
A Fast Algorithm for DCT Domain Filtering

Neri Merhav

HP Israel Science Center�

and

Vasudev Bhaskaran

Computer Systems Laboratoryy

Keywords: DCT domain �ltering, data compression.

Abstract

A method is developed and proposed to e�ciently implement spatial domain �lter-

ing directly on compressed digital video and images in the discrete cosine transform

(DCT) domain. It is demonstrated that the computational complexity of this method

is signi�cantly smaller than that of the straightforward approach, of converting back

to the uncompressed domain, convolving in the spatial domain, and retransforming

to the DCT domain. It is assumed that the impulse response of the two dimensional

�lter is symmetric and separable. The method is applicable to any DCT based data

compression standard, such as JPEG, MPEG, and H.261.

�Address: HP Israel Science Center, Technion City, Haifa 32000, Israel. Email: merhav@hp.technion.ac.il
yAddress: Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, U.S.A. Email: bhaskara@hpl.hp.com

Internal Accession Date Only



For HP Internal Use Only

1 Introduction

The last few years have witnessed a rapidly growing interest in developing fast algorithms
for manipulating compressed images and video streams directly in the compressed domain,
without explicit transformation back to the uncompressed domain, which is computationally
expensive. When transform domain schemes are considered (like JPEG, MPEG, and H.261),
in which the discrete cosine transform (DCT) coe�cients are compressed, the \compressed
domain" actually refers to the the DCT domain, while the \uncompressed domain" means
the spatial domain. The most useful operations of image and video manipulation are scal-
ing, masking, pixel-by-pixelmultiplication, translation, rotation, overlapping, inverse motion
compensation, and �ltering. In this work we focus on the latter, i.e., the �ltering (or con-
volution) operation, which is at the heart of many signal processing applications, e.g., noise
suppression, edge sharpening, smoothing, antialiasing operations associated with upsampling
and downsampling, and others.

Past work on DCT domain �ltering has largely concentrated on convolution-multiplication
properties (CMP's) of the DCT, in analogy to the well known CMP of the DFT. Chen and
Fralick [1] have �rst shown that coe�cient-by-coe�cient multiplication in the DCT domain
corresponds to circular convolution of three time domain (or spatial domain) sequences, one
of which is a �xed undesired sequence, that can be eliminated by an appropriate modi�cation
of the DCT domain �lter coe�cients. Ngan and Clarke [2] have applied this property to
lowpass �ltering of images. Chitprasert and Rao [3] have simpli�ed signi�cantly the CMP of
Chen and Fralick, however, their method is still applicable only to circular convolution (that
causes block edge artifacts) rather than the more desirable linear convolution. More recently,
Martucci [4] has derived a complete set of symmetrical convolution routines for a family
of discrete trigonometric transforms (including the DCT). His methods can be modi�ed to
obtain linear convolution algorithms by appropriate zero padding in the convolution domain.
Unfortunately, these algorithms cannot be used in most of our applications since the DCT
domain data is already given without prior zero padding in the spatial domain.

As an alternative to the CMP approach, Lee and Lee [5] have used a simple algebraic
approach to derive a transform domain linear convolution algorithm and proposed a pipelined
hardware architecture. The basic idea in [5] was to precompute the product of the operator
matrices corresponding to inverse DCT (IDCT), the convolution, and the DCT, and then to
use the combined operator matrix directly in the DCT domain, where the contributions of
neighboring DCT data blocks are incorporated similarly as in the overlap and add (OLA)
method. Chang and Messerschmitt [6] proposed similar ideas by using the distributive
property of the DCT with respect to matrix multiplication. A more thorough study of this
approach, in combination with downsampling, has been carried out by Neri et al. [7].

