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Abstract

Given an image data set, D, de�ned as an explicit trivariate hypersurface in four

space, we present an algorithm to extract arbitrary iso-surfaces out of D in sub-linear

complexity, in terms of the number of voxels in D. O� line construction of an hierar-

chical high order trivariate �t to D with arbitrary precision extends a similar notion

of Octree optimization of three dimensional images. During the interaction stage, the

hierarchy is employed so arbitrary iso-surfaces can be extracted in a sub-linear time,

and with maintained accuracy.
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1 Introduction

Let D be a voxel data set of size W by W by W. For each discrete location P (i; j; k); 0 �
i; j; k < W, on the three dimensional grid, D, a single scalar value is provided as pijk.
Throughout this paper, and unless otherwise stated, we assume D is equal in size in all the
three of its axes, for simplicity.

Marching cubes [8, 16], was developed to provide a mechanism to extract surfaces of constant
scalar value throughout the prescribed volume, also known as iso-surfaces. The marching
cube technique as originally presented in [8, 16], and in many of its derivatives [5, 11, 14],
processes voxels in D and isolates the ones that interfere with the desired iso-surface level.
Then, the marching cubes algorithm continues to process the isolated voxels and extracts
a polygonal approximation of the intersection of the voxel with the iso-surface, using a
table driven mechanism. The complete set of polygons that result, approximates the desired
iso-surface.

Recent research [10, 2] suggests the treatment of medical images as hypersurfaces in four
dimensional Euclidean space. In [2], the domain is subdivided into tetrahedral simplices and
multiresolution is achieved through the decimation of and manipulation of the tetrahedra.
Multiresolution takes a major role in recent research [2, 7, 15] due the enoumous amount
of information that is involved. Herein, we employ similar approaches, but exploit higher
order trivariate functions �tted to the volumetric data. The original data set, D, can be
viewed as an explicit trilinear parametric B-spline function in four space de�ned over the
three dimensional parametric space of u0 � u � u1; v0 � v � v1; w0 � w � w1,

D(u; v; w) =
W�1X

i=0

W�1X

j=0

W�1X

k=0

pijkB
2
i;�
(u)B2

j;�
(v)B2

k;�
(w); (1)

and a uniform open end knot vector � = (0; 0; 1; 2; :::;W�2;W�1;W�1). pijk are the scalar
coe�cient of the data. Clearly, this representation can be extended to higher orders. D
in (1) is frequently exploited, although D is not always represented as in Equation (1). The
marching cube technique assumes an axis-independent linear interpolation throughout the
interior of each voxel.

Let D1 : pijk = 1; 0 � i; j; k < W. Any iso-surface that is naively computed for D1, at an
iso-level other than one, would require the processing of the entire data set, O(W3) voxels
over whole, only to return empty handed. Now set p000 to zero and call this new data set D2.
Clearly, every iso-surface at a value between zero and one intersects D2. only a neighborhood
of 8 voxels of D2 contributes to the iso-surface, while O(W

3) voxels are being processed.

One can alleviate this overhead. Assume, for simplicity and throughout this paper, that W =

2n, n 2 Z+. Compute the two extremum values of pmax = max
i; j; k

(pijk), pmin = min
i; j; k

(pijk).

The set of polygons approximating the iso-surface at a value above pmax or below pmin

is an empty set. Subdivide D into sub-volumes in x, y, and z, eight sub-volumes in all.
Recursively apply the extremum test computation to the eight sub-volumes of D that are
formed. This spatial subdivision based computation can be made uniform or non uniform,
possibly becoming adaptable to the geometry of the data set [14]. See Algorithm 1.

By exploiting the resulting hierarchy of H (Algorithm 1), one can trivially reject the constant
one volumetric data set, D1, that is iso-surfaced at a level of a half. Moreover, using H one

1



For HP Internal Use Only

Algorithm 1

Input:

D, a volumetric data set of size W by W by W, W = 2n, n 2 Z+.

Output:

H, an hierarchical subdivision of D of scalar domain bounds.

