
A Fast Algorithm for DCT-Domain Inverse Motion

Compensation

Neri Merhav� Vasudev Bhaskarany

Keywords: DCT domain processing, motion compensation, networked video composition,
image translation, inverse motion compensation, compressed domain motion compensation

Abstract

One of the important tasks of a multiuser video network server is to composite

compressed video streams from several sources into a single compressed video stream.

A great deal of the computational load can be saved if this composition is performed

directly in the compressed domain rather than using the brute-force approach of con-

verting back to the uncompressed domain, compositing pixel-by-pixel in the spatial

domain, and re-compressing the composite stream. We propose a fast algorithm that

converts motion compensated compressed video into a sequence of DCT-domain blocks

corresponding to the spatial domain blocks of the current frame alone, without predic-

tion based on other frames, i.e., removing the inter-frame element of the compression-

decompression. This operation enables video compositing in the DCT compressed do-

main as well as several compositing operations, e.g., scaling, overlapping, translation,

�ltering, etc. The proposed algorithm saves about 47% of the computations compared

to the brute-force approach even without assuming sparseness of the DCT blocks. For

typical sparse DCT blocks, where only the top-left 4 � 4 quadrant is nonzero, the

reduction in computational complexity is about 68%.

�N. Merhav is with the HP Israel Science Center, Technion City, Haifa 32000, Israel.
yV. Bhaskaran is with the Visual Computing Department, HP Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304,

U.S.A.

Internal Accession Date Only



For HP Internal Use Only

1 Introduction

A basic requirement from a modern video network is the ability to composite compressed
video streams from several sources and to create a single compressed composite stream that
combines them all in a speci�ed fashion. A common example is that of video conferencing.
While the compression and decompression of each stream is performed at the user site, the
composition part, which requires powerful computation resources, is normally performed by
a server located at an intermediate node. The server collects compressed video streams from
all parties of the conferencing session, composites them in a manner speci�ed by the user,
and transmits to him/her the composite compressed video stream. The fact that both input
and output streams of the server are in the compressed domain, the large computational cost
of compression and decompression [1], and the enormous data rates associated with digital
video, are all demanding development of fast algorithms for video composition and related
tasks (e.g., scaling, translating, �ltering) that operate directly in the compressed domain
(see, e.g., [2], [3], [4] and references therein).

Several video compression standards, like MPEG and H.261, combine transform domain
techniques, in particular, the discrete cosine transform (DCT), for removing spatial redun-
dancy, with motion compensation (MC) methods for eliminating temporal redundancy. In
this work, we focus on developing a fast algorithm for undoing the motion compensation
operation in the DCT domain [2]. This algorithm receives as input DCT blocks of motion
compensated compressed video, and provides DCT blocks of the corresponding spatial do-
main blocks of the current frame alone, without reference to past and future frames. This
operation of canceling motion compensation enables video compositing in the DCT com-
pressed domain as well as the above mentioned related online edition operations.

We further develop and improve on the algorithm proposed by Chang and Messerschmitt
[2] for inverse motion compensation. While in [2] computations are saved only if the DCT
blocks are su�ciently sparse and if a large fraction of the reference blocks are aligned to the
boundaries between the original blocks (at least in one direction), the improved algorithm
proposed here reduces the computational complexity by 47% compared to the brute-force
approach, even without any prior assumptions on sparseness or perfect alignment. If, in
addition, DCT blocks are assumed sparse in the sense that only the top-left 4� 4 subblocks
are nonzero (as is typically the case), then computational complexity is reduced by 68%. By
\computational complexity", in the context of this work, we mean the count of the basic
arithmetic operations of the PA-RISC processor, namely, \shift", \add", or \shift and add"
(SH1ADD, SH2ADD, and SH3ADD).

1



For HP Internal Use Only

2 Preliminaries and Problem Description

The 8 � 8 2D-DCT transforms a block fx(n;m)g7
n;m=0 in the spatial domain into a matrix

of frequency components fX(k; l)g7
k;l=0 according to the following equation

X(k; l) =
c(k)

2

c(l)

2

7X
n=0

7X
m=0

x(n;m) cos(
2n+ 1

16
� k�) cos(2m + 1

16
� l�) (1)

where c(0) = 1=
p
2 and c(k) = 1 for k > 0. The inverse transform is given by

x(n;m) =
7X

k=0

7X
l=0

c(k)

2

c(l)

2
X(k; l) cos(

2n + 1

16
� k�) cos(2m+ 1

16
� l�): (2)

In a matrix form, let x = fx(n;m)g7
n;m=0 and X = fX(k; l)g7

k;l=0. De�ne the 8-point DCT
matrix S = fs(k; n)g7

k;n=0, where

s(k; n) =
c(k)

2
cos(

2n + 1

16
� k�): (3)

Then,
X = SxSt (4)

where the superscript t denotes matrix transposition. Similarly, let the superscript �t denote
transposition of the inverse. Then,

x = S�1
XS�t = St

XS (5)

where the second equality follows from the unitarity of S.