In this work, we adopt and further develop the second approach of regarding the DCT domain
�ltering operator as a combined linear operator that acts directly on the DCT input data.
Throughout this work, we assume a separable �lter that is symmetric in both dimensions.
We demonstrate that a fairly signi�cant fraction of the computations can be saved compared
to the straightforward approach of decompressing, �ltering, and re-compressing, if one takes
advantage of the following: First, the �ltering algorithm can be performed recursively in the
sense that some of the computations that were performed in �ltering the previous block can
be used for the current block. Second, the algorithm is tailored to the standard format of 8�8
blocks. Third, by creating certain butteries on the input data, the combined linear operator
(IDCT-convolution-DCT) can be represented by a relatively sparse matrix, and fourth, the
typical sparseness of the DCT input data greatly eliminates arithmetic operations. It is

1



For HP Internal Use Only

demonstrated that if all these points are taken into account, 60 � 80% of the computations
are saved compared to the straightforward �ltering method.

2 Preliminaries and Problem Description

The 8 � 8 2D-DCT transforms a block fx(n;m)g7n;m=0 in the spatial domain into a matrix
of frequency components fX(k; l)g7k;l=0 according to the following equation

X(k; l) =
c(k)

2

c(l)

2

7X
n=0

7X
m=0

x(n;m) cos(
2n+ 1

16
� k�) cos(2m + 1

16
� l�) (1)

where c(0) = 1=
p
2 and c(k) = 1 for k > 0. The inverse transform is given by

x(n;m) =
7X

k=0

7X
l=0

c(k)

2

c(l)

2
X(k; l) cos(

2n + 1

16
� k�) cos(2m+ 1

16
� l�): (2)

In a matrix form, let x = fx(n;m)g7n;m=0 and X = fX(k; l)g7k;l=0. De�ne the 8-point DCT
matrix S = fs(k; n)g7k;n=0, where

s(k; n) =
c(k)

2
cos(

2n + 1

16
� k�): (3)

Then,
X = SxSt (4)

where the superscript t denotes matrix transposition. Similarly, let the superscript �t denote
transposition of the inverse. Then,

x = S�1XS�t = StXS (5)

where the second equality follows from the unitarity of S.

Filtering, or convolution, of an input image fI(i; j)g, (where i and j are integers taking on
values in ranges that correspond to the size of the image), by a �lter with impulse response
ff(i; j)g, results in an output image fJ(i; j)g given by

J(i; j) =
X

i0

X

j0

f(i0; j0)I(i� i0; j � j0) (6)

where the range of summation over i0 and j0 is, of course, according to the support of the
impulse response ff(i; j)g. In this work we assume that the �lter ff(i; j)g is separable, that
is, f(i; j) can be factorized as

f(i; j) = vihj; (7)

for some one-dimensional sequences fvig and fhjg, and the support of the impulse response
is a rectangle. In this case, eq. (6) can be rewritten as

J(i; j) =
X
i0

vi0
X
j0

hj0I(i� i0; j � j0); (8)

2



For HP Internal Use Only

namely, one can �rst perform a one-dimensional convolution on each row with the hori-
zontal �lter component (HFC) fhjg, and then another one-dimensional convolution on each
resulting column with the vertical �lter component (VFC) fvig. Of course, the order can be
interchanged and the vertical convolutions can be carried out �rst without a�ecting the �nal
result. An important special case is the one where vi = hi for all i, that is, the VFC and the
HFC are the same. In this case, the �lter is \isotropic" in the sense that rows and columns
undergo the same convolution. We will not assume, however, that this property necessarily
holds. We next assume that each �lter component is symmetric about the origin, that is,
vi = v

�i and hj = h
�j. The supports of fvig and fhjg are jij �M and jjj � N , respectively,

meaning that f(i; j) = 0 outside a (2M + 1)� (2N + 1) rectangle centered at the origin.

The input image fI(i; j)g is given in the compressed domain, that is, we are given a sequence
of 8�8 matricesX1;X2; ::: of DCT coe�cients corresponding to spatial domain 8�8 spatial
domain blocks x1;x2; ::: that together form the input image fI(i; j)g. Our task is to compute
the sequence of 8 � 8 matrices Y 1;Y 2; ::: of DCT coe�cients of the spatial domain blocks
y1;y2; ::: associated with the �ltered image fJ(i; j)g, directly fromX1;X2; ::: without going
via the spatial domain and perfoming spatial domain convolution.