Algorithm:

VolumetricDomainBound( D )

H:pmin ( min
i; j; k

(pijk);

H:pmax ( max
i; j; k

(pijk);

if ( Width(D) > 1 ) then

begin

D(i); 0 � i � 7 ( Eight sub-volumes D in an hierarchical

subdivision;

H:SubV ol(i) ( VolumetricDomainBound( D(i) ), 0 � i � 7;
end;

return H;

end.

Construction of hierarchical min/max values of sub-volumes.

can e�ciently converge to the single voxel for which pijk = 0, in D2. O(log(W)) steps would
be required to step through the entire hierarchy of H and reach the only non constant voxel
in D2 that intersects the iso-surface at a half.

Nonetheless, while the use of an hierarchy that bounds pijk alleviates the complexity involved
in the extraction of the iso-surface, it inherits the same de�ciency of the original data repre-
sentation by remaining a piecewise triconstant approximation. Triconstant hierarchy is used,
for example, in [7]. Quoting from [14], \we are not dealing with an object, or a small set of
objects, which occupies a possibly small portion of the volume, but rather a function that is
de�ned throughout the volume". Consider the data set D3 : pijk = ijk; 0 � i; j; k < W. H
is going to form into a nontrivial hierarchy, when Algorithm 1 is applied to D3. Yet, a single
trilinear can exactly represent the data set of D3, for an arbitrary width W.

Assume one is able to form an hierarchy of higher order approximations of trivariate func-
tions to the image data, bounded by a preset tolerance. Furthermore, assume one is able
to iso-surface each of the higher order trivariate functions in the hierarchy, again with a
bounded tolerance. Then, one might be able to create a compact and dense hierarchical
representation, compared to the triconstant hierarchical approach while entertaining faster
iso-surface extraction times, compared to both the non hierarchical marching cubes or the
triconstant hierarchical methods.
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In this work, we consider the construction of an hierarchical representation of higher order
trivariate functions. This paper is organized as follows. Section 2 describes the approach
employed to form the higher order trivariate hierarchy with a prescribed accuracy. Section 3
considers the problem of extracting a polygonal iso-surface approximation from the hierarchy
of trivariates, again with a bounded tolerance. Finally, in Section 4, examples are presented
with the appropriate statistics. We conclude in Section 5.

This work took the advantage of the trivariate package of the IRIT [6] solid modeling system,
developed at the Technion.

2 An Hierarchical Trivariate Fit

Let D1(u; v; w) and D2(r; s; t) be two explicit parametric trivariates in the four space of
u0 � u; r � u1; v0 � v; s � v1; w0 � w; t � w1. Then,

De�nition 1 The distance in four space between point (u0; v0; w0;Di(u0; v0; w0))
and trivariate (r; s; t;Dj(r; s; t)) is

Dist ((u0; v0; w0;Di(u0; v0; w0)) ; (r; s; t;Dj(r; s; t)))

= min
r; s; t

jj(u0; v0; w0;Di(u0; v0; w0))� (r; s; t;Dj(r; s; t))jj ; (2)

where k � k denotes the L2 norm. Then,

De�nition 2 The distance in four space between the two trivariates of
(u; v; w;Di(u; v; w)) and (r; s; t;Dj(r; s; t)) is

Dist ((u; v; w;Di(u; v; w)) ; (r; s; t;Dj(r; s; t)))

= max
u; v; w

min
r; s; t

jj(u; v; w;Di(u; v; w))� (r; s; t;Dj(r; s; t))jj : (3)

In other words, we de�ne the distance between two (explicit in four space) trivariates as an
upper bound over all points in Di, of the (minimal) distance between the point in Di and
trivariate Dj.

Let D be a voxel data set of size W by W by W. We consider the simplest yet practical case
of a trilinear. Construct a trilinear over the eight corners of D,

D̂(u; v; w) =
X

i=0;W�1

X

j=0;W�1

X

k=0;W�1

pijkB
2
i;�
(u)B2

j;�
(v)B2

k;�
(w); (4)

and � = (0; 0;W � 1;W � 1).

Assume one is able to bound the distance (De�nition 2) between D(u; v; w) (Equation (1))

and D̂(u; v; w) (Equation (4)) computed using the eight corners of D(u; v; w). Given the
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Algorithm 2

Input:

D, a volumetric data set of size W by W by W, W = 2n, n 2 Z+.

