
HTGraph: A New Method for Information Access over the World Wide Web

Yee-Hsiang Chang Ellis Chi†

Hewlett-Packard Laboratories Massachusetts Institute of Technology
1501 Page Mill Road 500 Memorial Drive

Palo Alto, CA 94304-1126 Cambridge, MA 02139
email: yhc@hpl.hp.com email: eyc@mit.edu

† This work was done when Ellis Chi worked at HP Labs in Palo Alto, CA

Abstract

HTGraph (hypertext graph) represents a new information
accessing method based on our observations of the current
World Wide Web structure. Our method extends the current
Web navigation feature, which broadens its scope. The tool
also couples database tools with the Web include both the
navigation and database accessing paradigms. Further, the
tool tries to associate Web information with real-life
objects, such as a file directory structure in our case to
improve usability.

1. Introduction
The World Wide Web is based on hypertext (or
hypermedia). Its structure consists of nodes and links.
Nodes can be Web special script files, documents, images,
audio clips, and video clips; links connect those nodes over
the network. When a user navigates in the Web, he/she
views the content in the node. Then he/she can select one of
the links for the next destination. Once the destination is
reached, he can then view and pick the next one.

This kind of navigation is adequate if the purpose of the
access is just looking around in a limited scope. However, it
presents a problem when the number of nodes is huge. For
example, assume the hypermedia nodes are arranged in a
tree structure with layers, and there are ten choices in every
node. Once the user selects his choice in the first layer, he/
she sees only the ten choices in the selected node and
misses 90 choices in other nodes. There will be 1,000
choices in layer three, ten thousand choices in layer four,
and so on. In other words, the current Web navigation
allows only one path out of many possible paths. The user
normally loses the overall perspective once he/she is deep
in the Web.

To solve the above problem, the solutions so far employ

database technology through various robots [BOWM94;
MACB94; MAUL94; DECE94], which automatically
collect all information on the Web to build up the database.
Database technology has proved its scalability in accessing
a vast amount of information, so the solution is valid in this
respect. However, database technology requires users to
specify the search subject. If users are not exactly sure what
the subject is called, database tools are less helpful.
Furthermore, this approach takes no advantage of the
inherent Web navigation structure, which uses links to
associate (or cluster) information among nodes. The current
solutions do not collect link information.

Our solution takes advantage of some previous hypertext
work [NIEL90; RIVL94] and applies it to the Web
environment. Our tool shows a larger scope of the Web
(better than any single node can provide) through a graph
with all the link information. Similar to the database tools,
our tool also explores nodes on the Web and collects their
information -- specifically, the title of each node. Unlike the
database approach, our tool collects not just nodes but also
links among nodes. Furthermore, our tool intends to
associate information with real-world objects to facilitate
usability, using a hierarchical graph structure similar to the
file directory structure. This similarity helps people to
browse in a larger scope.

The main contribution described in this paper is that the
design utilitizes the Web’s special features. Specifically, we
take advantage of the home pages, which normally
represent the starting point for a particular topic. Also, we
explore nodes based on the way information is arranged
around the home page. In other words, we collect nodes and
links starting from these home pages to a specified degree
to capture related information before the information
diverges to other topics. Our tool, HTGraph (HyperText
Graph), has all of the above features.

The rest of the paper is divided into four sections. Section 2Internal Accession Date Only

describes the concepts and operation of HTGraph. Section
3 surveys related work in this area. Section 4 shows the
HTGraph’s data structure and algorithms for node
exploration. In section 5, the graph layout design is
discussed.

2. HTGraph

2.1 Concept

We have three observations on the current hypermedia-
based Web. First, information is normally organized or
started from home pages, where one home page is
equivalent to the root of a file directory. The home page
serves as an entry point for a set of detailed nodes for a
particular topic or institution that that home page
represents. So, having as many home pages as possible at
the first level of browsing is very useful. Here, we define a
home page as being located at the highest layer. Any node
that can be reached from the home page is considered as
being at a lower layer; the exact layer depends on how
many links are between the node and the home page.

Second, when a user follows the links on the hypermedia,
he/she can take only one path at a time. The user loses more
overall perspective the further he/she goes down through
the layers. So, we would like to show all these choices at
the same time.

