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Physiological models represent a useful form of knowledge,
but are both difficult and time consuming to construct by
hand. Further, most physiological systems are incompletely
understood. This article addresses these two issues with a
system that learns qualitative models from physiological
systems. We describe the Genmodel learning system in
detail, including the front-end processing and segmenting that
transforms a signal into a set of qualitative states. Next we
report results of experiments on data obtained from six
patients during cardiac bypass surgery..Useful models were
obtained, representing both normal physiology and
pathophysiology particular to the patient being monitored.
Model variations across time and across different levels of
temporal abstraction and fault tolerance are examined.
Implications for the design of intelligent monitoring systems
and smart alarms are explored.
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1 Introduction

Physiological models have a central role in medical knowledge, encapsulat
ing our understanding of experimentally observed physical processes. These
encapsulations act both as theories whose predictions can be used for fur
ther research, and as clinical models whose predictions assist in delivery of
therapy. For computer-based decision support systems, physiological mod
els represent a useful form of knowledge because they encapsulate structural
information of the system and allow deep forms of reasoning techniques to
be applied. For example, such models are used in many prototype intelli
gent monitoring systems and medical expert systems. However, constructing
physiological models by hand is difficult and time consuming. Further, most
physiological systems are incompletely understood. These factors have hin
dered the development of model-based reasoning systems for clinical decision
support.

Qualitative models permit useful representations of a system to be devel
oped in the absence of extensive knowledge of the system. In the medical
domain, such models have been applied to:

• diagnostic patient monitoring of acid-base balance [6]

• qualitative simulation of the iron metabolism mechanism [14]

• qualitative simulation of urea extraction during dialysis [2]

• qualitative simulation of the water balance mechanism and its disorders
[17]

• qualitative simulation of the mechanism for regulation of blood pressure
[17]

Recent developments in machine learning have produced methods of auto
matically inducing qualitative models from system behaviors. Applying such
techniques to learning physiological models should not only benefit knowledge
acquisition, but also provide a useful tool for physiologists who need to pro
cess vast amounts of data and induce useful theoretical models of the systems
they study. The learning system could also serve as a tool for model-based
diagnosis. For example, it could be incorporated into a diagnostic patient
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monitoring system to perform adaptive model construction for diagnosis in
a dynamic environment.

The goal of this work is to determine whether useful physiological models
can be generated by machine learning methods. Since these have up until
now been applied to artificial data sets [4, 32, 24], we are particularly in
terested to see whether they scale up to real data sets, and to understand
what signal processing techniques need to be used in addition to the learn
ing mechanisms. We describe a system for learning qualitative models from
physiological signals. The qualitative representation of physiological mod
els used is based on Kuipers' approach, used in his qualitative simulation
system QSIM [18J. The learning algorithm adopted is based on Coiera's
GENMODEL system described in [5J.

In our system, we use signals derived from hemodynamic measurements,
including stroke volume, cardiac output, heart rate, arterial blood pressure
and central venous pressure.

2 Qualitative Reasoning

In studying the behavior of dynamic systems, we often model the system
with a set of differential equations. The differential equations capture the
structure of the system by specifying the relationships that exist among the
functions of the system. From the differential equations and an initial state,
we can derive a quantitative system behavior using analytical methods or

numerical simulation.
A qualitative abstraction of the above. procedure allows us to work wit h

an incomplete specification of the system. A qualitative model can be repro

sented by a set of qualitative differential equations, or qualitative constrainr-.
From the constraints and an initial state, we can derive a qualitative system
behavior using qualitative simulation. Figure 1 illustrates this abstraction.

Different qualitative representations for models and their behavior haw
resulted from research in different problem domains [7J. In this section, w«

describe Kuipers' representation used in his qualitative simulation system
QSIM [18J.
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Figure 1: Qualitative reasoning is an abstraction of mathematical reasoning
with differential equations and continuously differentiable functions.
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2.1 Qualitative Model Constraints

QSIM represents a model of a system by a set of qualitative constraints ap
plied to the functions of the system. These include arithmetic constraints,
which correspond to the basic arithmetic and differential operators, and
monotonic function constraints, which correspond to monotonically increas
ing and decreasing functions that exist between two functions.

2.1.1 Arithmetic Constraints

Four arithmetic constraints are included in the QSIM representation:

1. add(J,g, h) {:::::::} f(t) + g(i) = h(i)

2. mult(J,g, h) {:::::::} f(i) x g(t) = h(t)

3. minus(J, g) {:::::::} f(t) = -g(t)

4. deriv(J, g) '¢=:::} f' (t) = g(t)

2.1.2 Monotonic Function Constraints

When working with incomplete knowledge of a system, we may need to ex
press a functional relationship that exists between two system functions,
without specifying the functional relationship completely. In QSIM, the re
lationship can be described in terms of regions that are monotonically in
creasing or decreasing, and landmark values that the functions pass through.
The QSIM representation includes two constraints for strictly monotonically
increasing and decreasing functional relationships.

1. M+(J,g) {:::::::} f(t) = H(g(t)) where H(x) is a strictly monotonically
increasing function

2. M-(J,g) '¢=:::} f(t) = H(g(t)) where H(x) is a strictly monotonically
decreasing function

Note that the two function constraints M+ and M- map onto many differ
ent functions including exponential, logarithmic, linear and other monotoni
cally increasing or decreasing functions. This many-to-one mapping enables
qualitative models to capture incomplete knowledge of a system.

4



Qualitative constraints can be considered as an abstraction of ordinary
differential equations (ODE). Every suitable ODE can be decomposed into a
corresponding set of qualitative constraints.

2.2 Qualitative System Behavior

A dynamic system is characterized by a number of system functions which
vary over time. The system behavior can be described in terms of these func
tions. In QSIM, system functions must be reasonable junctions j : [a, b) -+

~ .. where ~ .. = [-00,00], which satisfy the following criteria:

1. J is continuous on [a, b]

2. J is continuously differentiable on (a, b)

3. j has only finitely many critical points in any bounded interval

4. limt--+a+ f'(t) and limt--+b- f'(t) exist in ~". We define f'(a) and f'(b) to
be equal to these limits.

Every system function J(t) has associated with it a finite and totally
ordered set of landmark values. These include 0, the value of J(t) at each
of its critical points, and the value of jet) at each of the endpoints of its
domain. The set of landmark values for a function form its quantity space
which includes all the values of interest for the function. A value can be
either at a landmark value, or in an interval between two landmark values.

The system has associated with it a finite and totally ordered set of
distinguished time points. These include all time points at which any of the
system functions reaches a landmark value. The set of distinguished time
points form a time space. A qualitative time can be either a distinguished
time point, or. an interval between two adjacent distinguished time points.

The qualitative state of J at t is defined as a pair < qval, qdir >. qval is
the value of the function at t, and is either a landmark value or an interval
between two landmark values. qdir is the direction of change of the function
at t, and is one of inc, std, or dec depending on whether the function is
increasing, steady or decreasing at t respectively.

Since J is a reasonable function, the qualitative state of J must be con
stant over intervals between adjacent distinguished time points. Therefore a
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function can be completely characterized by its qualitative states at all its
distinguished time points and at all intervals between adjacent distinguished
time points. Such a temporal sequence of qualitative states of f form the
qualitative state history or qualitative behavior of f.

Since a reasonable function f is continuously differentiable, the Inter
mediate Value Theorem and the Mean Value Theorem restrict the possible
transitions from one qualitative state to the next. [18] includes a table listing
all possible transitions.

2.3 Qualitative Simulation: QSIM

QSIM takes a qualitative model and an initial state, and generates all possible
behaviors from the initial state consistent with the qualitative constraints
in the model. Starting with the initial state, the QSIM algorithm works
by repeatedly taking an active state and generating all possible next-state
transitions according to the table of possible transitions mentioned in the
previous section. These transitions are then filtered according to restrictions
posed by the constraints in the system model. Because a model may allow
multiple behaviors, QSIM builds a tree of states representing all possible
behaviors. Any path across the tree from the given initial state to a final
state is a possible behavior of the system.