We further assume that M and N do not exceed 8 (that is, the �lter size is always smaller
than 17 � 17), so that every DCT block Y (associated with the spatial domain block y) of
the �ltered image fJ(i; j)g depends on the corresponding DCT block X (associated with
the spatial domain block x) of the input image fI(i; j)g and the eight immediate neighbors
of X. We shall label these neighbors according to their relative location with respect to the
current block X, i.e., \north", \northeast", \east", etc. Accordingly, the input DCT blocks
will be denoted by the appropriate subscript, i.e.,XN , XNE, XE, and so on. Similarly, the
respective spatial domain blocks will be denoted xN , xNE, xE, etc.

In summary, we are interested in an e�cient algorithm that computes Y from X, XN ,
XNE, XE, XSE, XS, XSW , XW , and, XNW .

3 Mathematical Derivation

In the spatial domain it is convenient to express y, in terms of the nine input blocks and the
�lter, in the following block matrix form

y = V �
0
B@
xNW xN xNE

xW x xE
xSW xS xSE

1
CA �H t (9)

where V is a 8 � 24 matrix de�ned as

V =

0
BBBBBBBB@

v8 v7 � � � v1 v0 v1 � � � v7 v8 0 � � � 0
0 v8 v7 � � � v1 v0 v1 � � � v7 v8 0 � � 0
�
�
�
0 � � � 0 v8 v7 � � � v1 v0 v1 � � � v7 v8

1
CCCCCCCCA

(10)

3



For HP Internal Use Only

and where the high order coe�cients are zero if M < 8. Similarly,

H =

0
BBBBBBBB@

h8 h7 � � � h1 h0 h1 � � � h7 h8 0 � � � 0
0 h8 h7 � � � h1 h0 h1 � � � h7 h8 0 � � 0
�
�
�
0 � � � 0 h8 h7 � � � h1 h0 h1 � � � h7 h8

1
CCCCCCCCA

(11)

Since the DCT data in eq. (9) is partitioned into 8 � 8 blocks it will be convenient to do
the same with the matrices H and V , that is, to de�ne V = [V1 V2 V3] and H = [H1 H2 H3],
where

V1 =

0
BBBBBBBBBBBBB@

v8 v7 v6 v5 v4 v3 v2 v1
0 v8 v7 v6 v5 v4 v3 v2
0 0 v8 v7 v6 v5 v4 v3
0 0 0 v8 v7 v6 v5 v4
0 0 0 0 v8 v7 v6 v5
0 0 0 0 0 v8 v7 v6
0 0 0 0 0 0 v8 v7
0 0 0 0 0 0 0 v8

1
CCCCCCCCCCCCCA

(12)

V2 =

0
BBBBBBBBBBBBB@

v0 v1 v2 v3 v4 v5 v6 v7
v1 v0 v1 v2 v3 v4 v5 v6
v2 v1 v0 v1 v2 v3 v4 v5
v3 v2 v1 v0 v1 v2 v3 v4
v4 v3 v2 v1 v0 v1 v2 v3
v5 v4 v3 v2 v1 v0 v1 v2
v6 v5 v4 v3 v2 v1 v0 v1
v7 v6 v5 v4 v3 v2 v1 v0

1
CCCCCCCCCCCCCA

(13)

V3 =

0
BBBBBBBBBBBBB@

v8 0 0 0 0 0 0 0
v7 v8 0 0 0 0 0 0
v6 v7 v8 0 0 0 0 0
v5 v6 v7 v8 0 0 0 0
v4 v5 v6 v7 v8 0 0 0
v3 v4 v5 v6 v7 v8 0 0
v2 v3 v4 v5 v6 v7 v8 0
v1 v2 v3 v4 v5 v6 v7 v8

