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Abstract

We study codes over GF (q) that can correct t channel errors assuming the
error values are known. This is a counterpart to the well-known problem of era-
sure correction, where error values are found assuming the locations are known.
The correction capabilities of these so called t-location correcting codes (t-LCCs)
are characterized by a new metric, the decomposability distance, which plays a
role analogous to that of the Hamming metric in conventional error-correcting
codes (ECCs). Based on the new metric, we prove bounds on the parameters of
t-LCCs that are counterparts to the classical Singleton, sphere packing and Gilbert-
Varshamov bounds for ECCs. In particular, we show examples of perfect LCCs,
and we study optimal (MDS-like) LCCs that attain the Singleton-type bound on
the redundancy. We show that these optimal codes are generally much shorter than
their erasure (or conventional ECC) analogues: The length n of any t-LCC that
attains the Singleton-type bound for t > 1 is bounded from above by t + O(

√
q),

compared to length q+1 which is attainable in the conventional ECC case. We
show constructions of optimal t-LCCs for t ∈ {1, 2, n−2, n−1, n} that attain the
asymptotic length upper bounds, and constructions for other values of t that are
optimal, yet their lengths fall short of the upper bounds. The resulting asymptotic
gap remains an open research problem. All the constructions presented can be
efficiently decoded.

Index terms: location-correcting codes, error locations, error values, decom-
posability distance, bounds on code parameters, Sidon sets.
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1 Introduction

Consider a code C of length n over F = GF (q). We define the dimension of C as
k = logq |C| and the redundancy of C as r = n−k. For linear codes, these correspond
to the usual algebraic definitions. We will use the notation (n, k) to denote general
nonlinear codes, and [n, k] to denote linear codes. The task of a conventional decoder for
a t-error-correcting code C can be described as follows: given a received word y ∈ F n, find
τ ≤ t error locations 1 ≤ i1, i2, . . . , iτ ≤ n and τ nonzero error values E1, E2, . . . , Eτ ∈ F
such that y − e ∈ C, where e = [ e1 e2 . . . en ] is a vector whose nonzero entries are
given by ei` = E`, ` = 1, 2, . . . , τ . In the conventional model, it is assumed that the
encoder has no a priori information about the locations or values of the errors and that
decoding is carried out by using no input other than the received word y. Recently,
a model of localized errors has been studied by several authors: Ahlswede, Bassalygo,
and Pinsker [1], [2], Bassalygo, Gelfand, and Pinsker [5], [6], [7], and Kabatyansky [16].
In this model, the encoder (but not the decoder) does have knowledge of the locations
i` of the errors that might occur, thus allowing the encoder to adapt the codeword list
accordingly. On the other hand, in the pure erasure correction problem, the locations
i` are assumed to be known only at the decoding side, and the task of the decoder is
to determine the values ei` = E`. (The remaining case where both the encoder and the
decoder know the error locations is by far easier.)

In this work, we consider a converse of the erasure correction problem in the following
sense: we assume the decoder knows the error values, while trying to determine the
unknown error locations. More specifically, the input to the decoder is a received word y
and τ nonzero values E1, E2, . . . , Eτ ∈ F . The task of the decoder is to find τ locations
1 ≤ i1, i2, . . . , iτ ≤ n such that, as before, y − e ∈ C, and the nonzero entries of e are
given by ei =

∑
` : i`=i E`. That is, we allow multiple values E` to correspond to the same

location i, the true error value at i being the sum of these values. We show later on that
this model is in fact equivalent, from a code construction point of view, to the seemingly
more restrictive one where multiple errors at the same location are not allowed, and the
E` are the true error values.

A code C capable of correcting all patterns of t errors or less given their values is
called a t-location-correcting code (in short, t-LCC). In the sequel, we always assume
that t > 0, and we almost always assume that t ≤ n. We will deviate briefly from the
latter assumption at one point, to note that cases with t > n are possible in principle in
the model that allows multiple errors in the same location, but are handled by the codes
designed for t = n−1.

A model where the error values are known may arise in applications where the decoder
has side information about the possible values of the errors through, say, monitoring of
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the channel. This information, on the other hand, is not available to the encoder. The
study of such an error model has a theoretical motivation as well: A conventional t-error-
correcting code (t-ECC) must have enough redundancy r to allow reconstruction of both
the error locations and the error values. Hence, we might think of the information coded
in the r redundancy symbols as carrying ‘error-location information’ and ‘error-value
information.’ When correcting erasures, only the error-value information is required,
whereas in the error model investigated here we need only the error-location information.
The question is: how does the smallest possible r for a t-ECC relate to the sum of the
redundancies of a t-LCC and a t-erasure-correcting code — all of the same length?

We point out that, in the binary case, the problem of location correction is equiva-
lent to that of error correction provided that the number τ of errors that have actually
occurred is known to the decoder. Assuming that τ is at most a prescribed number t, it
is easy to verify that a necessary and sufficient condition for a binary code C of length
n to be a t-LCC is that the even Hamming distances between distinct codewords in C
all be greater than 2t. It follows that the codewords of even Hamming weight in C (and,
respectively, the codewords of odd weight) must form a code of minimum Hamming dis-
tance ≥ 2t+2. Hence, a binary t-LCC of length n with a maximal number of codewords
can always be obtained from a binary t-ECC of length n−1 as follows: for each codeword
c of the latter, we introduce two codewords, [ 0 c ] and [ 1 c ], in the former. Therefore,
the problem of location correction is of interest mostly when the alphabet size is greater
than 2.

We also mention an early work by Wolf and Elspas [23], who considered the binary
case, but with a somewhat different model: The codewords there are assumed to be
divided into non-overlapping sub-blocks of size m, and the decoder needs to identify
the erroneous sub-blocks — rather than find the exact error locations — given that the
number of binary errors is bounded from above by a prescribed number t. For related
work see, for instance, also [13] and [22].

The rest of the paper is organized as follows: In Section 2, we define a metric that
plays, for LCCs, a role analogous to that of the Hamming metric for ECCs. In Section 3
we present bounds on the redundancy and length of LCCs, which apply to the general
class of nonlinear codes. In particular, we present counterparts to the classical Singleton,
sphere packing, and Gilbert-Varshamov bounds of conventional ECCs. Using the sphere
packing bound, we conclude that LCCs that achieve optimal redundancy in the Single-
ton bound sense must be much shorter than their ECC analogues — the MDS codes.
Section 3 also contains examples of nontrivial LCCs that are both optimal (in the sense
of attaining the Singleton-type bound) and perfect (in the sense of attaining the sphere
packing bound). In Section 4, we present constructions of t-LCCs for various values of
t. The emphasis here is on constructing the longest possible codes that are optimal in
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the Singleton bound sense. All the constructed codes can be efficiently decoded. A table
summarizing the various bounds and constructions is given in Section 5.

2 Decomposability distance

In subsequent results we will make use of the following definitions.

For i = 1, 2, . . . , n, let ui ∈ F n be the unit vector having 1 in its ith coordinate. For
every i, j ∈ {1, 2, . . . , n}, i 6= j, we define the vector u i,j to be the difference ui −uj. The
set of all vectors ui,j ∈ F n will be denoted by WF (n).

A vector c ∈ F n is called τ -decomposable if it can be written as a linear combination
of τ elements of WF (n); namely, there exist τ elements E ` ∈ F and respective vectors
ui`,j` such that

c =
τ∑

`=1

E` ui`,j` . (1)

An empty sum is defined as zero, so the zero vector is said to be 0-decomposable.