2.4 Learning Qualitative Models: GENMODEL

GENMODEL [5] goes in the opposite direction to QSIM. It takes a sys
tem behavior and dimensional information about the system functions, and
generates all qualitative constraints that permits the system behavior. The
GENMODEL algorithm works by first generating all possible dimensionally
correct qualitative constraints that may exist among the system functions, ac
cording to different permutations of the functions. Then it progresses along
the state history, successively pruning all constraints that are inconsistent
with each state transition. The set of qualitative constraints remaining at
the end represent the most specific model that permits the given behavior.
Any subset of this model also permits the given behavior: and therefore is
also a possible model of the system.
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3 Learning Qualitative Models

In this section, we examine the learnability of qualitative models employing
the QSIM formalism [18]. The section starts with a detailed description of
the GENMODEL algorithm [5], including the newly added features of di
mensional analysis and fault tolerance. We then show that QSIM models
are efficiently learnable under the Probably Approximately Correct (PAC)
model of learning [31]. The proof is based on GENMODEL which can ef
ficiently construct aQSIM model consistent with a given set of examples,
if one exists. Next, we examine the difficulties of applying PAC results to
our task of learning QSIM models from physiological signals. The section
ends with a comparison of GENMODEL with other approaches of learning
qualitative models.

3.1 GENMODEL

GENMODEL is a program for generating qualitative models from example
behaviors [5]. 1 Given a set of qualitative states describing a system behavior,
GENMODEL outputs all QSIM constraints consistent with the state history.
Together, these constraints form the most specific QSIM model given the
example behavior.

In this work, the original implementation of the GENMODEL program
described in [5] is extended to include dimensional analysis and fault toler
ance.

3.1.1 The Algorithm

Input:

• A set of system functions, Functions.

• A set of units for the system functions, Units

• A set of landmark lists for the system functions, Landmarks.

• A set of qualitative states, States.

IGENMODEL is implemented in UNSW Prolog V4.2 [5].
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Output: .
A qualitative model which consists of all constraints that are consistent
with the state history and dimensionally correct, Mode!.

Functions used:

searchO A function for searching corresponding values from a set of
qualitative states.

dimcheckO A function for checking dimensional compatibility of func
tions within a constraint.

checkO A function for checking validity of a constraint given a quali
tative state and sets of corresponding values.

reduceO A function for removing redundancy from constraints. For
example, since M+(A, B) and M+(B, A) specify the same rela
tionship, one of them can be removed.

Method:

• Search the entire state history States for sets of corresponding
values.

·• Generate the initial search space by constructing all dimensionally
correct constraints with different permutations of system functions
in Functions.

• Successively prune inconsistent constraints upon each qualitative
state in States.

• Remove redundancy from the remaining constraints

• Output the result as a qualitative model.

The entire algorithm is shown in Figure 2.

3.1.2 Dimensional Analysis

Dimensional analysis is an effective way of significantly reducing the size
of the initial search space of constraints. Before generating a constraint,

8



begin

end

Constraints +- 0;
Correspondings +- search(States);
for each !I, 12 in Functions such that !I =1= 12 do

for each predicate2 in {inv, deriv, inv-fleriv, M+, M-} do
if dimcheckipredicaiez, II,12, Units) then

add predicate2(JI,h) to Constraints;
for each II, 12, h in Functions such that !I =1= 12=1=13 do

for each predicate3 in {add, mult} do
if dimcheck(predicate3, 11, 12, h, Units) then

add predicate3(JI,h,h) to Constraints;
for each s in States do

for each c in Constraints do
if not check(c, s, Landmarks, Correspondings) then

delete c from Constraints;
reduce( Constraints);
Model +- Constraints;

Figure 2: GENMODEL algorithm.
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GENMODEL checks for units compatibility among functions within the con
straint. This is similar to the approach used in several other inductive learn
ing systems, including ABACUS [9], a system for quantitative discovery, and
MISQ [24], a system based upon GENMODEL.

The dimension of each function is specified at the beginning, usually in
terms of the type of quantity the function represents, e.g. l/time for the
heart rate (HR), volume for the stroke volume (SV), and volume/time
for the cardiac output (CO). This allows the constraint mult(HR, SV, CO)
to be generated since (1/time)x(volume) = volume/time, but does not
allow mult(HR, CO, SV) or add(HR, SV, CO) to be generated since they
are dimensionally incorrect. Note that the functional constraints M+ and
M- are not restricted by dimensions.

3.1.3 Performance on Learning the V-Tube Model

With dimensional analysis, GENMODEL comes up with exactly the six con
straints for the U-tube system, given the three qualitative states describing
the example behavior. The U-tube system is a standard reference problem in
the qualitative modeling community [4, 5]. This is a significant improvement
to previous results reported in [5] in which 14 constraints were obtained.

3.1.4 Fault Tolerance

For domains involving noisy learning data, such as hemodynamic monitor
ing, it is difficult to implement front-end signal processing which filters the
noise and restores the signals completely. Part of the difficulty lies in noise
detection. Hemodynamic monitoring is vulnerable to a wide variety of arti
facts. These include artifacts which are easy to detect because their values
are outside the physiologically attainable range, as well as ones which are
hard to detect because the signals are not affected as drastically. For ex
ample, artifacts caused by various clinical interventions are usually easy to
detect, while those caused by mild patient movements can be hard to detect.
Even if artifacts are detected, it is hard if not impossible to restore a signal
heavily distorted by artifacts. To accommodate such difficulties in obtaining
a perfectly clean signal for segmentation, we need to incorporate a degree of
fault tolerance into GENMODEL.

A simple approach is to tag a counter onto every constraint in the initial
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search space. This counter keeps track of how many states the constraint
has failed in so far. We set a noise level 7] to a fraction of the total number
of states in the example behavior. A constraint has to be inconsistent with
this many states before it is pruned.

3.2 Probably Approximately Correct Learning

A common setting in machine learning is as follows: Given a set of examples,
produce a concept consistent with the examples that is likely to correctly
classify future instances. We are interested in algorithms that can perform
this task efficiently. The Probably Approximately Correct (PAC) model of
learning introduced by Valiant [31] is an attempt to make precise the notion
of "learnable from examples" in such a setting. [15] and [25] describe this
model in detail.

3.2.1 PAC Learnability

Stated informally, PAC learnability is the notion that the concept acquired by
the learner should closely approximate the concept being taught, in the sense
that the acquired concept should perform well on new data drawn according
to the same probability distribution the examples used for learning are drawn.

To define PAC learnability formally, we say that a concept class C is
efficiently PAC learnable if there exists an algorithm A and a polynomial
s(', . ,.) such that for all n, t, and 6, all probability distributions Pn on X n ,

and all concepts c E Cn, A will with probability at least 1- 6, when given a
set of examples of size m = sen, ~,t) drawn according to Pn , output a c' E Cn

such that errorec') ~ e. Furthermore, A's running time is polynomially
bounded in nand m.

3.2.2 Proving PAC Learnability

One approach of PAC learning due to Blumer et al. [3] is as follows: Draw a
large enough set of examples according to Pn , and find an algorithm which,
given the set of examples, outputs any concept c E Cn consistent with all
the examples in polynomial time. If there exists such an algorithm for the
concept class C, C is said to be polynomial-time identifiable.
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Next we look at how large a set of examples is "large enough" for PAC
learning. [3] shows that a sample size m satisfying the following lower bound
is sufficient: 2

1 1
m = n(; (in ICnl + in b"))

Cn is polynomial-sized if in ICnl is polynomial in n. Therefore if Cn is
polynomial-sized, then m is polynomial in n, ~ and t.

An algorithm that draws at least this many examples according to Pn and
outputs any concept consistent with all the examples in polynomial time is a
PAC learning algorithm. Thus if Cn is polynomial-sized and polynomial-time
identifiable, then it is efficiently PAC learnable.

3.2.3 An Occam Algorithm for Learning Conjunctions

In [31] Valiant provides an algorithm for PAC learning the set of boolean for
mulae in conjunctive normal form (CNF) where each clause contains at most
k literals. This set of boolean formulae is known as k-CNF. The algorithm
is capable of PAC learning from positive examples only. In Section 3.2.4 we
will map the problem of identifying a QSIM model consistent with a given
set of examples to the problem of identifying a k-CNF consistent with a given
set of examples.