1
CCCCCCCCCCCCCA

(14)

and similar de�nitions for H1, H2, and H3. We can now rewrite eq. (9) as follows.

y = (V1xNW + V2xW + V3xSW )H t
1 +

(V1xN + V2x+ V3xS)H
t
2 +

(V1xNE + V2xE + V3xSE)H
t
3 (15)

4



For HP Internal Use Only

Since StS = I, I being the 8 � 8 identity matrix, one can insert StS between every two
multiplied matrices in eq. (15) and then premultiply both sides of the equation by S and
postmultiply by St. This operation takes eq. (15) to the DCT domain, that is,

Y = (V 1XNW + V 2XW + V 3XSW )H t
1 +

(V 1XN + V 2X + V 3XS)H
t
2 +

(V 1XNE + V 2XE + V 3XSE)H
t
3; (16)

where V i and H i, i = 1; 2; 3, are the DCT's of Vi and Hi, respectively.

While the matrices V i and H i, i = 1; 2; 3, are not sparse in general, it turns out that

V ++
�
=
V 1 + V 2 + V 3

2
(17)

and

V
�+

�
=
V 1 � V 2 + V 3

2
(18)

never contain more than 20 nonzero elements, and

V
�

�
=
V 1 � V 3

2
(19)

has exactly 32 nonzero elements (with a chessboard structure). Of course, the same is true
for H1, H2 and H3 with similar de�nitions of H++, H�+, and H�

.

A natural way to utilize this fact is to create \butter�lies" on the input data in such a
way that eq. (16) will be expressed only in terms of the sparse matrices de�ned above.
Speci�cally, let us de�ne

X++
E =

XNE +XSE

2
+XE (20)

X+�
E =

XNE +XSE

2
�XE (21)

X�

E = XNE �XSE (22)

X++ =
XN +XS

2
+X (23)

X+� =
XN +XS

2
�X (24)

X� = XN �XS (25)

X++
W =

XNW +XSW

2
+XW (26)

X+�
W =

XNW +XSW

2
�XW (27)

X�

W = XNW �XSW (28)

5



For HP Internal Use Only

Now eq. (16) can be written as follows.

Y = (V ++X
++
W + V

�+X
+�
W + V

�
X�

W )H t
1 +

(V ++X
++ + V

�+X
+� + V

�
X�)H t

2 +

(V ++X
++
E + V

�+X
+�
E + V

�
X�

E)H
t
3 (29)

Let us denote

Z1 = V ++X
++
W + V

�+X
+�
W + V

�
X

�

W (30)

Z2 = V ++X
++ + V

�+X
+� + V

�
X� (31)

Z3 = V ++X
++
E + V

�+X
+�
E + V

�
X�

E (32)

If we assume that the blockwise �ltering procedure is performed in a raster scan order (i.e.,
left-to-right and top-to-bottom), then it is easy to note that Z2 is identical to Z3 of the
previously processed DCT block, and similarly, Z1 is the same as Z3 two steps ago. Thus,
one needs only to calculate Z3 in every step and to save it for the next two steps. Finally,
we can rewrite eq. (29) as follows.

Y = Z1H
t
1 +Z2H

t
2 +Z3H

t
3

= Z++H
t
++ +Z+�H

t
�+ +Z

�
H t

�

; (33)

where

Z++ =
Z1 +Z3

2
+Z2 (34)

Z+� =
Z1 +Z3

2
�Z2 (35)

Z
�

= Z1 �Z3 (36)

4 The Proposed Algorithm

We can now summarize the proposed �ltering algorithm. In the parentheses we provide
the number of arithmetic operations associated with each step in the form of an expression
� �m+ � � a, which means � multiplications plus � additions.

