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1 Introduction

This work addresses the problem of efficient 2D linear filtering in the discrete cosine transform
(DCT) domain, which is an important problem in the area of processing and manipulation
of images and video streams compressed in DCT-based methods, such as JPEG, MPEG,
H.261, and others (see, e.g., [1-9]).

Most of the previously reported work on DCT domain processing in general, and 2D filter
ing in particular, focuses on exact algorithms, that provide the precise desired results. In
[10] Bhaskaran et al. proposed a method for sharpening scanned text and picture images
by multiplying the DCT coefficients of the image by fixed multipliers that were designed
using statistical considerations. Specifically, these multipliers were designed so as to match
the variances of the DCT coefficients of the scanned image to desirable reference variances
corresponding to a computer-generated synthetic image. Clearly, DCT domain element-by
element multiplication does not exactly correspond to spatial domain convolution (see, e.g.,
[1], [2], [3], and [4] for convolution-multiplication properties of the DCT), but the motivation
for this approximate filtering approach is clear: Once a set of DCT coefficient multipliers
is available, the DCT domain element-by-element multiplication is easy to implement on
compressed streams of DCT-based compression methods with no additional computational
cost. One simply uses a decoding quantization table that is different from the encoding
quantization table, so that the dequantization table includes the appropriate gains.

In this work, we further study the idea of using DCT domain coefficient multipliers in order
to mimic a certain image enhancement operation. Unlike the variance matching approach of
Bhaskaran et al., however, we aim at approximating a given convolution kernel. Specifically,
the problem we address is the following: Given a 2D separable, symmetric convolution kernel
in the spatial domain, we seek a set of DCT coefficient multipliers that best approximate the
operation of filtering by the given kernel in the least squares sense. We provide two variants
of the solution to this problem, and demonstrate their performance.

The DCT domain multiplication approach is useful in several applications where the image
is distorted by a certain mechanism before being compressed and stored, and one would like
to embed the multipliers in the decoding quantization table in order to compensate for this
distortion. One example is a color scanner which suffers from limited modulation transfer
function (MTF) and misregistration problems [10]. Another example is the digital camera
whose CCD sensors typically suffer from several sources of noise: photo-electric Poisson noise
due to photon-electron conversion, electronic circuitry noise, and quantization noise of the
digitization phase. The reconstruction process of digital pictures also suffers from artifacts
due to the fact that every pixel carries one color only. Other image and video recording
media are subjected to various types of distortion and noise as well due to technological
limitations.

The outline of this document is as follows. In Section 2, we provide the formulation of
the problem. Section 3 contains the mathematical derivation of two methods for designing
the DCT domain coefficient multipliers. In Section 4, we demonstrate the performance and
discuss the properties of these design methods. Finally, in Section 5, several conclusions are
drawn along with directions for further research.
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2 Preliminaries and Problem Description

The 8-point 2D DCT transforms an 8 x 8 block {x(n, m)}~,m=o in the spatial domain into a
matrix of DCT coefficients {X(k, l)}k,I=O' according to the following equation [12]:

X(k l) c(k) c(l) ~ ~ ( ) (2n + 1 k) (2m + 1 l ), =-- L..J L..J x n,m cos . 71" cos 16 . 71" ,
2 2 n=Om=O 16

where c(O) = 1/V2 and c(i) = 1 for i > O. The inverse transform is given by:

( ) ~~c(k)c(l)X(k l) (2n+1 k) (2m+1 l)x n, m = L..JL..J--2 ,cos . 71" cos 16 . 71" •
k=OI=O 2 16

(1)

(2)

In a matrix form, let ~ = {x(n, m)}~,m=o and X = {X(k, l)}k,I=O' and define the 8-point
DCT matrix S = {S(k, n)}k,n=o, where

S (k ) - c(k) (2n + 1 . k ),n - 2 cos 16 71" •

We then have
X = ses:

where the superscript t denotes matrix transposition, and so

(3)

(4)

(5)

where the second equality follows from the unitarity of S.