Motion compensation of compressed video [6], [7] (see also [8]) means predicting each 8 � 8
spatial domain block x of the current frame by a corresponding reference block x̂ from a
previous frame 1 and encoding the resulting prediction error block e = x � x̂ by using the
DCT. The best matching reference block x̂ may not be aligned to the original 8 � 8 blocks
of the reference frame. In general, the reference block may intersect with four neighboring
spatial domain blocks, henceforth denoted x1;x2;x3, and x4, that together form a 16 � 16
square, where x1 corresponds to northwest, x2 to northeast, x3 to southwest and x4 to
southeast.

Our goal is to compute the DCT X of the current block x = x̂ + e from the given DCT
E of the prediction error e, and the DCT's X1; :::;X4 of x1; :::;x4, respectively. Since
X = X̂ +E, X̂ being the DCT of x̂, the main problem that remains is that of calculating
X̂ directly from X1; :::;X4.

1In some of the frames (B-frames) blocks are estimated from both past and future reference blocks. For the sake of simplicity,
we shall assume here that only the past is used (P -frames). The extension is straightforward.

2



For HP Internal Use Only

Let the intersection of the reference block x̂ with x1 form a h�w rectangle (i.e., h rows and
w columns), where 1 � h � 8 and 1 � w � 8. This means that the intersections of x̂ with x2
,x3, and x4 are rectangles of sizes h� (8�w), (8�h)�w, and (8�h)� (8�w), respectively.
Following Chang and Messerschmitt [2], it is readily seen that x̂ can be expressed as a
superposition of appropriate windowed and shifted versions of x1; :::x4, i.e.,

x̂ =
4X

i=1

ci1xici2; (6)

where cij, i = 1; :::; 4, j = 1; 2, are sparse 8 � 8 matrices of zeroes and ones that perform
window and shift operations accordingly. The basic idea behind the the work of Chang and
Messerschmitt [2] is to use the distributive property of matrix multiplication w.r.t. the DCT.
Speci�cally, since StS = I, eq. (6) may be rewritten as

x̂ =
4X

i=1

ci1S
tSxiS

tSci2: (7)

Next, by premultiplying both sides of (7) by S, and postmultiplying by St, one obtains

X̂ =
4X

i=1

Ci1X iCi2: (8)

where Cij is the DCT of cij. Chang and Messerscmitt [2] proposed to precompute the �xed

matrices Cij for every possible combination of w and h, and to compute X̂ directly in the
DCT domain using eq. (8). Although most of the matrices Cij are not sparse, computations
can still be saved on the basis of typical sparseness of fX ig, and due to the fact the reference
block might be aligned in one direction (either w = 8 or h = 8), which means that the right-
hand side of eq. (8) contains two terms only, or in both directions (w = h = 8), in which
case x̂ = x1 and hence no computations at all are needed.

3 The Proposed Algorithm

We now demonstrate that the computation of X̂ can be done evenmore e�ciently by utilizing
two main facts. First, we observe that some of the matrices cij are equal to each other for
every given w and h. Speci�cally,

c11 = c21 = Uh

�
=

 
0 Ih
0 0

!

c12 = c32 = Lw

�
=

 
0 0
Iw 0

!

where Ih and Iw are identity matrices of dimension h�h and w�w, respectively. Similarly,

c31 = c41 = L8�h;

3



For HP Internal Use Only

and
c22 = c42 = U8�w:

The second observation that helps in saving computations is that rather than fully precom-
puting Cij, it might be more e�cient to leave these matrices factorized into relatively sparse
matrices. In particular, similarly as in [5], we shall use a factorization of S that corresponds
to the fastest existing algorithm for 8-point DCT due to Arai, Agui, and Nakajima [9] (see
also [10]). According to this factorization, S is represented as follows.