First we calculate the number of examples needed. The number of con
junctions over the boolean variables Xl, ... , X n is 3n since each variable either
appears as a positive or negative literal, or is absent entirely. Applying the
formula for the lower bound in the previous section, we see that a sample of
size 0(7 + In~/6) is sufficient to guarantee that the hypothesis output by our
learning algorithm is to accurate with confidence of at least 1 - ~.

The algorithm starts with the hypothesis conjunction which contains all
the literals:

Upon each positive example X, the algorithm updates c' by deleting the
literal Xi if Xi = 0 in the example, and deleting the literal Xi if Xi = 1 in the
example. Thus the algorithm deletes any literal that contradicts the data.
This can be seen as starting with the most specific concept and successively
generalizing the concept upon each positive example given.

2A = f2(B) denotes B is a lower bound of A.
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Since the algorithm takes linear time to process each example, given m
examples with m as calculated above, the running time is bounded by mn
and hence is bounded by a polynomial in n, ~ and t. Therefore this is an
efficient PAC learning algorithm for the class of k-CNF.

3.2.4 QSIM Models are PAC Learnable

From Section 3.2.2 we conclude that. to prove that the concept class of QSIM
models is PAC learnable, it suffices to prove that the class is polynomial
sized and that it is polynomial-time identifiable. The following two sections
provide these proofs.

The Class of QSIM Models is Polynomial-Sized

To show that the concept class of QSIM models is polynomial-sized,
we begin by noting that in the QSIM formalism there are five kinds
of two-function constraints (inv, deriv, ino.deriu, M+ and M-), and
two kinds of three-function constraints (add and mult). Therefore with
n system functions, the number of possible QSIM constraints N is as
follows:

N = 5n(n - 1) + 2n(n - l)(n - 2)

Therefore, the number of possible QSIM models is:

IQSIM-Models(n) I= 2N = 25n(n- I )+2n(n- l )(n - 2)

since each QSIM constraint can either be present or absent in the model.
This implies that:

lg (IQSIM-Models(n)l) = N = O(n3
)

Therefore the concept class of QSIM models is polynomial-sized.

To PAC learn a QSIM model, we need m examples where m is calcu
lated as follows:

1 1
m = n(-; ((5n(n -1) +2n(n -l)(n - 2)) In2 + In b))

In practice, the initial concept space can be constrained to a much
smaller size by removing redundant and dimensionally incorrect con
straints prior to learning. This substantially reduces the sample size
required for learning (see Section 3.2.5).
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QSIM Models are Polynomial-Time Identifiable

In this section we show that GENMODEL is an algorithm for efficiently
constructing a QSIM model consistent with a given set of examples.
We prove this by mapping the problem of identifying a QSIM model
consistent with a given set of examples to the problem of identifying a k
CNF consistent with a given set of examples. The algorithm presented
in Section 3.2.3 then yields an algorithm for identifying a QSIM model
consistent with a given set of examples in polynomial time. We show
that this algorithm is in fact identical to GENMODEL.

We view each QSIM model as a conjunction of QSIM constraints, and
each QSIM constraint as a boolean variable. Then learning QSIM mod
els is equivalent to learning monotone conjunctions 3 with N boolean
variables, where N is the number of possible QSIM constraints as cal
culated in the previous section.

The algorithm starts with the hypothesis of a monotone conjunction
which contains all N of the boolean variables, i.e. all possible QSIM
constraints:

c' = Xl 1\ ... 1\ X n.
The qualitative states provided for learning constitute the positive ex-
amples. Upon each positive example X, the algorithm updates c' by
deleting the boolean variable Xi if the corresponding QSIM constraint
is inconsistent with the example. Since each boolean variable Xi corre
sponds to a QSIM constraint, the algorithm prunes any constraint that
is inconsistent with each qualitative state. This can be seen as starting
with the most specific model and successively generalizing the model
upon each qualitative state given. This is identical to the approach
taken by GENMODEL.

Now it remains to show that GENMODEL takes polynomial time to
process each qualitative state. We review each step taken by GEN
MODEL in learning a QSIM model:

• Search the entire state history for sets of corresponding values.
For m qualitative states, there are at most m sets of corresponding

3Monotone conjunctions are ones with positive literals only.
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values, and the search takes O(m) time.

• Generate the initial search space by constructing all dimensionally
correct constraints with different permutations of system func
tions. For n system functions, this takes O(n 3

) time as shown in
the previous section.

• Successively prune inconsistent constraints upon each qualitative
state. Checking for consistency of a constraint with a qualitative
state involves:

- Checking landmark values and directions of change. This
takes linear time.

- Checking corresponding values. Since there are at most m
sets of corresponding values, this takes O(m) time.

• Remove redundancy from the remaining constraints. Since we
started off with O(n3 ) constraints, there are at most the same
number of constraints remaining in the final model. Therefore,
removing redundancy takes O(n3 ) time.

• Output the result as a qualitative model.

Therefore for GENMODEL the processing time of each qualitative state
is polynomial in m and n.

Since the algorithm takes polynomial time to process each qualitative
state, given m states with m as calculated above, the running time is
bounded by p(m, n) where p(. , .) is a polynomial in the two arguments.
Therefore the running time is bounded by a polynomial in n, ~ and t.
Therefore this is an efficient PAC learning algorithm for the concept
class of QSIM models.

3.2.5 Applicability of PAC Learning

As discussed in Section 3.2.4, the following is a PAC learning algorithm for
learning a QSIM model from physiological signals:

1. Obtain m qualitative states where m is calculated as follows:
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N is the number of possible QSIM constraints which are non-redundant
and dimensionally correct. For our experiments, we use 8 different sig
nals. Out of the 952 different permutations, only 99 of them repre
sent non-redundant and dimensionally correct constraints. Therefore
N = 99.

2. Learn a QSIM model from the m qualitative states using GENMODEL.

Applying this algorithm to our learning task is difficult for the following
reasons:

• Qualitative states cannot be modeled as independent examples drawn
from an underlying probability distribution. Given a reasonable func
tion and a qualitative state, there are only a limited number of possible
transitions the system can make, as described in [18]. Further, succes
sive states in signals obtained from hemodynamic monitoring are highly
correlated because of physiological constraints limiting for instance the
rate of change of signals.

• For our experiments, N = 99. To PAC learn a QSIM model with all

accuracy and a confidence level of 80%, i.e. t = b = 0.2, we need
m .= 352 qualitative states. To do so with an accuracy and a confi
dence level of 60%, i.e, e = b = 0.4, we need m = 174 qualitative
states. In Sections 5.2.3 and 5.2.4, we show that the standard devia
tion parameter a of the Gaussian filter represents the level of temporal
abstraction for learning. Smaller values of a correspond to modeling
of faster processes and larger values correspond to modeling of slower
processes. For a given length of patient data, a Gaussian filter with it

smaller a produces less smoothing of the signals, and therefore more
qualitative states. Therefore, the above sample sizes are more easily
achieved with a smaller a. This is reasonable since learning slower pro
cesses requires observing the patient for a longer period of time, and
vice versa. For learning slow processes, the above sample sizes may not
be achievable at all since they require such a long time span that tIll'

patient condition and therefore the corresponding model may change
during the modeling period.

• Signals from hemodynamic monitoring are corrupted by various ar
tifacts and noise. The PAC learning algorithm previously developed
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assumes learning example.s to be noise-free.

Because of the above difficulties of applying the PAC model to our learn
ing task, we will not follow the PAC learning algorithm strictly. We will apply
GENMODEL for polynomial-time identification of a QSIM model from qual
itative states only. Even so, as we will see in Section 6, we still obtain useful
models of reasonable size.

3.3 Comparison of GENMODEL with Other Learn-
ing Approaches

3.3.1 GENMODEL does not require negative examples.

The greatest strength of GENMODEL is that it learns from positive examples
only. There is no need to generate negative examples as needed in other
inductive learning approaches such as GOLEM and genetic algorithms.

In [4], Bratko et al. report that learning the V-tube model with GOLEM
requires six hand-generated negative example states, in addition to the same
positive example behavior we used for GENMODEL which consists of only
three states. On each iteration in the GOLEM algorithm, a fixed number of
clauses ar~ first generated by Relative Least General Generalization (RLGG)
[23]. The clause that covers the most positive examples and none of the
negative examples is then chosen for propagation to the next iteration.