Filtering, or convolution, of an input image {I(i,j)}, (where i and j are integers taking on
values in ranges that correspond to the size of the image), by a filter with impulse response
{f(i, j)} (also called kernel), results in an output image {J(i,j)} given by:

J(i,j) = L L f(i',j')I(i - i',j - j')
i' i'

(6)

where the range of summation over i' and j' is, of course, according to the support of the
impulse response {f (i, j)}. In this work, we assume that the filter {f (i, j)} is separable, that
is, f(i,j) can be factorized as

f(i,j) = Vihj, (7)

for some one-dimensional sequences {Vi} and {hj}. The supports of {vd and {hj} are -M :::;
i:::; M and -N :::; j :::; N, respectively, meaning that f(i,j) = 0 outside a (2M +1) x (2N +1)
rectangle.

Incorporating the separability assumption into eq. (6), we get

M N

J(i,j) = LVi' L hj'I(i - i',j - j'),
i'=-M j';;;;-N

2
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namely, one can first perform a one-dimensional convolution on each row with the hori
zontal filter component (HFC) {hj}, and then another one-dimensional convolution on each
resulting column with the vertical filter component (VFC) {Vi}' Of course, the order can be
interchanged and the vertical convolutions can be carried out first without affecting the final
result.

An important special case, assumed frequently in previously reported work (see, e.g., [1,3,8])
as well as in this work, is that of symmetric filter components, namely, Vi = V-i and hi = h_i
for all i.

The input image {/(i, j)} is given in the compressed domain, that is, we are given a sequence
of 8 x 8 matrices X I, X 2, ... of DCT coefficients corresponding to spatial domain 8 x 8 spatial
domain blocks ZI, Z2, ... that together form the input image {/(i,j)}. Our task is to calculate
a good approximation of the sequence of 8 x 8 matrices Y b Y 2, ... of DCT coefficients of
the spatial domain blocks YI' Y2' ... associated with the filtered image {J(i, j)}, directly from
X b X 2 , ... , without going via the spatial domain and performing spatial domain convolution.
We further assume that M and N do not exceed 8 (that is, the filter size is always smaller
than 17 x 17), so that every DCT block of the filtered image {J(i,j)} depends on the
corresponding DCT block of the input image {/(i,j)} and the eight immediate neighbors of
X.

Specifically, let

Vg V7 VI Vo VI V7 Vg 0 0
0 Vg V7 VI Vo VI V7 Vg 0 0

v= (9)

0 0 Vg V7 VI Vo VI V7 Vg

and

h g h 7 hI ho hI h7 h g 0 0
0 h g h7 hI ho hI h7 h g 0 0

H= (10)

o

Let Z denote a spatial domain input block of size 24 x 24, subdivided into nine 8 x 8 blocks
as follows:

Z = (:~~ :~: :~:)
Z3I Z32 Z33

The 8 x 8 output block Y that corresponds to the central input block Z22 is given by

Y = ven:
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Our problem is the following: Given H and V, we seek a fixed 8 x 8 matrix G of DCT
domain multipliers such that element-by-element multiplication of G by X 22 (the DCT of
Z22), henceforth denoted by Y = G. X 22 , would have an IDCT y that is as close as
possible to y, namely, the error e = y - Y is "small" in some reasonable sense. The most
common measure of the error magnitude is its energy f.2 = lel2 , i.e., the sum of squares
of the elements of e. Since f.2 = f.2 (z ) depends also on the input z, and we wish that G
would be fixed and independent of z, there are two possible approaches at this point. One
approach, henceforth referred to as the minimum mean squared error (MMSE) approach, is
to minimize the expectation of f.2 (z ) w.r.t z , which requires some estimates or assumptions
about the second order statistics of z. The second approach, which will be referred to as
the minimax approach, minimizes maxz f.2 (z ) subject to a constraint on the energy of z.
The latter approach is somewhat more pessimistic but it to avoids the dependence upon the
second order statistics of z. Both approaches will be discussed in the next section.

3 Mathematical Derivation

By Parseval's theorem and the unitarity of the DCT, the spatial domain error energy f.2

remains unchanged under the DCT, i.e., e and its DCT E = S est have the same energy.
Therefore, we can seek the best multiplier matrix G directly in the DCT domain by mini-
mizing the energy of E.