S = DPB1B2MA1A2A3 (9)

where D is a diagonal matrix given by

D = diagf0:3536; 0:2549; 0:2706; 0:3007; 0:3536; 0:4500; 0:6533; 1:2814g; (10)

P is a permutation matrix given by

P =

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

1
CCCCCCCCCCCCCA

and the remaining matrices are de�ned as follows:

B1 =

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 �1 0
0 0 0 0 �1 0 0 1

1
CCCCCCCCCCCCCA

B2 =

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 �1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 �1 0 1

1
CCCCCCCCCCCCCA

4



For HP Internal Use Only

M =

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0:7071 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 �0:9239 0 �0:3827 0
0 0 0 0 0 0:7071 0 0
0 0 0 0 �0:3827 0 0:9239 0
0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCA

A1 =

0
BBBBBBBBBBBBB@

1 1 0 0 0 0 0 0
1 �1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCA

A2 =

0
BBBBBBBBBBBBB@

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 �1 0 0 0 0 0
1 0 0 �1 0 0 0 0
0 0 0 0 �1 �1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCA

A3 =

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 �1 0 0 0
0 0 1 0 0 �1 0 0
0 1 0 0 0 0 �1 0
1 0 0 0 0 0 0 �1

1
CCCCCCCCCCCCCA

The best way we have found to use the two observations mentioned above is the following:
First, we precompute the �xed matrices

Ji
�
= Ui(MA1A2A3)

t; i = 1; 2; :::; 8

and
Ki

�
= Li(MA1A2A3)

t; i = 1; 2; :::; 8

5



For HP Internal Use Only

These matrices are very structured and therefore, premultiplication by Ki or Ji can be
implemented very e�ciently as we shall demonstrate shortly. Next, we compute X̂ by using
the expression

X̂ = S[JhB
t

2B
t

1P
tD(X1DPB1B2J

t

w
+X2DPB1B2K

t

8�w) +

K8�hB
t

2B
t

1P
tD(X3DPB1B2J

t

w
+X4DPB1B2K

t

8�w)]S
t (11)

which can easily be obtained from eqs. (7) and (9), or by its dual form

X̂ = S[(JhB
t

2B
t

1P
tDX1 +K8�hB

t

2B
t

1P
tDX3)DPB1B2J

t

w
+

(JhB
t

2B
t

1P
tDX2 +K8�hB

t

2B
t

1P
tDX4)DPB1B2K

t

8�w]S
t; (12)

depending on which one of these expressions requires less computations for the given w and
h.

4 Implementation Issues and Computational Com-

plexity

We now demonstrate how to implement fast multiplication by Ji and Ki, which is the bottle
neck of the computation load. As an example, we shall examine J6. The other matrices are
handled in a similar fashion. The matrix J6 is the following:

J6 =

0
BBBBBBBBBBBBB@

1 �1 �a 0 b a c 0
1 1 �a �1 b 0 c 0
1 1 �a �1 �b 0 �c 0
1 �1 �a 0 �b �a �c 0
1 �1 a 0 c �a �b 0
1 1 a 1 c 0 �b �1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

where a = 0:7071, b = 0:9239, and c = 0:3827. To compute u = J6v, where u = (u1; :::; u8)t

and v = (v1; :::; v8)t, we calculate according to the following steps:

y1 = v1 + v2 (13)

y2 = v1 � v2 (14)

y3 = av3 (15)

y4 = av6 (16)

y5 = y1 � y3 (17)

y6 = y5 � v4 (18)

y7 = y3 � y4 (19)

6



For HP Internal Use Only

y8 = y3 + y4 (20)

y9 = (b+ c)(v5 + v7) (21)

y10 = cv5 (22)

y11 = bv7 (23)

y12 = y9 � y10 � y11 (24)

y13 = y10 � y11 (25)

u1 = y2 � y7 + y12 (26)

u2 = y6 + y12 (27)

u3 = y6 � y12 (28)

u4 = y2 � y8 � y12 (29)

u5 = y2 + y7 + y13 (30)

u6 = y1 + y3 + v4 + y13 � v8 (31)

u7 = 0 (32)

u8 = 0: (33)

This implementation requires 5 multiplications and 22 additions. In this work, however, we
are more interested in the number of basic arithmetic operations on the PA-RISC processor
(see also [5]). As explained in the introduction, here the term \operation" corresponds to the
elementary arithmetic computation of the PA-RISC processor which is either \shift", \add",
or \shift and add" (SH1ADD, SH2ADD, and SH3ADD). For example, the computation
z = 1:375x+ 1:125y is implemented as follows: First, we compute u = x+ 0:5x (SH1ADD),
then v = x + 0:25u (SH2ADD), afterwards w = v + y (ADD), and �nally, z = w + 0:125y
(SH3ADD). Thus, overall 4 basic operations are needed in this example.