In [32], Varsek's genetic algorithm approach requires 17 positive example
states and 78 negative example states to learn the V-tube model. In each
cycle, candidate solutions are selected for "reproduction" based on a fitness
function which is the sum of the fraction of positive and negative examples
covered correctly and a "bonus" indicating the size of the solution.

In both approaches, it is essential for the user to give the "right" negative
examples. Badly chosen negative examples or an inadequate number of them
will cause an inappropriate clause to be propagated to the next iteration,
which will ultimately affect the concept output in the end. However, there
are no existing rules to guide the selection of negative examples. A trial-and
error approach can be tedious, especially in complex domains such as human
physiology.
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3.3.2 GENMODEL does not require ground facts for background
knowledge

In GENMODEL, the definitions of the QSIM representation are inherent in
the checkO function used for checking consistency of a constraint with a
given qualitative state. There is no need to generate explicit ground facts 4

for this background knowledge, as needed in GOLEM.
GOLEM accepts definitions of background predicates in terms of ground

facts. In learning QSIM models, explicit ground facts describing QSIM con
straint definitions must be generated according to functions and landmark
lists relevant to the modeling problem at hand. In [4], Bratko et al. re
port that learning the V-tube model requires a total of 5408 ground facts
as background knowledge. This is already a simplification which excludes
rules regarding corresponding values -in the M+ and M- constraints, rules
regarding consistency of infinite values in the add constraint, and rules on
the mult constraint. In a more complex domain such as human physiology
which potentially involves long landmark lists, the size of the background
knowledge required can grow exceedingly large.

3.3.3 GENMODEL is guaranteed to produce a correct model if
one exists.

Given a set of qualitative states representing a system behavior, GENMODEL
successively prunes inconsistent constraints upon each state. The constraints
remaining in the end forms the output model. Therefore, GENMODEL is
guaranteed to produce a correct model if one exists.

On the other hand, GOLEM and genetic algorithms perform heuristic
searches across the concept space. GOLEM performs hill climbing with pos
itive and negative example coverage as the heuristic guiding the search. Ge
netic algorithms similarly perform hill climbing with the fitness function serv
ing as the heuristic. Since neither heuristic is a perfect quality measurement
of the current model, GOLEM and genetic algorithms are not guaranteed
to produce a correct model even if one exists, unless the search becomes
exhaustive.

4 A clause is said to be ground if it does not contain any variables.
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4 Physiological Signals and Models

4.1 Hemodynamic Monitoring

Hemodynamic monitoring provides information on the performance of the
cardiovascular system (CVS), and covers many aspects of the CVS, including
heart rate, blood pressures, temperatures, oxygen supply and others. In this
work, we use eight signals derived from such measurements for learning a
qualitative model that describes the CVS. The basic measurements and their
characteristics will be reviewed in the following section.

4.2 Primary Measurements

4.2.1 Heart Rate (HR)

The heart rate is determined from the electrocardiogram (ECG) signal as
the reciprocal of the interval between two successive QRS complexes. (QRS
complexes are the large voltage spikes that correspond to ventricular con
traction.) In our experiments, the heart rate signal is sampled at 1 Hz.

4.2.2 Arterial Blood Pressure Waveform (ABP)

The arterial blood pressure waveform in our data comes from invasive moni
toring by a catheter. The signal in our data is sampled at 125 Hz. From the
ABP waveform, the following signals are derived at 1 Hz (Figure 3):

Systolic arterial blood pressure (ABPS) - the value at the height of an
ABP pulse.

Diastolic arterial blood pressure (ABPD) - the value at the lowest point
of an ABP pulse.

Mean arterial blood pressure (ABPM) - the mean value of an ABP
pulse. This can be calculated by dividing the area under the pulse by
the duration of the pulse:

]'/2 ABPdtABPM = ....;;t,,-l _

t 2 - t 1

where t1 is the starting time of the pulse and t 2 is the ending time of
the pulse [11].
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Figure 3: Deriving the systolic, diastolic and mean pressures from the arterial
blood pressure waveform.

4.2.3 Central Venous Pressure (CVP)

Blood from all the systemic veins flows into the right atrium. Therefore, the
pressure in the right atrium is called the central venous pressure. The central
venous pressure in our data comes from invasive monitoring by a catheter.
The waveform is sampled at 125 Hz. The mean CVP signal (CVPM) at 1
Hz is used in our experiments.

4.2.4 Temperature (Tskin , Teore )

The skin temperature and the core temperature are recorded at 1 Hz. From
these two signals, a skin-to-core temperature gradient can be determined as
described in Section 4.3.4.

4.3 Derived Values

From the primary measurements, various useful indices of cardiovascular
function may be calculated as follows [21, 26].
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Figure 4: Deriving the stroke volume from the arterial blood pressure wave
form.

4.3.1 Stroke Volume (SV)

The difference between the end-diastolic volume and the end-systolic volume
is the volume of blood pumped out of the ventricles during systole. This
volume is about 70 ml, and is called the stroke volume [11].

We use the pulse contour method developed by Wesseling et al. [34].
This method estimates the stroke volume from the arterial blood pressure
waveform as the systolic ejection area A sy s (Figure 4) divided by a constant
Za.o representing the characteristic impedance of the aorta:

sv = Asys = ftESEP(ABP - ABPD) dt
z; z;

Za.o has been shown to be relatively constant over short periods. There
fore the systolic ejection area alone reflects the qualitative behavior of the
function.
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4.3.2 Cardiac Output (CO)

The cardiac output is the rate of blood flow from the left ventricle into the
aorta. It is related to the heart rate and the stroke volume by the following
equation:

CO=HRxSV

4.3.3 Ventricular Contractility (VC)

VC = d(ABP)
dt peak

Experimental studies have shown that the rate of rise of arterial blood pres
sure in general correlates well with the strength of contraction of the ventricle.
The peak d(Ad~P), which occurs at th~ onset of systole, is often used as an
indicator of ventricular contractility [26].

4.3.4 Skin-to-core Temperature Gradient (~T)

~T = Teor e - Tskin

The difference between the skin and core temperatures of the body is a good
indicator of the degree of vasoconstriction. A rise in this differential indicates
increasing vasoconstriction while a fall indicates vasodilation. The degree of
vasoconstriction in turn reflects cardiac output. Under conditions of poor
cardiac output, as in hypovolemia, the body responds by trying to raise the
blood pressure by vasoconstriction, at the expense of tissue perfusion [21,36].

4.3.5 Rate Pressure Product (RPP)

RPP = HR x ABPS

The rate pressure product (RPP) is the product of the heart rate (RR)
and the systolic arterial blood pressure (ABPS). Studies in animals [35] and
humans [10] have shown that the RPP correlates well with the myocardial
oxygen consumption (mV02 ) , which is closely related to the work of the
heart. mV02 depends on several factors, including heart rate, ventricular
contractility and ventricular wall tension.
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4.4 A Qualitative Cardiovascular Model

In this section, we describe a set of possible qualitative constraints that may
exist among the different variables of hemodynamic monitoring described in
the previous section. These constraints form a "gold-standard" target model
of the CVS which allows us to compare our experimental results and evaluate
the performance of the learning system.

Because of the enormous complexity of the CVS, formulating a model is
by no means a simple task [30, 33]. The constraints included in this section
are not meant to be a comprehensive coverage of the system. Also, different
models may exist for different clinical conditions. A constraint may be valid
only under certain conditions.

4.4.1 Relationship Among Heart Rate, Stroke Volume and Car
diac Output

The heart rate"(HR), stroke volume (SV) and cardiac output (CO) are related
by the following equation:

CO=HRxSV

This translates into the following qualitative constraint:

mult(HR, SV, CO)

4.4.2 Relationship Among Heart Rate, Arterial Blood Pressure
and Rate Pressure Product

The heart rate (HR), systolic arterial blood pressure (ABPS) and rate pres
sure product (RPP) are related by the following equation:

RPP = HR x ABPS

Since the behavior of the mean arterial blood pressure (ABPM) approx
imates that of the systolic arterial blood pressure (ABPS) well in most cir
cumstances, the following qualitative constraint is valid in general:

mult(HR,ABPM,RPP)
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4.4.3 The Frank-Starling Law of the Heart

The Frank-Starling law states that within physiological limits, the heart
pumps all the blood that comes to it without allowing excessive damming of
blood in the veins. This translates into the following qualitative constraint:

4.4.4 Heterometric & Homeometric Autoregulation of the Heart

When the cardiac muscle becomes stretched an extra amount, as it does
when extra amounts of blood enter the heart chambers, the stretched muscle
contracts with a greatly increased force, thereby automatically pumping the
extra blood into the arteries. This ability of the heart to contract with
increased force as its chambers are stretched is sometimes called heterometric
autoregulation of the heart.

