j��tj2dXdt = ��(��(t))� ��(��(0)) +  �(��(t))�  �(��(0)) � ��(��(0) +

1

4
:

If �! 0, Z T

0

Z


j�tj2dXdt + �(�(t)) �  (�(0) + 1

4
:

In particular, if T !1 Z 1

0

Z


j�tj2dXdt �  (�(0) +

1

4
:

Therefore, for a subsequence t = tn we have �t(tn) ! 0 in H as n ! 1. Since, on the
other hand, �(�) is bounded, we may assume that �(tn)! �� in L1. Since 0 � � � 1, also

�(tn)! �� in L2. Now, since ��t+ ! 2 @�(�) a.e., we may assume that ��t(tn) + !(tn) 2
@�(�(tn)) for all n. Hence

�(�̂)� �(�(tn)) �< ��t(tn) + !(tn);�(tn)� �̂ >; 8�̂ 2 H: (38)

Moreover, we may assume that !(tn) ! !̂ 2 @ (�̂) weakly in H. Letting n ! 1 in the
expression above, we get

�(�̂)� �(��) �< �!;�� �̂ > 8�̂ 2 H:

That is !̂ 2 @�(�̂) where !̂ 2 @ (�̂) We may say that essentially all limit points of �(t) as
t!1 are critical points of �(�)�  (�).

4 Experimental results

Before presenting experimental results, let's make some remarks on the complexity of the

algorithm. Each iteration of (2) (or (17)) has O(N2) operations. In our examples we observed

that no more than 5 iterations are usually required to converge. Therefore, the complexity
of the proposed algorithm is O(N2), which is the minimal expected for any image processing
procedure that operates on the whole image.

The �rst example is given in Figure 1. The original image is presented on the top. On
the middle we present the image after histogram equalization performed using the popular

software xv, 2 and in the bottom the one obtained from the steady state solution of (1).

This is repeated in Figure 2. Note that since the original image in Figure 2 is just the one

in Figure 1 but with the pixel values scaled by a constant factor, the result of running the

2Copyright 1993 by John Bradley.
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PDE for this image is the same of for the one in Figure 1, as expected from an histogram

modi�cation algorithm.

Figure 3 presents an example of equation (2) for h being a linear function of the form in the

top. The original image is the same as in Figure 1. In the bottom the modi�ed image is

presented.

Figure 4 gives an example of the result of tacking the original image in Figure 1 and perform-

ing histogram equalization for each block independently. In Figure 5 we compute A only in

a 32�32 surrounding area of the pixel. Note that this kind of histogram modi�cation is usu-

ally used in order to detect details in the image, and not for visual presentation. We present
them here just as examples of the use of the PDE approach to compute variations of global
histogram equalization. Other variations, as adaptive histograms [16], can be performed as
well.

An example of the simultaneous denoising and histogram equalization is given in Figure 6
for an ultrasound image of the heart. On the top left the original image is given, and on the

bottom the one obtained from our histogram equalization approach without smoothing. The
result of the combined histogram modi�cation and smoothing is given in the right column
for two di�erent values of �. This is repeated in Figure 7 for MRI. Note how the contrast
is improved, while at the same time noise is removed without mayor edge distortion. This
result is of great importance for segmentation algorithms as those proposed in [5, 6, 12].
Another example of this procedure is given in Figure 8 for a �ngerprint image. 3

Finally, in Figure 9 we present an example of combining local and global histogram modi-
�cation. The original image is given in the top. The image in the bottom is obtained from

4 iterations of local histogram as in Figure 5, followed by 3 iterations of global histogram
equalization.

5 Concluding remarks

In this paper, a novel partial di�erential equation for histogram modi�cation was presented.

The modi�ed image is obtained as the steady state solution of a PDE, which uses the original

image as initial condition. Existence and uniqueness results, and a variational interpretation
of the approach, were presented as well. The histogram modi�cation 
ow can be combined

with previously developed 
ows for anisotropic di�usion, in order to obtain a single PDE
which simultaneously performs contrast normalization and denoising. The algorithm was

tested on a number of images, and proved to converge very fast.
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