Let us now return to our problem and calculate the total number of required operations. By
developing similar implementation schemes of matrix multiplication for all matrices J1; :::; J8,
we �nd that the numbers fNig of operations required to multiply by fJig, 1 � i � 8, are
given by N1 = 18, N2 = 24, N3 = 38, N4 = 39, N5 = 40, N6 = 43, N7 = 44, and N8 = 46.
Since the matrix Ki has a structure similar to that of Ji for every 1 � i � 8, multiplication
by Ki costs also Ni operations.

When counting the operations in the implementation of eq. (11) or (12), we will use the
fact that multiplications by D and D�1 can be ignored because these can be absorbed in the
MPEG quantizer and dequantizer, respectively. The matrices P and P�1 cause only changes
in the order of the components so they can be ignored as well. Thus, for a general position
reference block (i.e., 1 � w � 7, 1 � h � 7), we have the following:
1. Six multiplications by B1 or Bt

1: 6� 32 = 192 operations.
2. Six multiplications by B2 or Bt

2: 6� 32 = 192 operations.
3. Two multiplications by Jw and K8�w, and one by Jh and K8�h, or vice versa: 8 � (Nh +
N8�h +Nw +N8�w +minfNh +N8�h; Nw +N8�wg operations.
4. One 2D-DCT (using eq. (9)): 42 � 16 = 672 operations.

7



For HP Internal Use Only

Total: 1056 + 8 � (Nh +N8�h +Nw +N8�w +minfNh +N8�h; Nw +N8�wg) operations.

Note that we have not counted additions of the products in eqs. (11) and (12) because the
di�erent summands are nonzero on disjoint subsets of indices of matrix elements. When the
reference block is aligned in the vertical direction only, i.e., h = 8 and 1 � w � 7, then
K8�h = K0 = L0(MA1A2A3)t = 0, and therefore eqs. (11) and (12) contain two terms only.
Furthermore, since Jh = J8 = U8(MA1A2A3)

t = (MA1A2A3)
t, eq. (11) degenerates to

X̂ = (X1DPB1B2J
t

w
+X2DPB1B2K

t

8�w)S
t (34)

which requires the following steps:

1. Two multiplications by B1: 2 � 32 = 64 operations.
2. Two multiplications by B2: 2 � 32 = 64 operations.
3. One multiplication by Jw and one by K8�w: 8(Nw +N8�w) operations.
4. One multiplication by St: 8 � 42 = 336 operations.
Total: 464 + 8(Nw +N8�w) operations.

Similarly, for the horizontally aligned case, where w = 8 and 1 � h � 7, the number of
computations is 464+8(Nh+N8�h). As mentioned earlier, when w = h = 8 no computations
are required at all since X̂ =X1 and hence already given.

By using the above expressions, we �nd that the number of computations for the worst case
values of h and w is 2928, and the average number, assuming a uniform distribution on
the pairs f(w; h) : 1 � w � 8; 1 � h � 8g, is 2300:5. On the other hand, the brute-force
approach of performing IDCT to X1; :::;X4, cutting the appropriate reference block in the
spatial domain, and transforming it back, requires a total of 4320 operations. This means
that the reduction in computational complexity, in comparison to the brute-force method,
is 32% for the worst case and 46:8% for the average.

So far we have not assumed that the input DCT matrices are sparse. Typically, a con-
siderable percentage of the DCT blocks have only a few nonzero elements, normally, those
corresponding to low spatial frequencies in both directions. For simplicity, we shall refer to
a DCT block as sparse if only the top left 4� 4 quadrant (corresponding to low frequencies)
is nonzero.

We have redesigned the implementation of multiplication by Ji and Ki, 1 � i � 8, when
X1; :::;X4 are assumed sparse in the above sense, and found that the number of computa-
tions is 672+8 �(N 0

w
+N 0

8�w+N 0

h
+N 0

8�h) for 1 � w � 7 and 1 � h � 7, 336+4 �(N 0

w
+N 0

8�w)
for h = 8 and 1 � w � 7, 336 + 4 � (N 0

h
+ N 0

8�h) for w = 8 and 1 � h � 7, and zero when
w = h = 8, where N 0

1 = 15, N 0

2 = 20, N 0

3 = 26, N 0

4 = 33, N 0

5 = 36, N 0

6 = 40, N 0

7 = 41, and,
N 0

8 = 42. This means that the are 1728 computations in the worst case and 1397:2 on the

8



For HP Internal Use Only

average, corresponding to reductions of 60% and 68%, respectively, compared to the brute
force approach.