Third, as the layer gets lower (y-axis in Figure 1), the topics

get wider (x-axis in Figure 1).† The content and usefulness
of information diverges and some is completely unrelated
to the initial home page’s topic. In fact, some of the lower
layer nodes are the home pages of other topics. We would
like to extract only the nodes in which most of the

† Figure 1 shows only a linear increase in the
number of nodes as a user moves down the lay-
ers. In reality, this increase can be exponential,
as stated earlier.

information is related to the topic of the initial home page.††

Figure 1. The Divergence of Topics Further Down the
Node Layers

HTGraph is a tool to show the relationship among Web
nodes as a directed graph by taking the above observations
into consideration. The relationship among nodes is shown
by displaying either all hypermedia references starting from
the home page and its descendants, or the nodes that
represent many physical linkages hiding inside the nodes --
that is, logical grouping. A good example of logical
grouping would be a graph that hides linkages of a node if
it has too many hypermedia nodes. Figure 2 shows an
example of logical grouping.

Unlike the database approach, which retrieves only the
nodes, we also collect and show the links among nodes. By
doing so, we maintain the relationship among these
hypermedia nodes and keep the Web’s navigation feature.
These links also represent natural groupings of similar
nodes. For example, the MIT home page contains all the
linkages to its related Web nodes. It currently contains
some cultural events information in Boston for newcomers
to MIT. Using the database technology, a user might not be
able to specify the right query and retrieve such
information. In our approach, these nodes are already
linked together and are retrieved together.

†† How much we should explore to capture the
most information is unknown. Actually, each
home page and its links are arranged differently
depending on the creator of the page. We don’t
expect that a common number for the degree of
detail will apply to all home pages. Currently, in
HTGraph, a user can select the number of nodes
he/she wants to explore.

Node
layers

Topics

Extract information

home page
1

2

3

4

n

only to this degree

Note that the solution further allows a “space jump” in the
Web even without the exact address or Universal Resource
Locator (URL) of a node. In other words, instead of
following the existing node links by clicking at nodes one
after another, users can “space jump” to a particular node
by clicking the node on the graph.

Figure 2. Logical Grouping

2.2 Operation
To run HTGraph, the steps are as follows:

Step 1: Use the existing database tool to generate the
starting view.
We suggest to use either of two existing database tools,
Harvest [BOWM94] or Lycos [MAUL94], to do the
generation of a starting view. A user first uses the
selected database tool to collect the home pages for the
starting view. There are different starting views
depending on the user’s preference. For example, if
displaying all the possible “http://www.x.y.z” URLs as
the starting point is a good idea, the user uses the tool
(Lycos or Harvest) to retrieve the nodes that fit this
pattern. Another preference could be all the “http://
www.x.y.edu” URLs for the educational starting
points or “http://www.x.y.com” URLs for the
commercial case.

Step 2: Explore the selected home pages based on the
specified degree.
The user runs the exploration part of HTGraph to
access nodes from each home page to the specified
degree. The tool automatically builds up the link and
node information. This process should be done off-line
(e.g., midnight every day) as is the case for the
database and step 1. However, if the user has concerns
about whether the information is current, step 2 can be
skipped, and the HTGraph exploration will be done in
step 4. The trade-off is performance, since the latter
case requires doing both exploration and display at the
same time.

This node represents all
the hidden nodes

Step 3: Generate the initial display with all the selected
high level nodes.
The initial display of the starting view is generated
when a user starts the display part of the HTGraph
program with the selected starting view. We can
associate the initial home pages with some physical
objects. One example, shown in Figure 3, is to
associate the nodes with a map. When a user starts to
browse and wants to check on the Web sites in the San
Francisco Bay Area, he/she double-clicks the node on
the map, and a blow-up screen shows all the home
pages in this region. This part is currently done
manually and is still under development.

Step 4: View each individual home page graph by
clicking on the page.
When a user clicks on http://www.hpl.hp.com in
Figure 3, a graph is shown for this home page and
associated links and nodes. Figure 4 shows the blow-
up of http://www.hpl.hp.com using HTGraph for the
first ten nodes, which is the degree we specified. Note
that the nodes are shown similar to a directory
structure. Also note that we display only the titles of
the nodes instead of their addresses because the titles
contain more meaning about the nodes. Since some of
the titles are very long, users see the full title only
when the cursor is on the specific node. Figure 4 shows
an example: when a user accesses this home page, he/
she can see right away that there is a node with the title
“Management Profile” in layer three. He/she can then
decide whether to access this node or not.