Clearly, the entries of every τ -decomposable vector in F n must sum to zero. On the
other hand, it can be readily verified that if the entries of a vector sum to zero, then the
vector is (n−1)-decomposable. Therefore, we can assume in the definition that τ ≤ n−1.

The following lemma establishes an equivalent definition of τ -decomposability.

Lemma 1. Let c ∈ F n and let τ ≤ n−1. Then, c is τ -decomposable if and only if
there exist two vectors x,y ∈ F n, both containing the same multiset of at most τ nonzero
entries, such that c = x − y.

Proof. The “if” part follows from the definition of τ -decomposability. For the “only
if” part we show how to transform the WF (n)-expansion (1) of c into one where the
indexes i` are all distinct, and so are the indexes j`. This is accomplished by performing
a Gaussian elimination process for m = 1, 2, . . . , τ , as follows: Suppose that i` = im for
some index ` > m. Noting that

Emuim,jm + E`ui`,j` = (Em + E`)uim,jm + E`ujm,j` ,

we can use uim,jm as a pivot element and eliminate all vectors ui`,j` with ` > m and
i` = im from the expansion (1) of c without increasing the number of vectors ui,j in the
expansion. Similarly, we can also eliminate all vectors u i`,j` = −uj`,i` with ` > m and
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j` = im. Having done so, we check for ` > m whether any of the indexes i` or j` is equal
to jm. If there exists such an index, we re-order the vectors ui`,j` , ` > m, possibly with a
sign change ui`,j` = −uj`,i` , so that im+1 = jm. We now continue with the pivot element
uim+1,jm+1 and iterate this procedure until we reach the last pivot element u iτ ,jτ . Once
we have an expansion (1) with distinct indexes i` and distinct indexes j`, we construct
x =

∑τ
`=1 E`ui` and y =

∑τ
`=1 E`uj` , which satisfy the condition of the lemma. Notice

that in the process of Gaussian elimination, some of the coefficients E` might vanish,
so the actual number of nonzero entries in each of the vectors x and y might be less
than τ .

We define the decomposability weight of c ∈ Fn as the smallest nonnegative integer τ ,
if any, such that c is τ -decomposable. If no such τ exists, we define the decomposability
weight of c as infinity. The decomposability distance between two vectors c and c′ in
F n is defined as the decomposability weight of c−c′. Note that this distance is finite
(and, thus, less than n) if and only if the sum of entries of c equals the sum of entries
of c′. It can be easily verified that decomposability distance is a metric. We denote by
BF (n; 2w) the set of all vectors in F n of decomposability weight equaling at most w.
Thus, in the decomposability metric, BF (n; 2w) is a sphere (including the interior) of
radius w centered at 0. We also define BF (n; 2w+1) as the set of all vectors in F n of the
form c + ui, where c ∈ BF (n; 2w) and ui is a unit vector in F n. The set BF (n; 2w+1) is
a union of n spheres of radius w, each centered at a distinct unit vector ui of F n.

The minimum decomposability distance (in short, MDD) of a code C ⊆ Fn is the
smallest among all decomposability distances between any two distinct elements of C. If
C is linear, then its MDD is equal to the minimum decomposability weight of any nonzero
codeword of C.

Theorem 1. A code over F is a t-LCC if and only if its MDD is at least t+1.

Proof. This follows from the fact that two distinct vectors c, c′ ∈ F n are at decom-
posability distance at most t if and only if c + e = c′ + e′, where e and e′ have the same
multiset of t nonzero entries.

In particular, a code is an (n−1)-LCC if and only if its MDD is at least n, namely,
infinity.

Using the result of Lemma 1, we can conclude that a t-LCC under the model where
each given error value E` corresponds to a distinct location is also a t-LCC under the
more general model where multiple errors in the same location are allowed. Hence, the
two error models are equivalent from a code construction point of view. In the sequel, we
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switch freely between the two models, choosing, when needed, the one more convenient
for proving the result at hand.

The following lemma presents another equivalent definition of τ -decomposability.

Lemma 2. Let c = [ c1 c2 . . . cn ] ∈ F n and let τ ≤ n−1. Then, c is τ -decomposable
if and only if there is a partition of {1, 2, . . . , n} into n−τ nonempty disjoint subsets Sk,
k = 1, 2, . . . , n−τ , such that∑

i∈Sk

ci = 0 for k = 1, 2, . . . , n−τ .

Proof. Suppose that such a partition exists and for k = 1, 2, . . . , n−τ , let ck =
[ ck,1 ck,2 . . . ck,n ] be the vector defined by

ck,i =
{

ci if i ∈ Sk

0 otherwise .

There are at most |Sk| nonzero entries in ck and the sum of those entries is zero. Hence,
the vector ck is (|Sk|−1)-decomposable (this applies also to the case where |Sk| = 1, in
which case ck = 0). Noting that c =

∑n−τ
k=1 ck, it thus follows that c is η-decomposable,

where η =
∑n−τ

k=1(|Sk| − 1) = n − (n − τ ) = τ . This concludes the “if” part.

As for the other direction, let c = [ ci ]ni=1 be a τ -decomposable vector and let

c =
τ∑

`=1

E` ui` ,j` (2)

be a decomposition of c with distinct values i` and distinct values j`, as produced by the
Gaussian elimination process described in the proof of Lemma 1. We prove the result by
induction on τ . For τ = 0 we have c = 0 and the singletons Sk = {k}, k = 1, 2, . . . , n,
yield the desired partition.

Assume now that the result is valid for any τ ′ < τ . Let I and J denote the sets
{ i` }τ

`=1 and { j` }τ
`=1, respectively, where i` and j` are as in (2). If I = J , then the τ

vectors ui`,j` are linearly dependent (their sum is zero), which implies that c is in effect
(τ−1)-decomposable, and the desired result follows from the induction hypothesis (a
partition into n−τ+1 subsets is trivially converted into one with n−τ subsets by joining
two subsets). Hence, we assume I 6= J and, in particular, we can assume that I − J
contains the element i1. If j1 ∈ I, then, by renaming of indexes we can assume that
j1 = i2. We repeat this process with j2 and continue in this fashion until we reach an
index m ≥ 1 such that j` = i`+1 for ` = 1, 2, . . .m−1 and jm /∈ I. We then define

S1 = { i` }m
`=1 ∪ { jm } ,
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satisfying ∑
i∈S1

ci = E1 +
( m∑

`=2

(E` − E`−1)
)

− Em = 0 ,

as desired. Let S1 denote the set {1, 2, . . . , n} − S1 and consider the vector c′ = [ c′i ]
n
i=1

which is given by

c′i =
{

ci if i ∈ S1

0 otherwise .

We have c′ =
∑τ

`=m+1 E` ui`,j` , implying that c′ is (τ−m)-decomposable. Furthermore,
since i`, j` /∈ S1 for any ` > m, it follows that the subvector c′′ ∈ F n−m−1 of c′ which is
indexed by S1 is also (τ−m)-decomposable. Applying the induction hypothesis on c′′,
it follows that there exists a partition of S1 into n−τ−1 subsets S2, S3, . . . , Sn−τ which,
together with S1, form the desired partition of {1, 2, . . . , n}.

The characterization of τ -decomposability stated in Lemma 2 will be used in the ap-
pendix to prove that computing the decomposability weight of a vector is an intractable
(NP-complete) problem [12]. Still, this is not necessarily an impediment to the construc-
tion of codes with efficient decoding algorithms, as we show in the sequel.

For a code C ⊆ F n and an element a ∈ F , denote by C(a) the set of all codewords
c = [ ci ]ni=1 ∈ C such that

∑n
i=1 ci = a. Clearly, the sets C(a) (referred to as classes) form

a partition of C and, so,
|C| =

∑
a∈F

|C(a)| .