Further, when the heart is stretched, changes in heart metabolism cause
an additional increase in contractile strength. It takes approximately 30
seconds for this effect to develop fully, an effect called homeometric autoreg
ulation [11].

Therefore, within the physiological limit of the heart, the ventricular con
tractility- (VC) of the heart increases with the stroke volume (SV):

M+(SV, VG)

4.4.5 Effect of Heart Rate on Cardiac Output

An increase in heart rate can be caused by a higher oxygen demand in tissues
and organs, as in physical exercise, or as a compensatory mechanism for a
decreased arterial blood pressure, as in hypovolemia. This results in two
different sets of constraints representing different conditions.

In normal condition, the more times the heart beats per minute, the more
blood it can pump, since the stroke volume stays roughly the same. This can
be seen from the equation

GO=HRxSV

Therefore, the following qualitative constraint holds:
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Indeed, a rise in heart rate increases the net influx of calcium ions per
minute into the myocardial cells, and enhances ventricular contractility:

This increased contractility causes blood to be pumped out faster from
the ventricle, shortens the systolic interval, allocates a larger proportion of
the cardiac cycle to diastolic ventricular filling, and therefore maintains the
stroke volume at a reasonable level.

However, once the heart rate exceeds a critical level (150-170 beats per
minute in normal individuals) as in hypovolemia, the heart strength itself
decreases, presumably because of overutilization of metabolic substrates in
the cardiac muscle:

M-(HR, VC)

This results in a significant decr~ase in diastolic filling time and consequently
a decrease in the stroke volume:

The tolerable limits for heart rate decrease with underlying cardiovascular
impairment. For example, ventricular tachycardia in a patient with recent
myocardial infarction produces a significant reduction in stroke volume, car
diac output, and subsequently arterial blood pressure also (11, 36].

4.4.6 Compensatory Mechanisms for Hypovolemia

Hypovolemia refers to an absolute and often sudden reduction in circulating
blood volume relative to the capacity of the vascular system (27]. Activa
tion of the sympathetic nervous system results in a series of compensatory
mechanisms including:

• arteriolar vasoconstriction with resultant decreased perfusion to skin,
skeletal muscle, kidney, and splanchnic organs. This causes an increase
in the skin-to-core temperature gradient ~T:

• increased heart rate (tachycardia):
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• increased myocardial contractility:

5 System Architecture

5.1 Overview

The goal of the learning system is to generate qualitative models from phys
iological signals. The overall architecture of the system is illustrated in Fig
ure 5.

y [n]

Processed

Signal x[n] Front-end Signaly[n] Qualitative Qualitative
Processing

Segmenter GENMODEL
& Derivative Behavior Model

Figure 5: Overall architecture of the learning system.

The physiological signal is first processed by a front-end system, which
outputs a filtered signal and its derivative. These are entered into the seg-.
menter to produce a qualitative behavior in terms of a set of qualitative
states. GENMODEL then uses this qualitative behavior to generate a qual
itative model. 5 This section describes the front-end system and the seg
menter in detail.

5.2 Front-End System

The architecture used for front-end processmg of physiological signals is
shown in Figure 6.

The signal first passes through an artifact filter which removes various
artifacts and linearly interpolates the intervals of the artifacts removed. The
resulting signal is then processed by a median filter which removes impulsive
features lasting shorter than half the length of the filter window. A Gaussian
filter then smooths the signal to the desired level of temporal abstraction by

5The front-end system and the segmenter are implemented in Objectworks\Smalltalk
on the HP9000/720.
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Figure 6: Architecture used for front-end processing of physiological signals.

convolving it with a Gaussian kernel of an appropriate standard deviation
a . Finally, this smoothed signal is passed through a differentiator to obtain
its derivative. The smoothed signal and its derivative are passed on to the>
segmenter for segmentation, producing a set of qualitative states describing
the system behavior represented by the signal.

The Gaussian filter and the differentiator are implemented as finite im
pulse response (FIR) filters. For simplicity, the same length L is used for ti}l'
median filter window and the impulse responses of the Gaussian filter and
the differentiator. Also, since we are interested only in the qualitative behav
ior represented by the signals, and not in the absolute magnitudes, certain
constant factors in the impulse responses have been omitted for simplicity.

5.2.1 Artifact Filter

The artifact filter removes artifacts caused by various clinical interventions,
and linearly interpolates the intervals of the removed artifacts. The filter
employs a simple threshold approach in artifact detection. When the mag
nitude of a signal rises above or falls below a certain threshold which cannot
be physiologically attained in general, the filter removes the abnormal values
and interpolates the interval with the last normal value. This approach may
not work well for signals with complex artifacts or artifacts of long dura-
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tions. For recognition of complex artifacts, a knowledge-based system [12] or
a neural network [16] can be used.

5.2.2 Median Filter

The median filter operates by centering a window of a given length L at each
point of the signal. The output at that point is the median of the values
covered by the window. The median filter removes impulsive features in the
signal with durations less than half of its window length, while retaining sharp
edges of remaining features. (Unlike filters based on convolution, the median
filter outputs only values existing in the input signal. It does not produce
any new averaged values.) This property of the median filter makes it useful
for removing short impulsive artifacts in the physiological signals prior to
smoothing by the Gaussian filter. This prevents the impulsive artifacts from
distorting the smoothed signals.

5.2.3 Temporal Abstraction

A complex system such as the human cardiovascular system involves pro
cesses operating at different time scales. From the same set of signals, de
pending ,on the particular time scale we are interested in, different sets of
qualitative states and therefore different models can be obtained.

In [19] Kuipers describes a temporal abstraction relation among mecha
nisms operating at significantly different time scales. Processes that occur
significantly faster than the time scale of a model can be considered as instan
taneous in the model, while those that occur much slower can be considered
as constant. For example, if we look at a system on the order of hours, pro
cesses that occur within seconds can be considered as instantaneous, while
those occurring over days can be viewed as constant. Therefore if we perturb
a system by increasing a function A, and observe that another function B
responds to this change within seconds by increasing its value, then we can
still model the relationship between A and B with the functional constraint
M+ (A, B) even though there is a delay between the perturbation and the re
sponse, since the response within seconds is seen as occurring instantaneously
at this time scale.

We incorporate this idea of temporal abstraction into our learning system
by the following scheme:
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1. First, we use a Gaussian filter to remove changes lasting significantly
shorter than the time scale we are interested in. This is described in
Section 5.2.4.

2. Next, we implement the segmenter in such a way that critical points of
different functions occurring within T sampling periods are labelled as
occurring at the same distinguished time point, where the parameter T

corresponds to the particular time scale at which we are interested in
learning. This is described in Section 5.3.

Without the first step, there is a danger of aliasing in the temporal ab-
straction process. Features lasting for short durations « T) can be aliased
into one lasting for a long duration [13].

5.2.4 Gaussian Filter

The idea of using a Gaussian filter to analyze changes in a signal at differ
ent scales is borrowed from the well known technique of scale-space filtering
in edge detection. Scale-space filtering constructs hierarchic symbolic signal
descriptions by transforming the signal into a continuum of versions of the
original signal convolved with a kernel containing a scale parameter. In an
image, changes of intensity take place at many spatial scales depending on
their physical origin. Marr and Hildreth [20] observed that detecting zero
crossings in the Laplacian of the intensity values across different scales en
ables a system to distinguish between a physical edge from surface markings
or shadows. They suggested that the original image be bandlimited at several
different cutoff frequencies and that an edge detection algorithm be applied
to each of the images. The resulting edge maps have edges corresponding to
different scales.