�, tolerance of hierarchical fit.

Output:

H, an hierarchical subdivision of D of trilinear fits to within �.

Algorithm:

VolumetricTriilinearFit( D, � )

D̂(r; s; t) (
P

i=0;W�1

P
j=0;W�1

P
k=0;W�1 pijkB

2
i;�
(r)B2

j;�
(s)B2

k;�
(t), pijk 2 D;

(1) if ( Dist(D(u; v; w); D̂(r; s; t)) > � ) then

D(i); 0 � i � 7 ( Eight sub-volumes of D in an hierarchical

subdivision;

H:SubV ol(i) ( VolumetricTrilinearFit( D(i) ), 0 � i � 7;
else

H:D ( D

endif;

return H;

end.

Construction of trilinear hierarchical approximation of volume data set.

volumetric data set, D, and a tolerance � > 0 one can approximateD by �tting a trilinear, D̂,
to the eight corners of D. If the computed distance between the two trivariates is larger than
�, D is subdivided into eight sub-volumes and trilinears are �tted to their corners, recursively.
Otherwise, if the �t is su�ciently tight, the construction terminates. See Algorithm 2.

Hence, we are left with the key question of bounding the distance between a trivariate B-
spline volumetric data set, D, and a trilinear that has been constructed from the eight corners
of D, D̂.

Assume D is a trilinear. Let D be D̂ re�ned [1, 3] in all three axes at all the interior knots
ti 2 � of D, 1 < i < W � 1. Then, D and D share the same function space. That is, they
are both trilinear and both possess the same continuity as is prescribed by � .

Lemma 1 The distance in four space between

D(u; v; w) =
W�1X
i=0

W�1X
j=0

W�1X

k=0

p
ijk
B2

i;�
(u)B2

j;�
(v)B2

k;�
(w);
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and

D(r; s; t) =
W�1X
i=0

W�1X
j=0

W�1X

k=0

pijkB
2
i;�
(r)B2

j;�
(s)B2

k;�
(t);

where
u0 � u; r � u1; v0 � v; s � v1; w0 � w; t � w1;

is bounded by,

Dist
�
D(u; v; w);D(r; s; t)

�
� max

i; j; k

����p
ijk
� pijk

���
�
:

Proof:

Dist(D(u; v; w);D(r; s; t))

= max
u; v; w

min
r; s; t

���
���
�
u; v; w;D(u; v; w)

�
� (r; s; t;D(r; s; t))

���
���

� max
u; v; w

���
���
�
u; v; w;D(u; v; w)

�
� (u; v; w;D(u; v; w))

���
���

= max
u; v; w

���D(u; v; w)�D(u; v; w)
���

= max
u; v; w

������

W�1X
i=0

W�1X
j=0

W�1X

k=0

p
ijk
B2

i;�
(u)B2

j;�
(v)B2

k;�
(w)

�
W�1X
i=0

W�1X
j=0

W�1X

k=0

pijkB
2
i;�
(u)B2

j;�
(v)B2

k;�
(w)

������

= max
u; v; w

������
W�1X
i=0

W�1X
j=0

W�1X

k=0

�
p
ijk
� pijk

�
B2

i;�
(u)B2

j;�
(v)B2

k;�
(w)

������

� max
u; v; w

������
W�1X
i=0

W�1X
j=0

W�1X

k=0

max
i:j:k

����p
ijk
� pijk

���
�
B2

i;�
(u)B2

j;�
(v)B2

k;�
(w)

������

= max
i; j; k

����p
ijk
� pijk

���
�

max
u; v; w

������
W�1X
i=0

W�1X
j=0

W�1X

k=0

B2
i;�
(u)B2

j;�
(v)B2

k;�
(w)

������

= max
i; j; k

����p
ijk
� pijk

���
�
: (5)

Therefore, line (1) in Algorithm 2 reduces into �rst re�ning the trivariate function of D̂ and
elevating it to the function space of D, and then computing the maximum over the di�erence
between the corresponding coe�cients pijk.
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If either D or both D and D̂ are higher order trivariates, the exact same steps of elevating
D̂ to the same function space of D must be followed. In the trilinear case, it required the
re�nement of D̂ at the proper knot values. If D and D̂ do not share the same degree, it also
requires the degree raising of D̂ to the proper degree of D.