Furthermore, the decomposability distance between two codewords that belong to distinct
classes C(a) is infinity. Hence, the MDD of C equals the smallest among the MDDs of
any of the classes C(a).

For any vector v ∈ F n and subset X ⊆ Fn, denote by v+X the set {v+x | x ∈ X}.
Now, let C be a t-LCC over F = GF (q) and let C(b) denote the largest class in C.
Consider the code C ′ given by

C′ =
⋃
a∈F

((a − b)u1 + C(b)) .

We have C ′(a) = (a − b)u1 + C(b); namely, all classes of C ′ have the same size and the
same MDD as C(b). Hence,

|C ′| = q · |C(b)| ≥ |C| ,

and the MDD of C′ is at least as large as that of C. As we are interested in codes C which
are as large as possible for any given length and MDD, we can assume, when appropriate,
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that |C| = q·|C(0)| and that
C =

⋃
a∈F

(au1 + C(0)) .

Notice that the minimum Hamming distance of a code of this form is 1. In the special
case of linear codes, the classes C(a) become cosets of the linear subcode C(0) in C. We
can assume that the generator matrix of C contains the row u1 and that the parity-check
matrix has a zero column.

Example 1. Consider the [4, 2] code C5 over GF (5) defined by the parity-check
matrix

H5 =
[

0 1 0 2
0 0 1 2

]
.

If we take the six unordered pairs of columns of H5 and compute the difference of the
elements in each pair, we obtain the six columns of a parity-check matrix of a [6, 4] 1-
error correcting Hamming code over GF (5). Hence, no such difference is a scalar multiple
of the other and, so, C5 cannot contain any 2-decomposable codewords. Therefore, the
MDD of C5 is at least 3 and, as such, it is a 2-LCC. The subcode C5(0) is a [4, 1] code
which is spanned by the codeword [ 1 1 1 2 ]. It is not difficult to verify that this codeword
is 3-decomposable. Hence, the MDD of C5 is exactly 3.

We end this section by stating the following simple relationship between MDD and
minimum Hamming distance.

Lemma 3. Let C be a code over F and let d(a) denote the minimum Hamming
distance of C(a). Then the MDD of C is bounded from below by 1

2 mina∈F d(a). In
particular, the MDD of C is at least half the minimum Hamming distance of C.

Proof. This follows from the fact that the Hamming weight of any τ -decomposable
vector is at most 2τ .

The bound of Lemma 3 is not tight, as exhibited by the code C5 of Example 1: the
minimum Hamming distance of every class C5(a) is 4, while the MDD is 3. The following
weaker converse does hold for fields F = GF (q) with q > 2: for every code C whose
minimum Hamming distance is d > 1, there exists an equivalent code (in the general
sense of [17, Ch. 2]) whose MDD is dd/2e. Such a code can be obtained through scaling
each coordinate of C by an appropriate constant from F . For q = 2, the result applies to
the minimum even Hamming distance, as noted in Section 1.
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3 Bounds on the parameters of LCCs

3.1 Singleton-type bound

The well-known Singleton bound [17] for a conventional t-ECC states that the redundancy
r of such a code must satisfy

r ≥ 2t . (3)

The respective bound for pure erasure correction is given by

r ≥ t . (4)

Codes that attain these bounds are known as maximum-distance separable (MDS) codes.
Primary examples of MDS codes are Reed-Solomon codes and their extensions and gen-
eralizations, yielding constructions of length q+1 for the dimension range between 2 and
q [17, Ch. 11].

Theorem 2. (Singleton-type bound for LCCs.) Let C be a t-LCC of length n over
F = GF (q), with 1 ≤ t ≤ n−1. Then the redundancy of C satisfies

r ≥ t .

Proof. We prove by contradiction. Assume r < t. Then, we have |C| > qn−t, and,
for some a ∈ F , we must have |C(a)| > qn−t−1. Hence, there exist two codewords in
C(a) whose suffixes of length n−t−1 (≥ 0) are identical. The decomposability distance
between these two codewords is finite, and it is equal to the decomposability distance
between their prefixes of length t+1. This distance is at most t, which, by Theorem 1,
contradicts our assumption on C.

Codes that attain the bound of Theorem 2 will be referred to as optimal LCCs. They
are analogous to conventional MDS codes. The code of Example 1 is an optimal [4, 2]
2-LCC over GF (5).

Example 2. The code C27 over GF (27) is defined by the parity-check matrix

H27 =
[

0 1 0 α α2 α6 α11 α19

0 0 1 α α24 α3 α21 α18

]
,

where α is a root of the ternary polynomial x3+2x+1. Again, if we take the 28 unordered
pairs of columns of H27 and compute the difference of the elements in each pair, we obtain
the 28 columns of a parity-check matrix of a [28, 26] 1-error correcting Hamming code
over GF (27). Therefore, C27 is an optimal 2-LCC.
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We recall that by permuting the columns of a parity-check matrix of a given [n, n−r]
code we obtain an equivalent code with the same MDD and dimension. Note also that
when we translate the columns of a parity-check matrix — namely, when we add the
same vector to each column of the matrix — the MDD is preserved. Applying elementary
operations on the rows of the matrix, we can assume, without loss of generality, that a
parity-check matrix has a systematic form, containing a zero column followed by an r×r
identity matrix. Such systematic matrices were presented in Examples 1 and 2.

We remark that the bound of Theorem 2 does not hold when t = n. In this case,
a bound r ≥ t−1 = n−1 is obtained by observing that, obviously, a t-LCC is also a
(t−1)-LCC. Indeed, there exists an [n, 1] n-LCC over GF (q) for any n and q, as we show
in Section 4.

A close analysis of the proof of Theorem 2 reveals another link between optimal LCCs
and MDS codes, as shown in the following corollary.

Corollary 1. Let C be an optimal t-LCC of length n. Then, each class C(a) of C is
a conventional (n, n−t−1) MDS code.

Proof. It follows from the argument in the proof of Theorem 2 that for all a ∈ F ,
the suffixes of length ` = n−t−1 of codewords in C(a) must all be distinct. This implies
that |C(a)| must equal q` and that the suffixes exhaust all q` different `-tuples over
GF (q). Now, the same must apply to the projection of the codewords into any subset of
` coordinates. This property characterizes an (n, `) MDS code [17, Ch. 11].

We point out that the converse of Corollary 1 is not true: an (n, n−t−1) MDS code
has minimum Hamming distance t+2 and, as such, it can have an MDD which is as small
as dt/2e + 1 (see Lemma 3 and its ensuing discussion). Such a code cannot be a class
C(a) of an optimal LCC when t ≥ 2.

3.2 Sphere packing bound

Our next result is a sphere packing bound for t-LCCs (with spheres defined by the
decomposability metric).

Theorem 3. (Sphere packing bound for LCCs.) Let C be a t-LCC of length n over
F = GF (q). Then the redundancy of C satisfies

r ≥ logq |BF (n; t)| .
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Proof. We first note that when t is even, the spheres c+BF (n; t) must be disjoint for
distinct codewords c ∈ C, or else we would have two codewords in C at decomposability
distance t or less. We observe that this applies also when t is odd, in which case BF (n; t)
is a union of n spheres, and (c+BF (n; t)) ∩ (c′+BF (n; t)) 6= ∅ implies the existence of
e, e′ ∈ BF (n; t−1) and u,u′ ∈ WF (n) such that

c + e + u = c′ + e′ + u′ ,

namely c − c′ ∈ BF (n; 2t). Adding the volumes of the disjoint sets c + BF (n; t), we must
have

|C| · |BF (n; t)| ≤ qn ,

which implies the claim of the theorem.