In our learning system, we need to segment a set of signals at different
time scales. We can do so by bandlimi ting our original signals at several dif
ferent cutoff frequencies and segmenting the signals by detecting zero cross
ings in the first derivative of the signals at different scales. The segmentation
then produces a set of qualitative behaviors at different time scales which can
be given to GENMODEL to produce qualitative models at different scales.

To bandlimit an image at different cutoff frequencies, the impulse response
of the lowpass filter proposed by Marr and Hildreth is Gaussian shaped. This
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choice is motivated by the fact that the Gaussian function is smooth and lo
calized in both the spatial and frequency domains. 6 A smooth impulse
response is less likely to introduce any changes that are not present in the
original shape. A localized impulse response is less likely to shift the location
of edges. Further, Yuille and Poggio [37] and Babaud ei al. [1] have sepa
rately shown that the Gaussian filter has a unique property concerning zero
crossings of the first derivative of the filtered signal: 7 moving from coarse
to fine scale, new zero crossings appear, but existing ones never disappear.
Consequently, the extrema can be used to construct a tree describing the
successive partitioning of the signal into finer subintervals as new zero cross
ings appear at finer scales. This partitioning of the signal by extrema moving
from coarse to fine scale forms a strict hierarchy. Scale-space filtering in edge
detection can be seen as a form of the more general technique of wavelet
transforms in multiresolution signal analysis, with the wavelets here being
Laplacians of shifted Gaussians, and signal edges located by zero crossings
of the wavelet transform [29].

We adopt a similar approach for segmenting our signals. The impulse
response of the lowpass filter used is based on the Gaussian function:

1 ,2

g(t) = --e-2q2

$u
for -00 < t < 00 and a > O. The standard deviation a determines t lu
cutoff frequency with a larger a corresponding to a lower cutoff frequency.
a therefore determines the time scale we are operating at, with a smaller (Y

corresponding to a finer time scale and a larger o corresponding to a coarser
scale. The frequency response of the lowpass filter is the Fourier transform
of g(t) which is also Gaussian shaped:

02 q2

G(f!) = e--2

To translate this into a discrete-time filter, we simply replace t with 7/.

yielding g[n] as follows:

6The Gaussian function has the smallest duration-bandwidth product with duration
and bandwidth as defined in [28], and is therefore optimally localized in both the time and
frequency domains.

7In general, this property holds true for zero crossings obtained by applying any linear
differential operator (including the Laplacian and the first derivative) to the filtered signal.
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Figure 7: Plots of impulse responses hg[n] of Gaussian filters for a
20,40,60,80,100.

for -00 < n < 00 and a > 0.
To obtain a finite impulse response (FIR) hg [n] from the infinite impulse

response g[n], we multiply g[n] by the Hanning window w[n]:

hg[n] = g[n]w[n]

In our experiments, we use values of a at 10, 20, 40, 60, 80 and 100. hg[n] is
plotted as shown in Figure 7 for these values of a .

M is the order of the FIR filter. Therefore M + 1 is the length of the
impulse response:

L=M+1

In our learning system, M is set so that the finite impulse response extends
to three standard deviations from the origin:

M
-=3u
2

which yields:
M=6u

Table 1 shows the lengths and the orders of the filters that correspond to
the six values of a we used in our experiments:

The frequency response Hg(ej W) is Gaussian shaped as shown in Figure 8
for the six values of o used in our experiments.
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o M(= 60") IL(= M + 1) I
10 60 61
20 120 121
40 240 241
60 360 361
80 480 481
100 600 601

Table 1: Table showing the orders M and lengths L of the Gaussian filters
corresponding to 0" = 10,20,40,60,80,100.
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5.2.5 Differentiator

The differentiator is implemented as an FIR filter based on the frequency
response of a bandlimited differentiator [22]:

H(eiw) = jw -1r < W < 1r

The corresponding impulse response is:

{
O n = 0

h[n] = co:;n n#O

This infinite impulse response is multiplied by the Hanning window to
obtain a finite impulse response hd[n].

It is interesting to note that the lowpass filtering operation of the Gaussian
filter and the derivative operation of the differentiator may be combined
to obtain a single filter with the derivative of the Gaussian function as its
impulse response hgd(t):

t t 2

hgd(t) = g'(t) = - $ e-~
21r(73

The corr~spondingfrequency response is as follows:

This frequency response is plotted in Figure 9.
From the frequency response, we note that the combined operation is

equivalent to bandpass filtering where (7 controls the bandwidth of the band
pass filter. Bandlimiting the signals tends to reduce noise, thus reducing the
noise sensitivity problem associated with detecting zero crossing points. With
increasing values of (7, the bandwidth of the bandpass filter decreases and
therefore more noise rejection is achieved. This agrees with our expectation
since larger values of (7 correspond to coarser time scales.

5.3 Segmenter

The segmenter consists of two parts: a junction segmenter for each function
of the system, and a qualitative behavior generator to coordinate the whole
segmentation process. The overall scheme is illustrated in Figure 10.
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Figure 9: Equivalent frequency responses of a Gaussian filter in cascade with
a bandlimited differentiator for a = 20,40,60,80,100.

The function segmenter segments each signal at zero crossings of its
derivative obtained from the differentiator. It then looks up its local land
mark list to see if there is any existing landmark within a tolerance from
the current value of the function. If so, the existing landmark becomes the
qualitative value of the function in this state. If not, the segmenter cre
ates a new landmark corresponding to the current value of the function,
returns this landmark as the qualitative value of the function in this state,
and stores the new landmark in the local landmark list. The direction of
change of the function in the current state is obtained by observing the sign
of the derivative. A positive derivative corresponds to inc (increasing). A
negative derivative corresponds to dec (decreasing). A derivative within a
tolerance from zero corresponds to std (steady). The qualitative value and
the direction of change together form a qualitative state of the function.

The qualitative behavior generator keeps track of distinguished time points
and coordinates the entire segmentation process. When anyone or more of
the function segmenters detects a zero crossing in their derivatives, the gen
erator waits for T sampling periods to see if any other segmenters also detect
a zero crossing in their derivatives. The parameter T therefore determines the
level of temporal abstraction, as discussed in Section 5.2.3. The generator
labels all times within these T sampling periods as the same distinguished
time point. It then signals all segmenters to segment their signals at this
time point. The generator then collects a qualitative state of each function
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from its segmenter, and combines the qualitative states of all the functions
of the system into a qualitative state of the system at the current distin
guished time point. A series of such qualitative states form a qualitative
behavior of the system. This is written into a text file for subsequent input
into GENMODEL.

6 Results and Interpretation

The learning system was applied to data segments obtained from six patients
during cardiac bypass surgery. 8 A data segment from each of the first
five patients was used to study how qualitative models learned vary across
patients. Six data segments from the same patient (Patient 6) during the
same surgery were used to study how qualitative models learned vary within
a patient. The models learned are compared with the cardiovascular model
described in Section 4.4.

Each data segment was 1000 seconds (16.7 minutes) long, sampled at 1
Hz. The fault tolerance level in GENMODEL was set at 20% of the total
number of qualitative states in each data segment. The operation performed
in each case was to insert coronary artery bypass grafts, except in the case
of Patient 2 which was to replace the aortic valve. Models were learned from
the data segments at six different levels of temporal abstraction, represented
by the six different values of L as shown in Table 1 in Section 5.2.4. The
results for the data segment from Patient 5 and two of the six data segments
from Patient 6 are described below. [13] includes results for the remaining
data segments.

For each data segment, a brief overview of the patient's condition is given,
followed by a plot of the original signals. Then the filtered signals at each of
the six levels of temporal abstraction is shown followed by the model learned
and an interpretation of each of the model constraints.

In the following results, spurious constraints are not considered to be
generally valid models of physiology but are supported by the example data,
i.e. they are over-specific and likely to be lost as more examples come in (see
Section 6.3.4).

8Raw data was recorded from the Hewlett-Packard Component Monitoring System at
a local hospital. The eight parameters used for the experiments were derived from these
primary measurements as described in Sections 4.2 and 4.3.
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Figure 11: Patient 5: Original Signals. Note the relatively constant heart
rate due to the effect of beta-blockers (see Section 6.3.4).