For comparison with earlier results, Chang and Messerschmitt [2] have shown computation
savings only if the DCT matrices are sparse enough and if a large percentage of the reference
blocks are aligned at least in one direction. Speci�cally, these authors introduced three
parameters: the reciprocal of the fraction of nonzero coe�cients �, the fraction �1 of reference
blocks aligned in one direction, and the fraction �2 of completely unaligned reference blocks.

Let us consider �rst the worst case situation in terms of block alignment, i.e., �1 = 0 and
�2 = 1. Our above de�nition of sparseness corresponds to � = 4. Chang et al. provide
exact formulas for the number multiplications and additions associated with their approach
in terms of �1, �2, � and the block size N (N = 8 in JPEG and MPEG). According to these
formulas, their approach require in this case 16 mutiplications per pixel and 19 additions per
pixel. To compare with PA-RISC processor operations, let us assume that on the average
every multiplication requires upto 4 SHIFTs and 3 ADDs and that SHIFTs and ADDs can
be done simultaneously. This means that a conservative estimate of the total number of
operations per block is (16� 3+19)� 64 = 4288, which is much larger than 1728 operations
(see above) in the proposed approach under the same circumstances.

As another point of comparison, note that a uniform distribution over w and h in our case
corresponds to �1 = 14=64 = 0:219 and �2 = 49=64 = 0:766, which is more pessimistic than
the upper curve in Fig. 5 of [2], where �1 = 0:2 and �2 = 0:1. Nevertheless, for � = 1 we
are able to speedup the computations by a factor of 4320=2300:5 = 1:87 compared to 0:6 in
[2], and for � = 4 our speedup is 4320=1397:2 = 3:13 compared to approximately 2:0 in [2].
Furthermore, if we assume �1 = 0:2 and �2 = 0:1 as in [2] we obtain speedup factors of 9:06
for � = 1 and about 15 for � = 4, which means an improvement by an order of magnitude
compared to [2].

5 Conclusion

We proposed a fast algorithm that converts motion compensated compressed video into a
sequence of DCT-domain blocks corresponding to the spatial domain blocks of the current
frame. The heart of the algorithm is in computing the DCT of a possibly unaligned reference
block from the DCT's of the blocks with which it intersects. This operation might be
applicable in other tasks as well, e.g., translation and �ltering. The proposed algorithm
saves about 47% of the computations compared to the brute-force approach even without
assuming sparseness of the DCT blocks. For typical sparse DCT blocks, where only the
top-left 4� 4 quadrant is nonzero, the reduction in computational complexity is about 68%.
The computational e�ciency was also shown to outperform that of a scheme proposed earlier
by Chang and Messerschmitt.

9



For HP Internal Use Only

6 References

[1] R. B. Lee et al., \Achieving Realtime Software MPEG Decompression on a Multimedia-
Enhanced PA-RISC Processor," . Proc. Hewlett-Packard Image and Data Compression

Conference, Palo Alto, California, May 1994.

[2] S.-F. Chang and D. G. Messerschmitt, \A New Approach to Decoding and Composit-
ing Motion-Compensated DCT Based Images," Proc. ICASSP `93, pp. V.421-V.424,
Minneapolis, April 1993.

[3] W. Kou and T. Fjalbrant, \A Direct Computation of DCT Coe�cients for a Signal
Block Taken from Two Adjacent Blocks," IEEE Trans. Signal Proc., Vol. SP-39, pp.
1692-1695, July 1991.

[4] J. B. Lee and B. G. Lee, \Transform Domain Filtering Based on Pipelining Structure,"
IEEE Trans. Signal Proc., Vol. SP-40, pp. 2061-2064, August 1992.

[5] N. Merhav and V. Bhaskaran, \A Transform Domain Aproach to Spatial Domain Image
Scaling," HPL Technical Report #HPL-94-116, December 1994.

[6] Coding of Moving and Associated Audio. Committee Draft of Standard ISO11172:
ISO/MPEG 90/176, December 1990.

[7] Video Codec for Audio Visual Services at px64 Kbits/s. CCITT RecommendationH.261,
1990.

[8] D. le Gall, \MPEG: A Video Compression Standard for Multimedia Applications,"
Commun. of the ACM, Vol. 34, No. 4, pp. 47-58, April 1991.

[9] Y. Arai, T. Agui, and M. Nakajima, \A Fast DCT-SQ Scheme for Images," Trans. of

the IEICE, E 71(11):1095, November 1988.

[10] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard,
Van Nostrand Reinhold, 1993.

10