LCCs that attain the bound of Theorem 3 will be called perfect LCCs.

We examine now some specific values of t. For t = 1, the size of |BF (n, 1)| equals n,
yielding by Theorem 3 an upper bound

n ≤ qr (5)

on the length n of any (n, n−r) 1-LCC over GF (q). As we show in Section 4 (Construc-
tion 1), this bound can be attained for every q and r.

The exact value of |BF (n, 2)| is
(

n
2

)
(q − 1) + 1, yielding the upper bound

n(n − 1) ≤ 2 · qr − 1
q − 1

(6)

on the length n of any (n, n−r) 2-LCC over GF (q). Indeed, let H = [h1 h2 . . . hn ] be
an r × n parity-check matrix of a linear code C over GF (q). Then C is a 2-LCC if and
only if the differences hi − hj of all n(n−1)/2 pairs of columns in H with indexes i < j
form a matrix H ′ in which no column is a scalar multiple of the other, thus yielding (6).
In particular, the code C is a perfect 2-LCC if and only if H ′ is a parity-check matrix of
a Hamming code of length (qr−1)/(q−1) over GF (q) (see Examples 1 and 2).

For the special case of optimal 2-LCCs (namely, when r = t = 2), the bound (6)
becomes

n(n − 1) ≤ 2(q + 1) , (7)

which is equivalent to
(n + 1)(n − 2) ≤ 2q . (8)

However, since q is a power of a prime and gcd(n+1, n−2) = gcd(n+1, 3), equality in (8)
can be attained only in the following cases:
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(i) n = 3 and q = 2, in which case there exists a [3, 1] 2-LCC, as we show in Section 4
(Construction 2).

(ii) n = 4 and q = 5, in which case we have the perfect 2-LCC C5 presented in
Example 1.

(iii) n = 5 and q = 9; a simple exhaustive search has revealed that there is no linear
[5, 3] 2-LCC over GF (9). Yet, there exists a nonlinear perfect (5, 3) 2-LCC over GF (9)
which is described in Example 3 below.

(iv) n = 8 and q = 27, in which case we have the linear perfect 2-LCC C27 of
Example 2.

In all other cases, we can tighten (7) to

n(n − 1) ≤ 2q .

Again, since gcd(n, n−1) = 1, equality can be attained only when n = q = 3, in which
case Construction 2 in Section 4 yields an optimal code. We can therefore summarize as
follows.

Corollary 2. The length n of every optimal 2-LCC over GF (q) satisfies the inequality

n(n − 1) ≤


2(q + 1) for q ∈ { 2, 5, 9, 27 } ,
2q for q = 3 ,
2(q − 1) otherwise.

An (n, n−2) 2-LCC that satisfies the equality n(n−1) = 2(q−1) will be called semi-
perfect. Note that the stricter inequality n(n−1) ≤ 2(q−1) holds also for linear codes
over GF (9).

Example 3. We define a perfect (5, 3) 2-LCC C9 over GF (9) as follows. Let α be an
element of GF (9)−GF (3), and consider the matrix

G =


α 0 α+1 1 α+1
1 0 1 2α+2 α+2
0 α α 2α+2 2α+1
0 1 2α+1 2α+1 2α

 .

The class C9(0) of C9 is the set of all linear combinations, with coefficients in GF (3), of
rows of G. The other classes of C9 are given by C9(a) = C9(0)+au1, a ∈ GF (9). Although
C9 is nonlinear over GF (9), it is a vector space over GF (3). Hence, in order to show that
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C9 is a 2-LCC, it suffices to check that none of the 80 nonzero codewords in C9(0) is
2-decomposable. A simple enumeration reveals that this is indeed the case. Expanding
each entry fα+g of G into its components f, g ∈ GF (3), so that each column of G is split
into two columns over GF (3), we obtain a generator matrix Ĝ for a [10, 4] ternary code.
The resulting code can in fact be obtained by shortening the extended ternary Golay
code. Indeed, observe that the columns of Ĝ correspond, up to permutation and scaling,
to the nonzero columns of the first four rows of the generator matrix of the extended
ternary Golay code G12, as described in [17, p. 510]. A computer search, based on the
strict constraints imposed by Corollary 1, revealed that a code with the parameters of
C9 is essentially unique.

Next we provide an estimate on the size of BF (n; t) for general t, which will allow us
to analyze the bound of Theorem 3.

Lemma 4. For F = GF (q),

w∑
τ=0

(
n

2τ

)
(q − 1)τ ≤ |BF (n; 2w)| ≤

w∑
τ=0

(
n(n−1)/2

τ

)
(q − 1)τ .

and
w∑

τ=0

(
n

2τ+1

)
(q − 1)τ ≤ |BF (n; 2w+1)| ≤ n ·

w∑
τ=0

(
n(n−1)/2

τ

)
(q − 1)τ .

Proof. The upper bounds follow from the fact that, by definition, each vector in
BF (n; 2w) can be written as a linear combination of w elements of WF (n).

As for the lower bounds, consider a vector x of Hamming weight 2τ ≤ 2w whose
ith nonzero entry is the additive inverse of its (i+τ )th nonzero entry for i = 1, 2, . . . , τ .
Clearly, the vector x is an element of BF (n; 2w), and there are

(
n
2τ

)
(q−1)τ such vectors

x in F n. This yields the lower bound on BF (n; 2w). The lower bound on BF (n; 2w+1)
is obtained in a similar manner by considering vectors of Hamming weight 2τ+1 whose
first 2τ nonzero entries satisfy the same property as before and whose last nonzero entry
is 1.

Corollary 3. For every (n, n−r) t-LCC over F = GF (q),

r ≥ t logq n + bt/2c logq(q−1) − t logq t .

12



Proof. This follows from Theorem 3, Lemma 4 and the inequality
(

n
t

)
≥ (n/t)t.

Now, consider that case n = q+1. We recall that the bounds (3) and (4) for conven-
tional ECCs can be attained with equality for this length for any t in the appropriate
range (t ≤ n/2 for (3), t ≤ n for (4)). On the other hand, substituting n = q+1 in
Corollary 3 yields

r ≥
⌊

3
2t

⌋
− t logq t .

It thus follows that when 2 ≤ t � q and n = q+1, the sum of the redundancies of
a t-LCC and a t-erasure-correcting code of length n must be strictly greater than the
smallest attainable redundancy of a t-ECC of length n.

The following theorem will allow us to get a stronger bound than that of Corollary 3
in the special case of optimal t-LCCs.

Let N(t, q) denote the maximal length, if any, of any optimal t-LCC over GF (q).

Theorem 4. For any t ≥ 2,

N(t, q) ≤ N(t−1, q) + 1 .

Proof. Let C be an optimal (n, n−t) t-LCC over F = GF (q) with n = N(t, q). Define
C′ as the set of all vectors in F n−1 obtained by substituting the first two coordinates in
each codeword of C with their sum. Each vector in C ′ corresponds to exactly one codeword
in C, since otherwise C would contain codewords at decomposability distance 1 from each
other. Thus, we have |C ′| = |C| = qn−t. We claim that the MDD of C ′ is at least t.
Suppose to the contrary that c = [ c1 c2 d ] and c′ = [ c′1 c′2 d′ ] are distinct codewords
in C whose respective corresponding vectors [ (c1+c2) d ] and [ (c′1+c′2) d′ ] in C ′ are at
decomposability distance less than t. Then, we have

c − c′ = [ (c1−c′1) (c2−c′2) (d−d′) ]
= (c1−c′1)u1,2 + [ 0 (c1+c2−c′1−c′2) (d−d′) ] ,

which implies that c and c′ are at decomposability distance at most t, contradicting our
assumption on C. Therefore, C′ is an optimal (n−1, n−t) (t−1)-LCC over F and, thus,
n−1 ≤ N(t−1, q).