6.1 Patient 5

The patient was a 66-year-old gentleman with a fairly long history of angina
and a proven inferior infarct 3 months before the operation. He had very poor
exercise tolerance, developing severe ischemia after very moderate exercise.
His catheterization showed severe triple vessel disease with reasonably good
left ventricular function. He was hypertensive and was treated with beta
blockers (Atenolol). He was also a non-insulin dependent diabetic.

The data segment was taken quite some time after the surgery had
started. Before the period, the initial lightness of anesthesia caused a sharp
rise in ABP from 90 mmHg systolic up to 160 mmHg systolic and that
was sustained for several minutes. During the period, the depth of anesthe
sia (Enf:l.urane) and analgesia (Alfentanil) and the dosage of GTN (glyceryl
trinitrate or nitroglycerin, a vasodilator) were increased to bring the ABP
back down.
L=61

M- (CVPM, sr, (Spurious)
M+(SV, CO) Correct given that HR was constant due to beta-blockers.
M+(CVPM, b.T) (Spurious)

L=121
No constraints were obtained.
L=241
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Figure 12: Patient 5: Filtered Signals (L = 61). Note that the trends of the
relatively constant heart rate are amplified.
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Figure 13: Patient 5: Filtered Signals (L ~ 121)
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Figure 14: Patient 5: Filtered Signals (L = 241)
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Figure 15: Patient 5: Filtered Signals (L = 361)

M+(SV, CO) Correct given that HR was constant due to beta-blockers.
mult(HR, SV, CO) (Correct)

L=361

M+(ABPM,HR) (Spurious)
M+(ABPM, RPP) Correct given that HR was constant due to beta-blockers.

ABPM dropped because of increased depth of anesthesia.
M+(HR, RPP) (Spurious)
M+(SV, CO) Correct given that HR was constant due to beta-blockers.
mult(HR,ABPM,RPP) (Correct)
mult(HR, CVPM, RPP) (Spurious)
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Figure 16: Patient 5: Filtered Signals (L = 481)
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Figure 17: Patient 5: Filtered Signals (L = 601)

mult(HR, SV,CO) (Correct)

L=481

M+(ABPM, RPP) Correct given that HR was constant due to beta-blockers.
ABPM dropped because of increased depth of anesthesia.

M-(ABPM, VC) VC increased to compensate for decreasing ABPM due to
increased dosage of anesthetic, analgesia and GTN.

M- (RP P,V C) (Spurious)
muit(H R, ABPM, RP P) (Correct)

L=601

M+(ABPM,HR) (Spurious)
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M+(ABPM, RPP) Correct given that HR was constant due to beta-blockers.
ABPM dropped because of increased depth of anesthesia.

M+(CVPM, CO) Frank-Starling Law of the Heart.
M+(HR,RPP) (Spurious)
mult(HR,ABPM,RPP) (Correct)
mult(HR,CVPM,RPP) (Spurious)
mult(HR, SV,CO) (Correct)

6.2 Patient 6

The patient was a 63-year-old gentleman having 1 internal mammary artery
and 3 coronary artery grafts. He had a history of 6 years of hypertension, 4
years of angina and 20 years of chronic bronchitis. His angiogram showed well
presented left ventricle, totally occluded right ventricle and severe disease at

the origin of all left sided vessels. He was not on beta-blockers.

6.2.1 Segment 1

Previous to this segment, lightness in anesthesia caused rises in ABP (up
to 180 mmHg systolic) at leg surgery, chest incision and sternotomy. The
patient then developed myocardial ischemia. In response to this, the GTl\
dosage was increased, which along with hypovolemia caused the ABP to drop.
with the result that ischemia improved at the expense of blood pressure. TI)('
depth of anesthesia was also increased.
L=61

mult(HR, ABPM, RPP) (Correct)

L=121

mu1t(HR, ABPM, RPP) (Correct)
mult(HR,SV,CO) (Correct)

L=241

M-(HR,SV) (Spurious)
inv_deriv(ABPM, RPP) (Spurious)
inv_deriv(ABPM, VC) (Spurious)

L=361

M+(HR, RPP) Both dropped because of increased depth of anesthesia.
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Figure 18: Patient 6, Segment 1: Original Signals
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Figure 19: Patient 6, Segment 1: Filtered Signals (L = 61)
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Figure 20: Patient 6, Segment 1: Filtered Signals (L = 121)
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Figure 21: Patient 6, Segment 1: Filtered Signals (L = 241)
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Figure 22: Patient 6, Segment 1: Filtered Signals (L = 361)
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Figure 23: Patient 6, Segment 1: Filtered Signals (L = 481)

mult(HR,ABPM,RPP) (Correct)
mult(HR, BV, CO) (Correct)

L=481

M+ (H R, RPP) Both dropped because of increased depth of anesthesia.
M+ (ABP M, l:i.T) Both dropped because of vasodilating effect of GTN.
inv_deriv(ABPM, RPP) (Spurious)
inv_deriv(ABPM, VC) (Spurious)
mult(HR,ABPM,RPP) (Correct)
muit(HR,ABPM, VC) (Spurious)
mult(HR, CVP M, RPP) (Spurious)

44



~:I ~J
&;0 '000 '500 2000

UN<

~l
1000 1500 2000

UN<

"----I
1000 1500 2000

UN<

~:I ~I
2<>gOO '000 '500 2000

"'0<

sro'~ 1 ~o·:1 ~ I
&;0 '000 1500 2000 &;0 1000 '500 2000

UN< UN<

l~i'O' ~I
&;0 '000 '500 2000

UN<

Figure 24: Patient 6, Segment 1: Filtered Signals (L = 601)

mult(HR, SV, CO) (Correct)

L=601

M+(ABPM, CO) Both dropped because of vasodilation and increased ve-
nous tone caused by increased GTN dosage.

M+ (HR, RPP) Both dropped because of increased depth of anesthesia.
M+ (ABPM, 6.T) Both dropped because of vasodilating effect of GTN.
M+(CO, 6.T) Both dropped because of vasodilation and increased venous

tone caused by increased GTN dosage.
inv_deriv(ABPM, RP P) (Spurious)
inv_deriv(ABPM, VC) (Spurious)
mult(HR, ABPM, RPP) (Correct)
mult(HR,CVPM,RPP) (Spurious)
mult(HR, SV,CO) (Correct)

6.2.2 Segment 5

The patient experienced low ABP post bypass due to poor cardiac perfor
mance secondary to a technically poor graft and possibly hypovolemia. In
otropic therapy (Dobutamine) was given which potentially caused the patient
to develop myocardial ischemia. Blood infusion was performed to bring ABP
back up.
L=61

mult(HR, ABPM, RPP) (Correct)
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Figure 25: Patient 6, Segment 5: Original Signals
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Figure 26: Patient 6, Segment 5: Filtered Signals (L = 61)
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Figure 27: Patient 6, Segment 5: Filtered Signals (L = 121)
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Figure 28: Patient 6, Segment 5: Filtered Signals (L = 241)

mult(HR, SV,CO) (Correct)

L=121

mult(HR, SV,CO) (Correct)

L=241

M+(ABPM,CO) Both dropped initially because of poor cardiac perfor
mance and hypovolemia, and started to rise following blood infusion.

M+(ABPM, SV) Both dropped initially because of poor cardiac perfor
mance and hypovolemia, and started to rise following blood infusion.

M+(SV, CO)
mult(HR,ABPM,RPP) (Correct)
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Figure 29: Patient 6, Segment 5: Filtered Signals (L = 361)
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Figure 30: Patient 6, Segment 5: Filtered Signals (L = 481)

. mult(HR,SV, CO) (Correct)

L=361

M+(ABPM, CO) Both dropped initially because of poor cardiac perfor-
mance and hypovolemia, and started to rise following blood infusion.

L=481
No constraints were obtained.
L=601

M+(SV, CO) Both dropped because of hypovolemia.
M-(HR, CO) HR increased both as a compensatory response to decreasing

CO due to hypovolemia, and as a response to inotropic therapy.
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Figure 31: Patient 6, Segment 5: Filtered Signals (L = 601)

M-(HR,SV)
inv_deriv(SV, CO) (Spurious)
mult(HR, ABPM, RPP) (Correct)
mult(HR, SV, CO) (Correct)

6.3 Validity of Models Learned

The results in previous sections show that reasonable qualitative models can
be learned from raw clinical data. Model constraints in our "gold standard"
model constructed in Section 4.4 and other useful constraints showed up
repeatedly in the models learned from our clinical data. These include:

• constraints valid in general such as mult(HR, SV, CO) and mult(HR, ABPM, RPP).