Corollary 1 The distance in four space between

D(u; v; w) =
W�1X
i=0

W�1X
j=0

W�1X

k=0

p
ijk
Bl

i;�
(u)Bm

j;�
(v)Bn

k;�
(w);

and

D(r; s; t) =
W�1X

i=0

W�1X

j=0

W�1X

k=0

pijkB
l

i;�
(r)Bm

j;�
(s)Bn

k;�
(t);

where
u0 � u; r � u1; v0 � v; s � v1; w0 � w; t � w1;

is bounded by,

Dist
�
D(u; v; w);D(r; s; t)

�
� max

i; j; k

����p
ijk
� pijk

���
�
:

A uniform trilinear B-spline interpolates all the data points of the volumetric data set. Let
D3 be a data set with one interior coe�cient equal to one while all other coe�cients are
identically zero. The trilinear D̂3 is identically zero and hence its coe�cients as well as
the coe�cients of D3 are all zero. Therefore, the bound established in Lemma 1 can be
tight. This is not necessarily the case for higher order trivariates because the B-spline basis
functions are no longer interpolatory. Better bounds can be established for higher order
B-spline trivariates in a similar way, but they will not be as tight, in general.

Once the hierarchy has been computed, for a prescribed tolerance, the extraction of a polyg-
onal approximation of an iso-surface at a given value requires the ability to form a polygonal
approximation for the iso-surface set of a trivariate. Section 3 addresses this issue.

3 Polygonal Approximation for a Constant Set of a

Trivariate

Let D be a trivariate that needs to be iso-surfaced at a given value, using a polygonal
approximation and a prescribed accuracy. In Section 2, a trilinear D̂ is constructed from
the eight corners of D, and using re�nement as well as degree raising, D̂ was elevated to
the function space that D is in. Their coe�cients were then compared, and a bound on the
distance between them was established. Herein, we consider the next question of extracting
a polygonal approximation to an iso-surface from the higher order hierarchy.

S(u; v) = P00(1 � u)(1 � v) + P01(1 � u)v + P10u(1 � v) + P11uv; 0 � u; v � 1 is a
bilinear surface de�ned over the four points Pij . In [4], it is shown that the distance between
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S(u; v); 0 � u; v; u + v � 1 and triangle P00P01P10 is bounded from above by 1

4
of

the distance from P11 to the plane containing P00P01P10. Herein, we extend this result a
dimension, for a trilinear in four space. Let,

D(u; v; w) =
X
i=0;1

X
j=0;1

X

k=0;1

pijkB
2
i;�
(u)B2

j;�
(v)B2

k;�
(w); (6)

be a trilinear de�ned over a single voxel. Denote by P the hyperplane in four-space through
the four points P000 = (0; 0; 0; p000), P001 = (0; 0; 1; p001), P010 = (0; 1; 0; p010), P100 =
(1; 0; 0; p100).

Lemma 2 The distance in four space between D(u; v; w); 0 � u; v; w; u+ v + w � 1 and
the hyperplane P is bounded from above by

� =
d011 + d101 + d110

4
+
d111

27
; (7)

where dijk denotes the distance between point Pijk and plane P, in four space.

Proof: From the construction of P, it is clear that d000 = d001 = d010 = d100 = 0. Denote
the axes of the four space by X; Y; Z; W . Rotate and translate D(u; v; w) into ~D so that
P becomes the W = 0 hyperplane. Let ~pijk be the coe�cients of ~D. Because form (6)
is invariant under rigid motion, the distance between D(u; v; w) and P is the same as the

distance between ~D and the hyperplane W = 0. Hence, this distance is equal to the value
of the W axis or the value of ~D,

�(u; v; w) = ~p011(1� u)vw+ ~p101u(1� v)w + ~p110uv(1�w) + ~p111uvw

= ~d011(1� u)vw+ ~d101u(1� v)w+ ~d110uv(1� w) + ~d111uvw
= d011(1� u)vw+ d101u(1� v)w+ d110uv(1� w) + d111uvw

�
d011 + d101 + d110

4
+
d111

27
; (8)

because for 0 � u; v; w; u+ v +w � 1, (1� u)vw and uvw assume maximal values of 1

4
(at

u = 0; v = w = 1

2
) and 1

27
(at u = v = w = 1

3
), respectively.