Corollary 4. The following bounds hold:

N(t, q) ≤
 q for t = 1

t − 2 +
⌈ √

2(q + 1)
⌉

for t ≥ 2
.
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Proof. The cases t = 1 and t = 2 follow, respectively, from (5) and Corollary 2. The
bounds for larger values of t follow from Theorem 4.

In particular, when 2 ≤ t � q, Corollary 4 implies that we cannot find optimal
t-LCCs that are counterparts to extended Reed-Solomon codes of length q+1.

The following result is an analogue of Theorem 4 with respect to the maximal length
M(k, q) of any optimal LCC of dimension k over GF (q).

Theorem 5. For any k ≥ 2,

M(k, q) ≤ M(k−1, q) + 1 .

Proof. Let C be an optimal (n, k) t-LCC over F = GF (q) with n = M(k, q) and
t = n−k. Define C ′ as the set of all vectors in F n−1 obtained by deleting the first
coordinate from the codewords of C(0). We claim that the MDD of C′ is at least t+1.
Suppose to the contrary that c and c′ are two vectors in C′ at decomposability distance t
or less. Then both vectors belong to the same class C′(a) in C ′, and [−a c ] and [−a c′ ]
must be codewords in C. But these codewords are at decomposability distance at most t
of each other, which is a contradiction. Therefore, C ′ is an (n−1, k′) t-LCC with t = n−k.
By Corollary 1 we have k′ = k−1, namely, C ′ is optimal. Hence, n−1 ≤ M(k−1, q).

3.3 Gilbert-Varshamov-type bound

Theorem 6. (Gilbert-Varshamov-type bound for LCCs.) There exists an [n, n−r]
t-LCC over GF (q) whenever

qr > |BF (n−1; 2t−1)| . (9)

Proof. The argument is similar to the proof of the conventional Gilbert-Varshamov
bound for ECCs (see, for instance, [17, Ch. 1]). We construct, inductively, an r × n
parity-check matrix H whose right null space does not contain any nonzero vector of
decomposability weight t or less. For n = r, an identity matrix suffices. Given t and r,
let n > r be a code length for which the inequality (9) is satisfied. Then the inequality
is satisfied for shorter lengths as well. Therefore, by the induction hypothesis, we can
construct a parity-check matrix H ′ of an [n−1, n−1−r] t-LCC. We claim that we can
append an additional column v ∈ F r to H ′ to obtain a parity-check matrix H of an
[n, n−r] t-LCC. A wrong choice of v means that there exists a t-decomposable vector
y = [ yi ]ni=1 such that yHT = 0, and yn 6= 0. We can assume, without loss of generality,
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that yn = −1. This, in turn, implies that y ′ = [ yi ]n−1
i=1 ∈ B(n−1; 2t−1) and vT = y′(H ′)T .

It follows that when qr > |B(n−1; 2t−1|, there exists at least one v ∈ F r for which no
such y′ can be found.

The following corollary presents a more explicit approximation of the bound of Theo-
rem 6. The result is readily derived from the theorem, using Lemma 4 and the inequality∑w

τ=0

(
n(n−1)/2

τ

)
≤ (n2/2)w which holds for n > 2.

Corollary 5. For every 1 ≤ t < n there exists an [n, n−r] t-LCC over GF (q) with

r ≤
⌈

(2t − 1) logq n + (t − 1) logq

(
q − 1

2

) ⌉
.

4 Constructions of optimal LCCs

We will mainly be interested in constructing the longest possible optimal t-LCCs for
various values of t.

4.1 The cases t = 1 and t ≥ n−1

Construction 1. (The case t = 1.) Let C be an [n, n−r] code over F = GF (q).
Then C is 1-LCC if and only if the columns of its parity-check matrix H are distinct.

Proof. A nonzero vector in F n is 1-decomposable if and only if it is a scalar multiple
of a vector in WF (n). Such a vector is a codeword in C if and only if there are two
identical columns in H.

In particular, we can build an optimal linear 1-LCC of length q over GF (q) by letting
the entries of the single-row parity-check matrix H range over all elements of GF (q). By
Corollary 4, this is the longest possible optimal 1-LCC.

We next turn to the other extreme values of t. For t ∈ {n−1, n}, Theorem 2 allows
for a code of dimension at most 1. The next construction shows that dimension 1 is
indeed attainable.

Construction 2. (The case t ∈ {n−1, n}.) Let C be an [n, 1] code over F with a
generator matrix

G = [α1 α2 α3 . . . αn] ,
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where the αi are elements of F (not necessarily distinct) whose sum is nonzero. Then C
is an n-LCC.

Proof. Each class C(a) contains one codeword, so the MDD of C is infinity. The
following procedure corrects up to n errors: Let c = uG be the transmitted codeword
and e = [ ei ]ni=1 be the error vector. Knowing the error values, the decoder also knows
the sum s =

∑t
`=1 E` =

∑n
i=1 ei. Hence, by summing up the entries of the received word,

the decoder obtains the value s + u
∑n

i=1 αi, from which it can recover u and, hence, c.

A code as in Construction 2 is optimal for t ∈ {n−1, n} and can be obtained for any
arbitrary length, by taking, say, a sufficiently long unit vector as G. Observe that unlike
conventional MDS codes, equality in the bound of Theorem 2 is not preserved under
duality: the length of an optimal 1-LCC is bounded from above by q (Corollary 4), while
we can have arbitrarily long optimal (n−1)-LCCs. Notice also that, since the MDD of
the code in Construction 2 is infinity, the code could, in principle, correct any number
of errors, including values of t > n. This, of course, only makes (some limited) sense in
the model where multiple errors in the same location are allowed, in which case the list
of error values E1, E2, . . . , Et input to the decoder can be longer than n.

4.2 The case t = 2

Our constructions for t = 2 make use of the following definition. A subset S of an Abelian
group A is called a weak Sidon set if for any four distinct elements x, y, z, w ∈ S we have
x + y 6= z + w (this is also referred to as an S2-set in [8]; see also [14]). A (strong)
Sidon set is defined similarly, except that the inequality x + y 6= z + w is required for
any four elements of which at least three are different [4]. It is easy to check that the
two definitions coincide when the elements of A other than unity all have order 2 (as is
the case when A is the additive group of GF (2m)).

Construction 3. (The case t = 2.) Let C be an [n, n−2] code over F = GF (q) with
a parity-check matrix of the form

H =
[

α1 α2 . . . αn

α−1
1 α−1

2 . . . α−1
n

]
, (10)

where S = {α1, α2, . . . , αn} is a subset of distinct nonzero elements of F . Then, C is a
2-LCC if and only if S is a weak Sidon set of the multiplicative group F ∗ of F .

Proof. Let e = [ ei ]ni=1 be an error vector whose nonzero entries are given by ei1 = E1

and ei2 = E2, and let e′ = [ e′j ]nj=1 be an error vector whose nonzero entries are e′j1
= E1
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and e′j2
= E2. Suppose that eHT = e′HT . We write α = αi1 , β = αi2 , γ = αj1 , and

δ = αj2 . Also, since C is a 1-LCC by Construction 1, we assume that α 6= γ and β 6= δ.
We have

E1α + E2β = E1γ + E2δ (11)

and
E1α

−1 + E2β
−1 = E1γ

−1 + E2δ
−1 . (12)

These two equations, in turn, are equivalent to

E1(α − γ) = E2(δ − β) (13)

and
E1

α − γ

α · γ = E2
δ − β

β · δ . (14)

Dividing each side of (14) by the respective side of (13), we obtain

α · γ = β · δ . (15)

Now, if S is a weak Sidon set of the multiplicative group F ∗, then (15) cannot hold
unless at most three of the values α, β, γ, δ are different. This may happen only in the
following two cases:

(i) α = β (implying by (15) also the equality γ = δ), in which case both e and e ′

contain at most one nonzero location with value E1 + E2. Since C is 1-LCC, we must
have e = e′.