Step 5: View each node by clicking on the node.
If the user is interested in any node, he/she can click on
the button and the document will be displayed. This is
what we referred to as the “space jump” earlier,
because a user can see further down through the layers
from the HTGraph display and access the node directly.

www.hp.com

www.stanford.edu

Blow-up view when the user clicks
on SF Bay Area

www.hpl.hp.com

www.berkeley.edu

www.sgi.com
www.sun.com

www.apple.com

www.intel.com

www.tandem.com
www.sri.com

Figure 3. An Example of a Starting View from the HTGraph

3. Related Work

3.1 Hypertext
Navigation over the hypertext technology has been studied
extensively over the years [MARC88; MARS89; NIEL90;
CREE91; RIVL94]. The fundamental issues have been
identified and various solutions proposed. In [RIVL94],
navigation over the hypertext is assisted by a structure point
of view of the overall system. The user interface issue also
has been addressed by [MARS88] using multiple windows,
and by [NIEL90] using maps. We are taking advantage of
the ideas from these efforts to apply to the Web
environment.

3.2 Navigation vs. Database
One of the authors has investigated various information
accessing methods in [CHAN94]. These methods fall into
two categories: navigation and database. The database

technique has been used extensively in the business
environment. The technology is scalable in terms of the
ability to access a vast amount of data. However, it is less
helpful when a user has little idea about what he/she wants
to see and wants only to look around, as is the case for most
TV viewers. On the other hand, the navigation paradigm
has proved to be powerful for the broadcast world.
“Channel surfing” is a simple form of navigation within the
broadcasting environment. The World Wide Web creates
another form of navigation through the hypermedia links on
the Internet.

3.3 Robots and Databases
Many robots have been developed on the Web [BOWM94;
MACB94; MAUL94; DECE94]. Their primary purpose is
to add a database function into the Web environment. The
World Wide Web Worm [MACB94] and spiders [DECE94]
represent tools to explore the Web and retrieve information.
There are alsoarchie to search theftp space andveronica

Figure 4. Display of a Wider View Starting from a Home Page

for thegopher space [DECE94].

The Lycos [MAUL94] and Harvest [BOWM94] tools built
on the Worm's techniques, are the two most recent tools to
couple Web information with current databases. They also
improve the Worm technology by collecting information in
a more efficient manner.

4. HTGraph Data Structure and Algo-
rithms
Our implementation allows input of the degree of
exploration and collects not just the node but also the link
information. The data structure responsible for building
HTGraph is called Node. Node has the following data
structure:

struct _node {

/* first part: info needed to build HTGraph */
HTAnchor * anchor;
struct _node * next;
char * heading;
C_list * FirstChild;

/* second part: info for printing HTGraph */
BOOL Printed;
int XCoord;
int YCoord;

};

A node contains two major parts. The first part keeps
information for making HTGraph. The second part is
responsible for printing the graph. Nodes are linked into a
link list, headed by HTGraphLink (or FirstNode). The tool
explores all the nodes by performing a breadth-first search.
There are three major issues in building HTGraph:

• Node exploration
• Linkage to hypertext nodes
• Loop avoidance

4.1 Node Exploration
Exploring a node means to search through the whole
hypermedia node, get all the accessible hypermedia
references, and establish linkages. Since there is no
particular goal (i.e., a particular hypermedia node) for the
search, our consideration narrows down to depth-first
searches and breadth-first searches. A depth-first search is
out of the question, since the depth of the search may be
infinite, in which case the exploration degenerates into
merely retrieving the first hypermedia references in all

explored hypermedia nodes. Therefore, a breadth-first
search should be the most appropriate for HTGraph node
exploration.