To this end, let us partition the matrix V into three 8 x 8 matrices V = [Vi, V2, V3], where

VB V7 V6 Vs V4 Va V2 VI
0 VB V7 V6 Vs V4 Va V2

0 0 VB V7 V6 Vs V4 Va

VI =
0 0 0 VB V7 V6 Vs V4 (13)
0 0 0 0 VB V7 V6 Vs
0 0 0 0 0 VB V7 V6

0 0 0 0 0 0 VB V7

0 0 0 0 0 0 0 VB

Vo VI V2 Va V4 Vs V6 V7

VI Vo VI V2 Va V4 Vs V6

V2 VI Vo VI V2 Va V4 Vs

V2 =
Va V2 VI Vo VI V2 Va V4 (14)
V4 Va V2 VI Vo VI V2 Va

Vs V4 Va V2 VI Vo VI V2

V6 Vs V4 Va V2 VI Vo VI

V7 V6 Vs V4 Va V2 VI Vo

and V3 = Vr In the same fashion, H is partitioned into [HI, H2, Ha] with similar definitions
of HI, H2, and u;
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The ideal convolution can now be expressed as

3 3

Y = L L ~XijHJ.
i=l j=l

(15)

Since the DCT is unitary, it is distributive w.r.t matrix multiplication, and so the last
equation can be written in the DCT domain as

3 3

Y = L LViXijH~,
i=l j=l

(16)

where Y, Vi, Xij, and H, are the 2D-DCT's of y, ~, Xij, and Hj, respectively, i,j = 1,2,3.
Now, let

3 3

E = Y - Y= L LViXijH~ - G. X 22. (17)
i=l j=l

In order to express the element-by-element multiplication G • X 22 in terms of ordinary
algebraic matrix multiplication, it will be convenient to represent the data {Xij} in a one
dimensional representation by column stacking [11, Sections 5.3-5.4]. The column-stacked
version Z of an m x n matrix Z is a (mn)-dimensional column vector formed by concatenating
the columns of Z from left to right. The basic fact that will be used hereafter with regard
to column stacking is that if W = AZB' where Z is as above, and A and B are matrices of
dimensions k x m and 1x n, respectively, then W = (B0A)Z, where B0A is the Kroenecker
tensor product of B and A, defined as

(18)

Returning to the approximate filtering problem, we can now rewrite eq. (17) in the column
stacked representation as follows:

3 3

E = L L FijXij - DX22
i=l j=l

where Fij = Hj ®~, i,j = 1,2,3, and D = diag{G}.

3.1 The MMSE Approach

(19)

In this approach, we would like to minimize the expectation of f.2 = E tE = tr{EE t
} over

D (or, equivalently G). Let ~j,kl = E{XijX~I}' Then,

Ef.
2

= Etr [CttFijXij - DX22)Ct tFklXkl- DX22)t]
$-1 J=1 k=ll=l
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(21)

(

3 3 3 3 3 3

- tr t;f;E~ Fij~j,klFkl - DE~ R22,klFkl

-t.t l'ijR;j,22D + DR22,22D) . (20)

By taking partial derivatives w.r.t the diagonal elements {dd?~1 and setting to zero, one
obtains a set of 64 decoupled linear equations with 64 unknowns whose solutions are given
by

d* _ 2:~=1 2:J=1 (Fij~j,22)(k, k)
k - R22,22(k , k) ,

where A(i,j) is understood as the ijth element of a matrix A. Therefore, the optimal DCT
domain gain factor 9ij = G(i,j), i,j = 1, ...,8 is given by dk, where k = 8(j - 1) + i, which
corresponds to the column stacking order.

As can be seen, the optimal solution depends not only on the given convolution kernel (via
{Fij}), but also on the covariance matrices {~j,22} of the DCT domain data. Therefore, in
order to use this solution, one must estimate these covariance matrices from sample images,
or to assume a certain form. We will adopt the second approach.

Before doing that, we note that by substituting eq. (21) into eq. (20), we get the following
expression for the MMSE.

(E€2)min = tr (t i: i: t Fij~j'klFkl) - f [2:~=1 2:J=1 (Fij~j,22)(m, m)]2 (22)
i=1 j=1 k=ll=1 m=1 R22,22(m, m)

This expression, that provides a measure of the goodness of fit, gives a guideline about
the conditions under which a given filter can be well approximated by DCT coefficient
multipliers. The ratio between the first term of eq. (22) and (E€2)min is the signal-to-noise
ratio corresponding to the approximation. As expected, when H 2 and V 2 and hence also
F22 are diagonally dominant, the MMSE is relatively small.