(ii) α = δ (and so β = γ), in which case we must have by (11) the equality (E1 −
E2)(α − β) = 0. So, if α 6= β, then E1 = E2, implying e = e′.

On the other hand, if S is not a weak Sidon set, then there exist distinct α, β, γ
and δ in S such that (15) holds. Now, select E1 and E2 so that (13) is satisfied (and,
thus, so is (14)). The respective vectors e and e′ have distinct supports and therefore are
different. However, since both (11) and (12) hold, these vectors have the same syndrome
and, so, the code C contains a 2-decomposable codeword e − e′.

When s is a power of a prime, we can get strong Sidon sets of size s+1 of the addi-
tive group of the integers modulo s2+s+1 by taking Singer difference sets in projective
planes [15, Ch. 11]. This yields strong Sidon sets of size Ω(

√
`) for any cyclic group of

size ` and, in particular, for the cyclic multiplicative group F ∗. Thus, Construction 3
yields codes of length n = Ω(

√
q), attaining the asymptotic upper bound of Corollary 2

(up to a constant multiplier of the length).

Next, we present another construction of 2-LCCs, based on weak Sidon sets of the
additive group of the field.
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Construction 4. Let C be an [n, n−2] code over F with a parity-check matrix of
the form

H =
[

α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

]
,

where S = {α1, α2, . . . , αn} is a subset of distinct elements of F . Then, C is a 2-LCC if
and only if S is a weak Sidon set of the additive group of F .

Proof. The proof is similar to that of Construction 3. Equation (11) remains as is,
whereas Equation (12) becomes

E1α
2 + E2β

2 = E1γ
2 + E2δ

2 .

Rearranging terms and dividing respective sides, we obtain

α + γ = β + δ .

We continue now as in the proof of Construction 3.

Bounds on sizes of strong Sidon sets for general finite Abelian groups can be found
in [3], [4], and [14]. In particular, it is easy to verify that in a finite Abelian group A
of odd order, any strong Sidon set S must satisfy the inequality |S|(|S|−1) + 1 ≤ |A|.
Singer difference sets satisfy this bound with equality.

As for weak Sidon sets for a finite Abelian group A, it is known [8] that

|S|(|S| − 1) ≤ 2|A| .

Table V in [8] (see also Table IV in [14]) lists the smallest cardinality v(k) of any Abelian
group A containing a weak Sidon set of size k, for 2 ≤ k ≤ 28 (this is, in a sense, the
inverse of the function we are interested in). When A is the additive group of a finite
field, Construction 4 in conjunction with Corollary 2 yield the tighter bound

|S|(|S| − 1) ≤ 2(|A| − 1) (16)

for all but a finite set of values of q = |A|. Inequality (16) is proven in [14] for the case
where A is the ring of integers modulo |A|. This is also the best known upper bound on
the size of strong Sidon sets of the additive group of GF (2m) [4]. For weak Sidon sets of
Abelian groups A of odd order we have the following.

Lemma 5. Let A be a finite Abelian group of odd size. Then, any weak Sidon set S
satisfies the inequality

|S|(|S|−3) + 1 ≤ |A| .
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Proof. Let T denote the set of all |S|(|S|−1) ordered pairs {(x, y) | x, y ∈ S, x 6= y},
and let (a, b) and (z, w) be distinct pairs in T such that a− b = z −w. Since S is a weak
Sidon set, we must have either a = w or b = z. In the first case we have 2a = b + z and
the set {b, z} ⊆ S is uniquely defined by a, and in the second case we have 2b = a + w
and the set {a,w} ⊆ S is uniquely defined by b. It thus follows that for any given a ∈ S,
there are at most two pairs in T of the form (a, u) such that the difference a − u equals
the difference z − w associated with some other pair (z, w) ∈ T . Since such a difference
is never zero, we have |S|(|S|−1) = |T | ≤ |A| − 1 + 2|S|.

Example 4. The set S = {0, 1, 2, 4, 7} is a weak Sidon set for the additive group of
GF (11) [14]. The size of this set attains the bound of Lemma 5. Let C11 be the linear
[5, 3] code over GF (11) with the parity-check matrix

H11 =
[

0 1 2 4 7
0 1 4 5 5

]
.

By Construction 4, the code C11 is a 2-LCC. Furthermore, the code C11 attains the bound
of Corollary 2 and, as such, it is a semi-perfect 2-LCC.

Example 5. The set S = {0, 1, 2, 4, 7, 12} is a weak Sidon set for the additive group
of GF (19) which attains the bound of Lemma 5 [14]. By Construction 4, S leads to a
[6, 4] code C19 over GF (19) which is a 2-LCC. By Corollary 2 this is the longest optimal
2-LCC possible, even though it is not a semi-perfect code.

We remark that Constructions 3 and 4 do not always yield the longest optimal 2-
LCCs. For example, the largest weak Sidon set in the multiplicative group of GF (5) is of
size 3, which is also the size of the largest weak Sidon set in the additive group of GF (5)
(Lemma 5 is not tight in this case). Nevertheless, we showed in Example 1 an optimal
2-LCC of length 4 over GF (5). It can be verified that the construction of Example 1
can be described by way of appending a column to the parity-check matrix defined by
Constructions 3 or 4.

Example 6. The set S = {0, 1, 2, 5, 9, 18, 24} is a weak Sidon set of size 7 for the
additive group of GF (29) and, as such, it attains the bound of Lemma 5. (In fact,
a weak Sidon set of this size is unique up to scaling and translation, namely, up to a
transformation x 7→ ax + b applied to each element x ∈ S for some constants a 6= 0 and
b.) Now, Corollary 2 allows for a semi-perfect optimal 2-LCC of length 8 over GF (29).
However, no column can be added to any parity-check matrix obtained from S (and its
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translates) by using Construction 4 to form an optimal 2-LCC of length 8. Nevertheless,
there is a semi-perfect optimal 2-LCC over GF (29) with the parity-check matrix

H29 =
[

0 1 0 2 3 4 24 27
0 0 1 2 5 18 7 22

]
.

We turn now to fields of size q = 2m. We can form a Sidon set of the additive group
of GF (2m) by taking the columns of a parity-check matrix of an [n, n−m] 2-ECC binary
code, together with the zero column. For examples of the best possible such codes, see [17,
p. 675]. As mentioned before, the best upper bound on the size of Sidon sets S in the
additive group of fields GF (2m) is |S|(|S| − 1) ≤ 2(2m − 1). This bound is attained for
m = 4 by S = {0, 1, α, α2, α3, 1+α+α2+α3}, where α is any element of GF (16)−GF (4),
yielding by Construction 4 a semi-perfect 2-LCC of length 6 over GF (16). For q = 32, the
largest Sidon set in the additive group of GF (32) is of size 7, from which, by extension,
we can obtain an [8, 6] 2-LCC with the parity-check matrix

H32 =
[

0 1 α α2 α3 α4 α26 0
0 1 α2 α4 α6 α8 α21 1

]
,

where α is a root of the binary polynomial x5 + x2 + 1.