The breadth-first search algorithm presented here is slightly
different from the one that is usually found in a textbook.
Since the exploration here is not searching for a particular
node, the way to stop the search would be either by setting
up a time-out or by specifying a limit on the number of
nodes explored. An ordinary breadth-first search does not
care how nodes are related to one another, so it removes a
node whenever it is explored. However, in HTGraph, all the
explored and unexplored nodes are queued in
HTGraphLink, and further linkage is implemented to relate
parent and child nodes. Below is an ordinary BF algorithm
and the BF algorithm for HTGraph; Figure 5 shows how
HTGraphLink looks after node P is explored. Queuehead
points to the node P that is currently under exploration. In
the example, P is found to have three hypermedia
references (called “children”), C1, C2, and C3. These
children are appended at the end of the queue, since they
have not been visited. After this, the queuehead moves to
the next item on the link.

An ordinary BF search†

• Form a one-element queue consisting of a zero-
length path that contains only the root node.

• Until the first path in the queue terminates at the
goal node or the queue is empty,

- Remove the first path from the queue; create
new paths by extending the first path to all
the neighbors of the terminal node.

- Reject all new paths with loops.
- Add the new paths, if any, to the back of the

queue.
• If the goal node is found, announce success;

otherwise, announce failure.

A customized BF search
• Put a home hypermedia node in the BF queue.
• Until time-out or the queue is empty or specified

degree is reached,
- Explore the first unexplored node from the

queue.
- Check for loops (see whether the node has

been visited (ChildVisited())).
- Add the unexplored nodes, if any, to the

† Extracted from Patrick H. Winston,Artificial
Intelligence, third edition.

back of the queue.

Figure 5. Node Exploration of Node P

4.2 Linkage
We need a field that is responsible for keeping track of a
node’s hypermedia references or children. Since the
number of children is not the same in each node, a structure
with variable size is needed. A link list is chosen. By using
the field FirstChild, which points to a link list that consists
of a structure that points to the child, the parent-and-child
relationship is established. Figure 6 shows how the linkage
works using FirstChild. In the example, there are three
children belonging to the first node. The first pointer on the
child node points back to HTGraphLink. If the child has
been visited and been recorded on the link, it points back to
the location. Otherwise, it points to the new location that is
created at the end of the link. The second pointer on the
child node points to the next child node (NextChild) on the
list.

Figure 6. Child Linkage Using FirstChild

4.3 Loop Avoidance
Loop avoidance tackles the following problems:

.
HTGraphLink

P

Queuehead

.
HTGraphLink

P C1 C2 C3

Queuehead

C1, C2, andC3 are
children of node P and
are appended at the end
of the link since they
have not been visited

(a) Before exploring nodeP

(b) After exploring nodeP

. . .HTGraphLink

FirstChild

NextChild

New child nodes
This child has been
visited. The pointer
points back to the location.

are put at the end
of the link.

[1] Looping.
This is a common phenomenon. An example would be
a home page having its hypermedia reference referring
back to itself (as shown in Figure 7). So when a graph
is built, we have to make sure that a hypermedia node
is not explored more than once. Otherwise, the
exploration would be an endless loop between two
nodes.

Figure 7. A Two-Node Case

[2] Multiple-parent nodes.
It is very common to find a hypermedia node being
referred to in several hypertext nodes. We call this
hypertext reference a multiple-parent node. A multiple-
parent node should be printed only once in the graph; it
should be displayed as a node being pointed to by a
couple of nodes.

Figure 8. A Multi-Parent Case Where Parent A Shares a
Child with Parent B

To ensure that a node is explored only once, the program
makes sure that an explored hypermedia node will not be
queued for a BF search again. To do that, a procedure
named ChildVisited() is used to check if a hypermedia node
has been explored (i.e., to check if the node is already in
HTGraphLink). If the node has been explored,
ChildVisited() returns a pointer to the node in
HTGraphLink. If the node has not explored, ChildVisited()
puts the node at the end of the BF queue and updates
HistoryList. HistoryList is used to record the URLs of all
explored hypermedia nodes and pointers to those nodes in
HTGraphLink. Simply speaking, ChildVisited() gets the
URL of the inspected node, compares the URL with the
explored nodes’ URLs, and decides if it should return the
pointer to an existing node or create a new node and put it
at the end of the queue. The structure of HistoryList is

Parent/Child

Child/Parent

Parent A Parent B

Child

shown in Figure 9. HistoryList is an array that distinguishes
addresses based on their length. Addresses that have the
same length are linked together in a link list. The data
structure in the link list consists of three fields. The first
field is the address, used to determine whether this address
has been visited. The second field is a pointer that points to
the location of the node in HTGraphLink, and the third field
is a pointer that points to the next record. Note that the data
structure for HistoryList is not optimized.