For the sake of simplicity in implementing eq. (21), we shall adopt a spatial domain, sepa
rable, first order Markov model [11, Sect. 5.6]. Accordin~ to this model, the spatial domain
covariance between two pixel intensities x(nl' md and xtn2, m2) is given by

r(nl' mIl n2, m2) .6. E[x(nI, mdx(n2' m2)] = (72plnl-n21+lml-m21, (23)

where p is a parameter in the range (-1, 1), and (72 is a scaling factor whose value is im
material for eq. (21) and hence will be assumed unity. The covariance matrices {~j,22}
in this case, are obtained as follows. Let ro and rl be 8 x 8 Toeplitz matrices whose ijth
elements are pli-jl and pl8+j-il, respectively. Let Ro and R I denote the 2D-DCT's of ro and
rl, respectively, i.e., Ro = SroSt and RI = SrISt. Then,

~j,22 = n, 0 n; (24)

where

~={
RI if i = 1
Ro if i = 2 (25)
Rt if i = 31
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Thus, the numerator of eq. (21) degenerates to

3 3

LLFij~j,22
i=1 j=1

3 3

LL(Hj 0 Vi)(Rj 0~)
i=1 j=1

3 3

L L(HjRj) 0 (Vi~)
i=1 j=1

3 3

(2: HIR/) 0 (2: VIR/)
1=1 1=1

~ H R0VR · (26)

(28)

Hence, for k = 8(j - 1) + i, we get

d* - .. - VR(i,i) . HR(j,j) (27)
k - glJ - Ro(i, i) Ro(j, j) .

In other words, the matrix G in this case is just the outer product of two vectors formed
by the diagonals of V R, H R, and Ro, which means that the optimum two dimensional
MMSE solution separates into the combination of the two optimum one dimensional solutions
corresponding to the horizontal convolution and the vertical convolution. In the special case
where p = 0, i.e., Ro = TO = I and R1= Tl = 0, we simply get gij = V 2(i, i)H2(j,j).

Incorporating the Quantization Error

Since this work is primarily motivated by embedding the multipliers in the quantization
tables, as explained in the Introduction, a natural refinement of this method would be to
incorporate the effect of quantization errors, and to optimize the DCT-domain gains so as
to minimize the combined effect of approximation error and quantization error. In this
subsection, we examine the effect of quantization error on the design of the multipliers.

If we consider the JPEG algorithm, then at the encoder, every DCT coefficient X 22(i , j ) is
first divided by the encoding step-size be(i,j), and then rounded to the closest integer. At
the decoder, the resultant integer is multiplied by the decoding step-size bd(i,j) (which is
traditionally identical to be(i,j)), and so the decoded DCT coefficient is given by

X~ (..) bd(i,j) X (..) s (. ')Q(' .)
22 Z, J = ~ (. ')' 22 Z, J + ud Z, J Z, J

ue Z,J

where -0.5 :s; Q(i,j) < 0.5 is the roundoff error at the encoder. If we identify the ratio
bd(i,j)/be(i,j) as gij, then the first term is the desired term and the second is an error term.
Thus, we rewrite eq. (28) as

X22(i , j ) = gijX22(i,j) + gijbe(i,j)Q(i,j). (29)

Assuming that the encoding quantization table be = {be(i,j)} is fixed and only the decoding
table bd = {bd(i, j)} absorbs the multipliers (so as to avoid any effects on the compressibility),
then eq. (19) is now rewritten as

3 3

E = 2:2:FijXij - DX22+ DD.eQ
i;;;:1 j;;;:1

7
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where ~e = diag{6e } , and Q is the column stacked version of the roundoff error matrix
Q = {Q(i, j)}. The error signal now has two components. The first component is the
approximation error, which is given by the first two terms as before. The second component
is the quantization error given by the third term. If we assume that these two components
are uncorrelated (which is a reasonable assumption when {8e(i,j)} are fairly small), then
similarly as in (20), we obtain

(31)

where RQ is the covariance matrix of Q. If we further assume that RQ is diagonal (i.e., the
roundoff errors are uncorrelated), then the optimal gains are as in eq. (21) except that the
denominator is replaced by R22,22(k, k)+6;(k)RQ(k, k). This means that the gain factors are
reduced by a factor of R22,22(k, k)/[R22,22(k, k) + 6;(k)RQ(k, k)], which (similarly as in the
Wiener solution), is the best compromise between the desired response and noise suppression.