For even q, Construction 4 will turn out to be a special case of the more general
Construction 7 described below.

We end this section by presenting a simple construction of [q, q−3] 2-LCCs over
GF (q). These codes are not optimal, but they get rather close to the sphere packing
bound (6).

Construction 5. Let C be a [q, q−3] code over GF (q) with a parity-check matrix of
the form

H =

 α1 α2 . . . αq

α2
1 α2

2 . . . α2
q

α3
1 α3

2 . . . α3
q

 , (17)

where the αj range over all distinct elements of GF (q). Then, C is a 2-LCC.

Proof. It follows from Lemma 3 and the linearity of C that the MDD of C is at least
half the minimum Hamming distance of C(0). Now, the subcode C(0) is a [q, q−4] MDS
code with minimum Hamming distance 5. Therefore, the MDD of C is at least 3.

The codes of Construction 5 are close to the bound (6) from two points of view: For
the given length n = q, they attain the minimum integer redundancy r = 3 allowed by (6)
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for codes over GF (q) with q ≥ 4; and, for the given redundancy r = 3, their length is
asymptotically within a factor

√
2 of the length q

√
2+o(q) allowed by (6). Construction 5

can be extended by taking the αj to be elements of GF (qm). We obtain a construction of
an [n, n−r] 2-LCC over GF (q) with r ≤ 3m and n = qm ≥ qr/3 (compared to the upper
bound O(q(r−1)/2) of (6)).

The 2-LCCs of Constructions 3 and 4 can be efficiently decoded by solving quadratic
equations over GF (q). For example, in the case of Construction 3, having the syndrome
vector [ s1 s2 ] = yHT for the received word y and the parity-check matrix H in (10), we
obtain the two equations

s1 = E1αj1 + E2αj2 and s2 = E1α
−1
j1

+ E2α
−1
j2

in the unknown error locators αj1 and αj2, where E1 and E2 are the given error val-
ues. The proofs of the constructions guarantee that the solution for the pair of error
locators (αj1 , αj2) is unique, provided that they are taken from the set S. The code of
Construction 5 can be decoded by using any of the decoding algorithms for a double-
error-correcting Reed-Solomon code whose parity-check matrix is obtained by adding an
all-one row to the matrix H in (17). The syndrome value that corresponds to this row is
the sum of the error values, which is known to the decoder.

4.3 The case t = n−2

Construction 6. (The case t = n−2.) Let C be an [n, 2] code over F with a generator
matrix of the form

G =
[

α1 α2 α3 . . . αn

β1 β2 β3 . . . βn

]
,

where the αi are elements of F (not necessarily distinct) such that
∑n

i=1 αi 6= 0, and the
βi are elements of F (not necessarily distinct) such that

∑n
i=1 βi = 0 but no sum of less

than n of these elements is zero. Then, C is an optimal LCC.

Proof. The class C(0) consists of all scalar multiples of the second row of G. By
Lemma 2, the MDD of C(0) (and therefore of any other class C(a)) equals n−1. Hence,
this is also the MDD of C.

Let q = pm, where p is the characteristic of F = GF (q), and let S be a multiset
of elements of F constructed by taking p−1 copies of each element of a basis of F over
GF (p). Then the multiset S∪{− ∑

a∈S a} can be used for {βi}n
i=1 in Construction 6. The

resulting code is of length n = m(p − 1) + 1. It will follow from Corollary 6 below that
this is the maximum attainable length for an optimal LCC of dimension 2 over GF (pm).
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Under the model where multiple errors in the same location are not allowed, the code
of Construction 6 can be decoded as follows: Let c = u1g1 + u2g2 be the transmitted
codeword, where g1 and g2 denote the rows of G. Also, let y = [ yi ]ni=1 be the received
vector and let E1, E2, . . . , En−2 be the given error values. We recover the coefficient
u1 similarly to the decoding of Construction 2. As for the coefficient u2, we proceed
as follows. For i = 1, 2, . . . , n−1, we make the assumption that the ith component of
y − u1g1 is error-free and compute the value of u2 under this hypothesis. We then verify
our hypothesis by checking whether the multiset of entries of the implied error vector
y−u1g1 −u2g2 is consistent with the multiset of the given values E`. Such a comparison
of multisets can be done in O(n log n) operations on elements of GF (q) by simple sorting
methods. The total complexity of the procedure is therefore O(n2 log n).

4.4 Other values of t

The existence of a multiset {βi}n
i=1 satisfying the conditions of Construction 6 was shown

to be a sufficient condition for the existence of an optimal t-LCC with t = n−2. We now
show that it is also a necessary condition for t ≤ n−2.

Theorem 7. Let C be an optimal t-LCC of dimension ≥ 2 over F . Then, there exists
a multiset S of t+1 elements of F , such that no nonempty subset of S sums to zero.

Proof. Let C be an (n, n−t) t-LCC with t ≤ n−2 and consider its partition into
classes C(a). Then, for at least one element a ∈ F , we must have |C(a)| ≥ |C|/q = q n−t−1.
Thus, we can find two distinct codewords c1, c2 ∈ C(a) that agree in their last n−t−2
coordinates. Define d = [ di ]ni=1 = c1 − c2. Then, we have di = 0 for i > t+2 and, by
the definition of C(a), we also have

∑t+2
i=1 di =

∑n
i=1 di = 0. It follows that the vector

d′ = [ d1 d2 . . . dt+2 ] is (t+1)-decomposable. On the other hand, the vector d′ cannot
be t-decomposable. Hence, by Lemma 2, the multiset S = {d i}t+1

i=1 must be such that no
nonempty subset of S sums to zero.

Olson [18], [19] has shown that, for F = GF (pm), the maximal size of a multiset S
satisfying the conditions of Theorem 7 is m(p − 1) (see also [10]). This size is attained
by the multiset S described in the discussion following Construction 6. Olson’s results,
together with Theorem 7, lead to the following.

Corollary 6. There exists an optimal t-LCC of dimension ≥ 2 over GF (pm) only if
t ≤ (p−1)m − 1.
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It follows from Corollary 6 that the length range of optimal t-LCCs for large values
of t depends crucially on the structure of the field GF (q). When q is a prime p, we can
apply Construction 6 to obtain an optimal [p, 2] LCC over GF (p). On the other hand,
when q = 2m, the largest multiset in GF (q) that satisfies the conditions of Theorem 7 is
of size m. Hence, the maximum length of an optimal LCC of dimension 2 over GF (q)
varies from being logarithmic in q for q = 2m to being linear in q when q is prime.

Next, we describe a construction of optimal t-LCCs for arbitrary t over extension
fields F = GF (pm) for m ≥ t, with a corresponding decoding algorithm. The proof of
the construction makes use of the following lemma.

Lemma 6. [17, p. 119]. Let a1, a2, . . . , aρ be elements of GF (pm) that are linearly
independent over GF (p). Then the ρ × ρ matrix [ api−1

j ]ρi,j=1 is nonsingular.

Lemma 6 does not require p to be prime. The same applies to the following construc-
tion, although it can attain larger values of t when p is the characteristic of F .

Construction 7. Let t ≤ min{n,m} and let C be an [n, n−t] code over F = GF (pm)
with a parity-check matrix of the form

H =


α1 α2 · · · αn

αp
1 αp

2 · · · αp
n

...
...

...
...

αpt−1

1 αpt−1

2 · · · αpt−1

n

 , (18)

where S = {α1, α2, . . . , αn} is a set of n distinct elements of F . Then, C is a t-LCC if
every subset of 2t or less nonzero elements of S are linearly independent over GF (p).