1. Store the previous value of Z2 in Z1 and the previous Z3 in Z2.

2. Compute X+
E

�
= (XNE +XSE)=2. (64a)

3. Compute X++
E =X+

E +XE. (64a)

4. Compute X+�
E =X+

E �XE. (64a)

5. Compute X�

E according to eq. (22). (64a)

6. Compute Z3 according to eq. (32). (576m + 576a)

6



For HP Internal Use Only

7. Compute Z+
�
= (Z1 +Z3)=2. (64a)

8. Compute Z++ = Z+ +Z2. (64a)

9. Compute Z+� = Z+ �Z2. (64a)

10. Compute Z
�
according to eq. (36). (64a)

11. Compute Y according to eq. (33). (576m+ 576a)

The total number of operations is 1152m + 1664a.

Let us compare this result with the total number of computations associated with the
straightforward approach of going explicitly via the spatial domain. We assume that the
DCT and the IDCT are performed by the fastest known 8-point algorithm due to Arai,
Agui, and Nakajima [8] (see also [9]), which requires 5 multiplications and 29 additions.

1. Store xN , x, xS , xNE, xE, and xSE of the previous step in xNW , xW , xSW , xN , x,
and xS, respectively.

2. Compute the IDCT's xNE, xE, and xSE. (total: 16�3� (5m+29a) = 240m+1392a)

3. Compute the vertical convolution using the symmetry of fvig, i.e., v0x0+PM
i=1 vi(xi+

x
�i). (64(M + 1) �m+ 128M � a)

4. Compute similarly the horizontal convolution. (64(N + 1) �m+ 128N � a)
5. Compute the DCT of the �ltered block. (16 � (5m+ 29a) = 80m + 464a)

Thus, the total number of operations associated with the straightforward approach is

(64L + 448)m + (128L + 1856)a (37)

where L
�
= M +N .

In this work, we are more interested in the number of basic arithmetic operations on the
PA-RISC processor (see also [10], [11]). Here the term \operation" corresponds to the
elementary arithmetic computation of the PA-RISC processor which is either \shift", \add",
or \shift and add" (SH1ADD, SH2ADD, and SH3ADD). For example, the computation
z = 1:375x+ 1:125y is implemented as follows: First, we compute u = x+ 0:5x (SH1ADD),
then v = x + 0:25u (SH2ADD), afterwards w = v + y (ADD), and �nally, z = w + 0:125y
(SH3ADD). Thus, overall 4 basic operations are needed in this example.

A close inspection of the above mentioned fast DCT/IDCT algorithm reveals that it takes
50 elementary operations to transform an 8-point vector and hence 16�50 = 800 operations
to transform an 8 � 8 matrix. As for the other arithmetic operations, which depend on the
given �lter coe�cients, we assume that multiplication by a constant takes on the average
3 elementary PA-RISC operations, i.e., m = 3 and a = 1. Thus, the proposed approach
requires 1152 � 3 + 1664 = 5120 operations while the straightforward approach requires
320L + 3584 operations. This means that the proposed approach is preferrable for every
L = M + N � 5. In the extreme case L = 16, the new approach saves 41% of the
computations.

7



For HP Internal Use Only

5 Sparse DCT Domain Input Data

So far our analysis was general in the sense that no assumptions were made on the structure
of the DCT input data. It is well known, however, that typically, DCT coe�cient matrices
of real images are very sparse, especially after quantization. This happens because the DCT
has the property [12, Sect. 6.3] that most of the energy is concentrated on a relatively small
number of coe�cients, normally, the ones corresponding to low spatial frequencies.

Similarly as in [10] and [11], we shall de�ne a DCT coe�cient matrix as sparse if only its 4�4
upper left quadrant (corresponding to low frequencies in both directions) contains nonzero
elements. A very high percentage of the DCT blocks usually satisfy this requirement and it
is fairly easy to check directly in the compressed format.

We have redesigned the �ltering algorithm under the assumption that all nine DCT data
blocks are sparse, and arrived at the following operation count.