The valid parametric domain of the hyperplane, P, in four space is prescribed by the tetra-
hedron through the four non coplanar points in three space. Lemma 2 considered the tetra-
hedron of D(u; v; w); 0 � u; v; w; u+ v + w � 1, with its parametric domain de�ned over
the four points of P000; P001; P010; P100. By subdividing the voxel into �ve or six such tetra-
hedrons as is done in [11] (for disambiguation reasons), one can establish upper bounds for
the entire trivariate parametric domain which is the entire voxel. If the established bound
is insu�ciently loose, the voxel must be subdivided, in order to create the proper polygonal
approximation, computed by iso-surfacing the resulting tetrahedron.
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4 Examples

We compare the iso-surface extraction to an implementation of traditional marching cubes'
algorithm. We have employed one dataset called 3dhead from the models o�ered by the
University of North Carolina. In our �rst test, the model was �ltered down into a volume
of 64x64x27 voxels. The model is iso-surfaced at a level of 250, extracting the shape of
the skin. Figure 1 shows the computed iso-surfaces of 3dhead at a level of 250, but with
di�erent hierarchical tolerances. Table 1 provides the times that were necessary to extract
these iso-surfaces. Table 1 also presents the number of cells visited in the resulting hierarchy.
Of special interest is the reduction in iso-surface extraction times. Approximation tolerances
smaller than 200 were found to create visually acceptable iso-surfaces. Time-wise, the iso-
surface extracted from a hierarchy of tolerance of 200 was computed in about four seconds
compared to the eleven that were necessary using marching cubes. All times were measured
on an HP9000, 735 machine.

In [14, 16], min/max bounds on the cells in their Octree hierarchy are exploited to minimize
traversal during the iso-surface extraction. This simple optimization can clearly be incorpo-
rated into our higher order hierarchy scheme for the hierarchy traversal during the iso-surface
extraction. These computation costs are also shown as the rightmost column of Table 1. The
Octree in [14] is not fully expanded and the notion of branch-on-need is introduced to create
partial Octrees, possibly with less than eight sons. Herein, the hierarchy is a binary tree for
which each subdivision can occur at either u or v or w according to the largest domain of the
three. The selection to employ a binary tree allows us to maintain image data of arbitrary
dimension, in an optimal fashion.

The prescribed accuracy guarantees that the constructed polygonal iso-surfaces will not
deviate from the real iso-surfaces by more than the de�ned tolerances. By constructing
several hierarchies, at di�erent resolutions, one is able to honor an iso-surface extraction
request from the user in several steps. A rough approximation can be presented to the user
in a very short time, only to be re�ned using a higher tolerance hierarchy should the user
desire.

One can exploit the trivariate representation to approximate normals for the derived vertices,
for the purpose of Gauroud or Phong shading. By raising the degree of the trivariate, the
B-spline trivariate representation low pass �lters the data set. Therefore, the gradient of the
trivariate scalar �eld can be used to approximate the normals while the selection of higher
degrees can produce smoother normal �elds.

Figure 2 shows the result of using a tricubic function over the input image data to produce
the normal �eld. Figure 3 shows a speci�c hierarchical tolerance level of 100 with normal
�elds that are computed as gradients of di�erent trivariate orders.

The construction of hierarchical data structure representation of a medical image introduces
black holes or cracks in the formed polygonal approximation of the iso-surface. Because
the subdivision is adaptive, it can very well may be the case that one sub-volume will be
subdivided further than a neighboring sub-volume. When the isosurface is extracted a gap,
commonly called black hole, may form. A solution that exploits a data structure that main-
tains the topological adjacency information must be employed to resolve this problem, in a
similar way to solving the black holes problem in the adaptive polygonization of bivariate
surfaces. A simple solution is to move the interior vertex of the re�ned sub-volume's isosur-
face approximation to be on the line of the coarse sub-volume's isosurface approximation.
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Figure 1: Eleven levels of iso-surfacing 3dhead at di�erent tolerance resolutions (
at shading). The

top left shows the result of the traditional Marching Cube algorithm. Next to it to the right is the

iso-surface extracted with tolerance value of 6 up to the bottom right image which is computed

with tolerance 500. See also Table 1.