Figure 9. Data Structure of HistoryList

5. Node layout for HTGraph
To lay-out the nodes and links among one another is the key
to the popularity of the tool. The difficulty in displaying a
good graph is that there are many loops and links, which
can occupy the same space. Currently, we are still seeking
the best layout algorithm, one that can minimize the
crossing of links and improve the legibility of HTGraph.

We have considered two ways to lay-out the graph. First,
we can start the home page in the middle of the display, and
then print all its descendants around the home page.
Second, we can print the graph as a tree. The first method
makes the display closer to a map, but it is hard to assign an
empty spot for a hypermedia node. The second method, on
the other hand, is easier to implement and shows a sense of
hierarchy, which is chosen.

To make a printout of the graph, the HTGraph program

...

...

HistoryList

address

LinkNode

NextRecord

generatestcl/tk [OUST94] command lines for each
explored node in a script file that is concatenated to
another script file containing the definition of the
commands. The final script is invoked and the display
is shown on the canvas intcl/tk’s wish command.
Figure 10 shows the printout of the two-node case and
the multi-parent case.

6. Conclusion
In this paper, we identify the problem of accessing a
vast amount of information in today’s World Wide
Web. We point out that the database solution takes no
advantage of link information and is not very useful
when the user has little idea about what to look for. We
then propose a new method for Web navigation, which
has resulted in a tool called HTGraph. This tool uses
the features from the Web. It takes advantage of the
home pages to collect nodes surrounding these home
pages; it shows links among nodes in the graph, which
offers natural indications about the relationship among
nodes; and it also associates information with real-life
objects, such as the file directory structure in our case,
to improve usability. Moreover, our tool is scalable in
terms of showing various levels of detail. It also allows
the user to perform a “space jump” directly to the
destination.

References
[BOWM94] Bowman, C. M., Danzig, P. B., Hardy, D.

R., Manber, U. and Schwartz, M. “The
Harvest Information Discovery and
Access System,” Proceedings of the
Second International World Wide Web
Conference, Chicago, Illinois, October
1994, pp. 763-771.

[CHAN94] Chang, Y. H., “Wide Area Information

Figure 10. Two-Node Case and Multi-Parent Case

Accesses and the Information Gateways,”
Proceedings of the 1994 1st International
Workshop on Community Networking, July
1994, pp. 21-27.

[CREE91] Creech, M. L., Freeze, D. F., and Griss, M. L.,
“Using Hypertext in Selecting Reusable
Software Components,” In Proceedings of the
Hypertext ’91 Conference, December 1991,
pp. 25-38.

[MACB94] McBryan, O. A., “GENVL and WWWW:
Tools for Taming the Web,”Proceedings of
the First International World Wide Web
Conference, May 1994.

[MARC88] Marchionini, G., and Shneiderman, B.,
“Finding Facts and Browsing Knowledge in
Hypertext Systems,”IEEE Computer, 1988,
pp. 70-80.

[MARS89] Marshall, C. C., “Guided Tours and Online
Presentations: How Authors Make Existing
Hypertext Intelligible for Readers,” In
Proceedings of the Hypertext ’89 Conference,
1989, pp. 15-26.

[MAUL94] Mauldin, M. L., and Leavitt, J., “Web-Agent
Related Research at the CMT,”Proceedings
of the ACM Special Interest Group on
Networked Information Discovery and
Retrieval, August 1994.

[NIEL90] Nielsen, J., Hypertext and Hypermedia,
Academic Press, San Diego, California, 1990.

[OUST94] Ousterhout, J. K.,Tcl and Tk Toolkit, Addison-
Wesley, 1994.

[RIVL94] Rivlin, E., Botafogo, R., and Shneiderman, B.,
“Navigating in Hyperspace: Designing a
Structure-Based Toolbox,”Communications
of the ACM, vol. 37, no. 2, February 1994, pp.
87-96.

[DECE94] December, J., “New Spiders Roam the Web,”
Computer-Mediated Communication
Magazine, 1(5), Sep. 1, 1994.