• constraints valid in specific patient conditions, possibly representing
compensatory mechanisms, such as M-(HR, CO) and M-(CO, t:i.T)
in hypovolemia.

• constraints valid under the effect of certain drugs. For example, M+(SV, CO)
showed up in patients on beta-blockers because of their steady heart
rate, and M+ (ABPM, D.T) showed up in patients with an increased
dosage of GTN causing vasodilation.
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6.3.1 Model Variation Across Time

As discussed in Section 3, GENMODEL learns a qualitative model by creat
ing an initial search space of all possible QSIM constraints, and successively
pruning inconsistent constraints upon each given system state. Therefore if
the system changes within the modeling period (in our case 16.7 minutes),
resulting in a different underlying model, neither the old model nor the new
model may be obtained. Constraints in the old model are pruned because
they are inconsistent with the states after the system change. Constraints
in the new model are pruned before the system change because they are in
consistent with the previous system. This may explain cases when we obtain
very few or no model constraints. For example, if a patient is previously
stable with an increasing relationship between the heart rate (HR) and the
cardiac output (CO):

but develops hypovolemia in the middle of a modeling process, resulting in
a decreasing cardiac output and a compensatory mechanism involving an
increasing heart rate, the new valid constraint is:

But this' will not appear in the final model because at the onset of hypov
olemia, this constraint has already been pruned by GENMODEL according
to states corresponding to the previously stable condition. Furthermore, the
previously valid constraint M+(HR, CO) will be pruned because it is now
inconsistent with the system states corresponding to hypovolemia. One may
actually exploit this feature of model variation across time in the context of
intelligent patient monitoring systems (see Section 7.1).

6.3.2 Model Variation Across Different Levels of Temporal Ab
straction

The models learned in Sections 6.1 and 6.2 varied across different levels of
temporal abstraction, represented by the filter length L. For example, con
straints which involve the skin-to-core temperature gradient DoT representing
the level of vasoconstriction in the body, generally appeared only under large
values of L, i.e. in coarser time scales. This means the response of DoT gen
erally lags behind the responses of other parameters. This may be due to
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the considerable heat capacity of the body causing a delay in the measurable
effects of vasoconstriction.

In general, we observe that fewer model constraints were learned with
decreasing L or finer time scales. This may be due to the following reasons:

• As discussed in Section 5.2.4, smaller values of L and therefore smaller
values of (J correspond to larger cutoff frequencies in the lowpass Gaus
sian filters, and larger bandwidths in the bandpass filtering operation
equivalent to the cascade of the Gaussian filter with the differentia
tor. This reduces the amount of noise rejection achieved, and results in
noise sensitivity problems in detecting zero crossing points and there
fore less accurate segmentation. This additional amount of noise may
have caused correct constraints to be pruned, resulting in fewer or even
no constraints left in the final model.

• Smaller values of L correspond to faster processes which may have more
dynamic models. As discussed in Section 6.3.1, a system change within
a modeling period can cause constraints belonging to both the previous
and the current model to be pruned, resulting in a smaller model or
even one with no constraints.

6.3.3 Model Variation Across Different Levels of Fault Tolerance

We observe that in general the size of the model learned increases with in
creasing levels of fault tolerance. A fault tolerance level of TJ means that
GENMODEL allows for inconsistent states up to a fraction TJ of the total
number of states in the system behavior before pruning a constraint. There
fore with larger .", fewer constraints will be pruned and the resulting model
will contain more constraints.

An indication of TJ being set too high is that conflicting constraints start
to appear. For example, in Patient 5 with L = 61 (Figure 12), both

M+(CVPM,D.T)

and
M-(CVPM,D.T)

appear in the model learned. This is because both CVPM and D.T are
relatively steady and contain only few inc and dec segments which distinguish
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between the M+ and M- constraints. Within a high level of tolerance, the
distinction is obscured.

6.3.4 Sources of Error

False Positives: In the models learned, we observe that spurious constraints
sometimes appeared in the resulting model. For example, in Segment
1 of Patient 6 (L = 601), we obtained the spurious constraint:

inv..deriv(ABPM, RPP)

This may be due to several possible reasons:

• The waveforms are relativelysmooth with few critical points. This
results in a system behavior with few states, corresponding to few
examples for learning. With the small sample size, it is relatively
probable that these examples are consistent with the incorrect
constraint. For instance, if whenever ABPM decreases, RPP is
positive, then the above incorrect inv..deriv constraint will be
learned. (In terms of the PAC learning model, the small sam
ple size corresponds to a low accuracy and confidence level for

. learning. See Section 3.2.5.)

• The level of fault tolerance is set too high resulting in incorrect
constraints not being pruned.

False Negatives: We observe that even constraints that are generally valid
in all conditions, such as

mult(HR, SV, CO)

did not appear in every model learned. There are several possible
reasons for this:

• Since few states are available in the data segment resulting in few
examples for learning, if these examples are corrupted by noise,

. the correct constraint will be pruned.

• Values corrupted by noise are recorded as corresponding values by
the system [13].
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• The level of fault tolerance is set too low resulting in correct con
straints being pruned.

Landmark Values: Temporal abstraction refers to how close two times
have to be before we label them as the same distinguished time point.
Similarly, we have to decide how close two function values have to be
before we label them as the same landmark value. If the tolerance is set
too low, we may amplify trends of relatively steady signals. This is the
case in the heart rate signals of Patient 5 (Figure 12) which are rela
tively steady due to the effect of beta-blockers. The fluctuations within
2-3 beats per minute are amplified into a series of inc (increasing) and
dec (decreasing) segments. The whole segment might well have been
labeled as std (steady) if we had set the tolerance appropriately.

7 Conclusion and Further Work

The goal of this work is to develop a system for learning qualitative models
from physiological signals. In Section 1 we mentioned two potential applica
tions for such a system. First, the system could be a useful tool for knowledge
acquisition from large amounts of data. Second, the system could be incor
porated into an intelligent patient monitoring system to perform adaptive
model construction for diagnosis in a dynamic environment. In the previous
section, We have evaluated the performance of the system in knowledge ac
quisition and identified sources of error. Here, we examine its applicability
in diagnostic patient monitoring.

From the models shown in Section 6, we see that constraints of models
learned do track changes in patient condition over time. For example, the
following changes were tracked:

Compensatory mechanisms during shock e.g. the constraints M- (HR, CO)
and M-(CO, tlT) learned when the patient experienced hypovolemia.

Effects of drugs e.g. the constraint M+(SV, CO) tracked the effect of
beta-blockers because of the patient's relatively constant heart rate,
and the constraint M+(ABPM,tlT) tracked the effect of an increased
dosage of GTN causing vasodilation.
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Learning-based
Approach:

Oiaposis Diagnosis

History-based
Approach:

Figure 32: Two approaches to diagnostic patient monitoring. In the learning
based approach, models are continually learned from the patient data. In the
history-based approach, a hypothesize-test-refine cycle is used to generate
models that best match the patient data. In each approach, diagnoses are
made based on the current model.

7.1 A Learning-Based Approach to Diagnostic Pa
tient Monitoring

Since model constraints learned track patient condition over time, we might
be able to build a diagnostic patient monitoring system based on our learn
ing system. The patient monitoring system continually learns models from
patient data and detects changes in the models learned. Diagnoses are made
based on these changes. This learning-based approach to diagnostic patient
monitoring is summarized in Figure 32.

The traditional history-based approach to diagnostic patient monitoring
goes in the opposite direction. It generates histories based on different mod
els. These histories are matched with the patient data. Diagnoses are based
on models corresponding to histories that best match the patient data. Such
a system would look for stability in constraints over time, recorded as some
percentage of match to incoming data. It would attempt to detect when such
measures changed, indicating that the constraint was no longer valid and that
a new model was being generated by an altered patient state. This approach
can be achieved by a hypothesize-test-refine cycle as shown in Figure 32 [6,8].

The learning-based approach may be more efficient since the hypothesis
model is generated directly from the patient data and there is no need for a
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hypothesize-test-refine cycle.
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