Proof. We present a decoding algorithm that uniquely recovers the error vector e
provided that the number τ of errors is t or less. The algorithm is based upon the one
described in [21] for decoding maximum-rank array codes (see also [11]).

Let y ∈ F n be the received word and let E1, E2, . . . , Eτ be the given error values,
which we regard as vectors in the linear space F = GF (pm) over GF (p). Also, let
δ = [ δ1 δ2 . . . δρ ] be a vector over F whose entries form a basis of size ρ ≤ τ ≤ t of the
linear span of the set of error values E`. Consider the syndrome vector s = [ s1 s2 . . . st ]
of the received word with respect to the matrix H of Equation (18), i.e., s = yH T . In
order to prove the construction, it suffices to show that there is a unique ρ × n matrix U
over GF (p) such that

s = δUHT . (19)
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The unique error vector e is then given by e = δU .

Now, write

βj =
n∑

i=1
Uj,iαi , j = 1, 2, . . . , ρ , (20)

where Uj,i stands for the (j, i)th entry of U . Recalling that each such entry is in GF (p),
we obtain by (19) the following set of linear equations over F :

s` =
ρ∑

j=1
δjβ

p`−1

j , ` = 1, 2, . . . , t .

For ` = 1, 2, . . . , ρ, we raise each side of the `th equation to the power pm−`+1, thus
obtaining

spm−`+1

` =
ρ∑

j=1
δpm−`+1

j βj , ` = 1, 2, . . . , t . (21)

Since the elements δj are linearly independent over GF (p), so are the elements δ pm−ρ+1

j .
Hence, by Lemma 6, the matrix [ δ pm−`+1

j ]ρ`,j=1 is nonsingular. Therefore, we can solve (21)
uniquely for the elements βj, j = 1, 2, . . . , ρ.

Finally, in order to recover the matrix U , we make use of the fact that the nonzero
elements of S can be regarded as columns of a parity-check matrix of a t-ECC with
redundancy m over GF (p). Therefore, knowing βj, we can solve (20) uniquely for the
Uj,i, except when S contains the zero element, in which case (20) does not give information
on entries Uj,i corresponding to αi = 0. This missing column of U , which corresponds to
an entry of e, can be recovered from the knowledge of the sum

∑n
i=1 ei =

∑τ
`=1 E`.

We pointed out that the nonzero elements of S correspond to the columns of a parity-
check matrix of an [n, n−m] t-ECC over GF (p) (or an [n−1, n−1−m] t-ECC when 0 ∈
S). Such a code can be obtained by constructing a BCH code of designed distance
2t+1 and redundancy at most m. The redundancy constraint is satisfied by taking the
roots of the code from GF (ph), where d2t(p−1)/peh ≤ m. This leads to a code length
n > (1/p)q1/d2t(p−1)/pe = Ω((1/p) 2t

√
q). For the special case p = 2, the constraint on h

becomes t h ≤ m, yielding codes of length Ω( t
√

q).

When BCH codes are used to construct S, the proof of Construction 7 provides a
polynomial-time decoding algorithm: The computation of the elements βj amounts to
Gaussian elimination and solving linear equations over F , whereas the reconstruction of
the matrix U out of the elements βj can be carried out by any of the known decoding
algorithms for BCH codes over GF (p).
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Note that Construction 7 becomes vacuous for p = 2 and t log2 t ≥ m = log2 q
(compare with Corollary 6), since in this case we have n ≤ 2h ≤ t. For odd values of q
and t = 2, Construction 3 yields considerably longer codes than those of Construction 7.

5 Summary

Table 1 summarizes the bounds on the length of optimal LCCs, and the main construc-
tions presented in the paper.

Case Upper Bound on Length Construction Length

t = 1 q (Corollary 4) q (Construction 1)

t = 2 O(
√

q) (Corollary 2) Ω(
√

q) (Constructions 3,4)

t = n−1 none any length (Construction 2)

q = pm, t = n−2 m(p−1) + 1 (Corollary 6) m(p−1) + 1 (Construction 6)

q = 2m, t ≤ m O(
√

q) (Corollary 4) Ω( t
√

q) (Construction 7)

q = pm, t ≤ m O(
√

q) (Corollary 4) Ω(1
p

2t
√

q) (Construction 7)

Table 1: Summary of bounds and constructions for optimal LCCs.

Closing the asymptotic gap in code length between Construction 7 and the bounds
of Corollaries 4 and 6 remains an open research problem.
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Appendix

We prove here that computing the decomposability weight of a vector of length n over
GF (p) is NP-complete in the strong sense [12, Section 4.2]; namely, the existence of an
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algorithm for computing the decomposability weight in time complexity which is polyno-
mial in n and p implies P = NP (“strong sense” refers to the fact that we allow complexity
which is polynomial in the value of p rather than the size, log p, of its representation).

Theorem 8. The following DECOMPOSABILITY decision problem is NP-complete
in the strong sense:

Instance: A prime p and a vector c of length 4m over GF (p).

Question: Is c (3m)-decomposable?

Proof. The problem is clearly in NP. As for completeness, we prove by reduction
from the 3-PARTITION problem which is defined as follows (see [12, Section 4.2.2]):

Instance: A positive integer b and a set A of 3m positive integers such that b/4 <
a < b/2 for every a ∈ A and

∑
a∈A a = mb.

Question: Can we partition A into m disjoint sets A1, A2, . . . , Am such that
∑

a∈Ak
a =

b for every k = 1, 2, . . . ,m?

3-PARTITION is known to be NP-complete in the strong sense. Note that if a
qualifying partition of A exists, then each partition class Ak must contain exactly three
elements of A.

Given an instance (b ; A = {a1, a2, . . . , a3m}) of 3-PARTITION, we construct an in-
stance of DECOMPOSABILITY as follows. Let s be an odd positive integer less than b/2
such that p = 2b+s is prime. By the Prime Number Theorem [9],[20], there always exists
such an integer s for b > 4, and s can be found by a brute-force search in time complexity
which is polynomial in the value of b. Consider the integer vector c = [ c1 c2 . . . c4m ]
defined by

ci =
{

2ai for i = 1, 2, . . . , 3m
s for i = 3m+1, 3m+2, . . . , 4m .

We show that the set {1, 2, . . . , 4m} can be partitioned into m disjoint nonempty
subsets S1, S2, . . . , Sm such that

∑
i∈Sk ci ≡ 0 (mod p) if and only if the set A = {ai}3m

i=1
can be partitioned into m disjoint sets A1, A2, . . . , Am, each consisting of three elements
summing up to b. The result will then follow from Lemma 2.

The “if” part is straightforward: take

Sk = { i | ai ∈ Ak } ∪ { 3m+k } , k = 1, 2, . . . ,m .

As for the “only if” part, we first show that |Sk| ≥ 4 and characterize the case where
equality holds. Write

∑
i∈Sk ci = ` · p for some positive integer `. If ` > 1, then we must
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have |Sk| > 4. If ` = 1, then the number of elements in Sk which are greater than 3m
must be odd. If this odd number is 3 or more, then, again, |Sk| > 4. Otherwise, the subset
Sk can be written as {i1, i2, i3, 3m+j}, where 1 ≤ i1 < i2 < i3 ≤ 3m, ai1 + ai2 + ai3 = b,
and j ∈ {1, 2, . . . ,m}.

We conclude that if there is a partition of {1, 2, . . . 4m} into m subsets Sk such that∑
i∈Sk ci ≡ 0 (mod p), then each Sk must have size 4 and, therefore, it must be of the

form { i | ai ∈ Ak } ∪ { 3m+k }, where A1, A2, . . . , Am forms a qualifying partition of
3-PARTITION.
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