1. Store the previous value of Z2 in Z1 and the previous Z3 in Z2.

2. Compute X+
E

�
= (XNE +XSE)=2. (16a)

3. Compute X++
E =X+

E +XE. (16a)

4. Compute X+�
E =X+

E �XE. (16a)

5. Compute X�

E according to eq. (22). (16a)

6. Compute Z3 according to eq. (32). (80m+ 96a)

7. Compute Z+
�
= (Z1 +Z3)=2. (32a)

8. Compute Z++ = Z+ +Z2. (32a)

9. Compute Z+� = Z+ �Z2. (32a)

10. Compute Z
�
according to eq. (36). (32a)

11. Compute Y according to eq. (33). (288m+ 256a)

The total is therefore 368m + 544a, which yields 1648 basic PA-RISC operations under the
assumptions of Section 4. This means, that even for the case where L = 2, approximately
60% of the computations are saved. On the other extreme, L = 16, the saving factor is
about 80%.

A point to observe is that while in the general case (Section 4), steps 2-6 were structurally
identical to steps 7-11, respectively, and hence required the same number of computations,
here this is no longer the case. The reason is that now, in steps 2-6 the algoritm acts directly
on the input data matrices which are assumed sparse and hence have at most 16 nonzero
elements, but in steps 7-11, the inputs are the Z-matrices for which 32 elements may not be
zero.

8



For HP Internal Use Only

6 Conclusion

We have developed an algorithm that e�ciently implements spatial domain �ltering directly
on compressed digital video and images in the discrete cosine transform (DCT) domain. We
assumed that the given two-dimensional �lter is symmetric in both dimensions and separable,
which is normally the case in many applications. It has been demonstrated that the compu-
tational complexity of this method is signi�cantly smaller than that of the straightforward
approach, of converting back to the uncompressed domain, convolving in the spatial domain,
and retransforming to the DCT domain. Speci�cally, for typically sparse DCT input data
60 � 80% of the computations are saved depending on the size of the �lter. The approach
developed here is easy to extend to situations where either M or N or both may exceed the
value 8, by taking into account additional neighboring blocks of the input image. A similar
derivation can be easily carried out for �lters that are antisymmetric rather than symmetric
in one direction or both.

9



For HP Internal Use Only

8 References

[1] W. H. Chen and S. C. Fralick, \Image enhancement using cosine transform �ltering,"
Image Sci. Math. Symp., Montrey, CA, November 1976.

[2] K. N. Ngan and R. J. Clarke, \Lowpass �ltering in the cosine transform domain," Int.
Conf. on Commun., Seattle, WA, pp. 37.7.1-37.7.5, June 1980.

[3] B. Chitpraset and K. R. Rao, \Discrete cosine transform �ltering," Signal Processing,
vol. 19, pp. 233-245, 1990.

[4] S. A. Martucci, \Symmetric convolution and discrete sine and cosine transforms," IEEE
Trans. on Signal Processing, vol. SP-42, no. 5, pp. 1038-1051, May 1994.

[5] J. B. Lee and B. G. Lee, \Transform domain �ltering based on pipelining structure,"
IEEE Trans. on Signal Processing, vol. SP-40, no. 8, pp. 2061-2064, August 1992.

[6] S.-F. Chang and D. G. Messerschmitt, \Manipulation and compositing of MC-DCT
compressed video," IEEE J. Selected Areas in Communications, vol. 13, no. 1, pp. 1-11,
January 1995.

[7] A. Neri, G. Russo, and P. Talone, \Inter-block �ltering and downsampling in DCT
domain," Signal Processing: Image Communication, vol. 6, pp. 303-317, 1994.

[8] Y. Arai, T. Agui, and M. Nakajima, \A Fast DCT-SQ Scheme for Images," Trans. of
the IEICE, E 71(11):1095, November 1988.

[9] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard,
Van Nostrand Reinhold, 1993.

[10] N. Merhav and V. Bhaskaran, \A transform domain approach to spatial domain image
scaling," HPL Technical Report #HPL-94-116, December 1994.

[11] N. Merhav and V. Bhaskaran, \A fast algorithm for DCT domain inverse motion com-
pensation," HPL Technical Report #HPL-95-17, February 1995.

[12] K. R. Rao, and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applica-
tions, Academic Press 1990.

10