See Figure 4

5 Conclusions

Recently, posterior algorithms were suggested to decimate large data sets of polygons [12, 13].
Herein, we have proposed an a-priori approach to create a high order trivariate hierarchy
that signi�cantly reduces the overhead of processing uniformly sampled images. It o�ers
the obvious advantage that prohibits the need to process the huge intermediate data set for
every computed iso-surface.

We have presented an a-priori construction of hierarchical data structure that enables one
to iso-surface the volumetric image at a sub-linear processing time at any iso-surface level
and with an established upper bound on the accuracy. One can preprocess several such
hierarchies, at di�erent tolerances, creating multiresolution data structures for the extraction
of arbitrary iso-surfaces at di�erent resolutions, and di�erent response times.

9
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Table 1: Eleven levels of iso-surfacing 3dhead at di�erent tolerance resolution (iso-surface level is

250), �ltered down to 64x64x27 voxels. See also Figure 1. Time was measured on an HP 735.

Tolerance # of # of Cells Secs. for Secs. for Secs. for
Polygons Visited hierarchy iso-surface iso-surface

with min/max
Marching 24304 110592 - 11 -
Cubes
500 8209 8136 30 2 1
400 9974 10687 37 2 2
300 12082 14896 46 3 2
200 14361 21845 60 4 3
100 17494 30681 79 6 4
75 18784 33410 84 7 4
50 19992 36453 100 7 6
25 21129 41029 107 8 6
15 21506 45756 119 9 6
10 21628 52275 134 11 6
6 21704 74629 188 16 8

The bound that is established by Lemma 2 is tight if exactly one of the four coe�cients
of d011, d101, d110, and d111 is non zero. One could consider the establishment of a tighter
bound that is input dependent. The usefulness of this tighter bound must be examined for
the speci�c type of data that is processed.

In the work presented herein, the implementation employed the trivariate package of the
IRIT [6] solid modeling system. This package is implemented using 
oating point calcu-
lus which undoubtly slows down the computation. Moreover, only uniform B-spline basis
functions are exploited in this work and these basis function can be easily preevaluated into
tables, further reducing the computation overhead. The trivariate package of IRIT sup-
ports the general, non uniform, B-spline basis functions with no special treatment of and/or
optimization for the uniform case.

The employed trivariate package also imposed large memory overhead of over %300. One
can represent a trilinear using eight scalar values, 
oat in our implementation. However, the
trivariate package of IRIT supports general trivariate function and allows one to prescrive
orders, length, and knot vectors in all three axes as well as supports non scalar control points.
An hierarchical structure where each node is subdivided into n sub-nodes each of approxi-
mately size 1

n
(plus some overhead along the common boundary) will remain approximately

the same size as the original data. Because the trilinear approximation is usually smaller
than the trivariate it approximates, we expect that a carefull implementation developed
speci�cally for this application, will gain in memory and reduce the size that is necessary
for the representation. The amount of saving will depend on the complexity of the original
trivariate data.

10
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Figure 2: Twelve levels of iso-surfacing 3dhead at di�erent tolerance resolutions (tolerance 6 at top

left to tolerance 600 at the bottom right, same steps as in Table 1) with a gradient of a tricubic

used to derive the normals. See also Figure 1.

It is certain that the use of higher order trivariate functions enables one to more faithfully
represent the original geometry and as such are more suitable for the task for medical imaging.
It is yet to be explored how di�cult it is to optimally utilize these higher order functions for
the required medical tasks.
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Figure 3: The 3dhead rendered at tolerance level 100 with 
at shading (top left), and normals

computed from the gradient of a trilinear, a triquadratic, and a tricubic.

(a) (b)

Figure 4: The black holes, or cracks, in (a) are �lled by moving the interior vertex of the re�ned

side to be on the line of the coarse side (b).
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