In order to obtain a rough assessment on the order of magnitude of this attenuation factor,
let us assume that each Q(i, j) is uniformly distributed in [-0.5,0.5), and so RQ(k, k) = 1/12
for all k. Now, for the recommended JPEG quantization table, the step-sizes 8e (i , j ) for the
low (and typically important) frequency components (say, i + j :::; 5) are all less than or
equal to 16. Thus, 6;(k)RQ(k, k) does not exceed 162/12 = 21.333. On the other hand,
the variances of these low frequency DCT coefficients R22,22(k, k) are typically of the order
of magnitude of 103 or 104 , namely, at least 2 or 3 orders of magnitude larger than the
quantization error term. Thus, at least for the important frequency components, we do not
expect the gain factors to be affected significantly by the quantization error.

3.2 The Minimax Approach

As an alternative to the MMSEapproach, one might consider the more conservative minimax
approach, where instead of minimizing E€2 (x), one minimizes the maximum of €2 (x) where
the input x has a given energy.

To this end, we will rewrite eq. (19) in a slightly different manner. Let X denote the
576-dimensional column vector formed by the concatenation of X 11, X 12, ... , X 33 in a block
column stacking order. Let V = [V 1 , V 2 , V 3], H = [HI, H 2 , H 3], and let

D = [0 0 0 0 D 0 0 0 0], (32)

where 0 is the 8 x 8 all-zero matrix and D is as above. Then, eq. (19), can be rewritten as

and therefore

E = [(H ® V) - D]X

8
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Minimizing over D the maximum of €2(X) subject to an input energy constraint X t X ~ A
is equivalent to minimizing the largest eigenvalue ofthe matrix [(H0V)-D]t[(H0V)-D],
which is a 576 x 576 matrix. This in turn is equivalent to minimizing the largest eigenvalue
of the 64 x 64 matrix r(H 0 V) - D][(H 0 V) - D]t, which is still a large matrix dimension
for any iterative search for the optimum D.

To alleviate this difficulty, we adopt a suboptimal solution that separates the two dimensional
problem into two one-dimensional problems of the vertical convolution and the horizon
tal convolution. For the one-dimensional vertical convolution, consider three 8-dimensional
column vectors of ID-DCT coefficients X b X 2, and X a. The desired convolution result
corresponding to X 2 is given by

Y = VIXI + V 2X2 + VaXa (35)

and the approximation is given by Y = DvX2 , where D; is a diagonal matrix corresponding
to the VFC. The error is given by E = [VI, V 2 - Dv , Va]X, where X denotes the 24
dimensional column vector formed by concatenating X I, X 2, and X a. Therefore, the one
dimensional minimax problem is that of minimizing w.r.t D; the largest eigenvalue of the
8 x 8 matrix

W(Dv ) = v.v: + (V2 - D v )2+ VaV; (36)

where we have used the symmetry of V 2 and D v • A natural initial guess for an iterative
search for the optimum D; would be to set the diagonal elements of D; to be the same
as the corresponding diagonal elements of V 2. If Ivol is considerably larger than all IVil
for all i ::j:. 0, then V 2 is diagonally dominant, and this initial guess is already fairly close
to the optimum solution. (Note also that this is equivalent to the MMSE solution for
p = 0 as described above.) The iterative optimization algorithm that we have used was the
Nedler-Meade simplex search for unconstrained optimization, which is implemented by the
MATLAB library function fmins.

The proposed sub-optimum minimax procedure is to find the optimum diagonal matrix
D~ for vertical convolution, and similarly, the optimum diagonal matrix D'h for horizontal
convolution, and then to approximate Y as D~X22D'h. This means that gij is given by the
product of the iith element of D~ and the jjth element of D'h.

4 Experimental Results and Discussion

We have simulated both the MMSE approach and the minimax approach (without quantiza
tion) and examined their performance on real images in comparison to the true convolution.
As will be seen, the approximate convolution method works well for convolution kernels
where the central coefficient (ho or vo) is considerably larger than other coefficients, (e.g., by
a factor of 2 or 3 at least). For kernels that do not have this property, e.g., the 5 x 5 uniform
weight averaging kernel, we have witnessed blocky-ness effects in the resulting image, due to
error discontinuities at the boundaries between blocks.

We first examined the design of a lowpass filter for noise cleaning applications. The desired
lowpass filter is given by ho = Vo = 0.5, hI = VI = 0.25 and hi = Vi = 0 for all i > 1.
Fig. 1 illustrates the original image, fig. 2 is a noisy version, fig. 3 is the noisy image after
exact convolution with the above filter, fig. 4 is the result of DCT domain multiplication,
where the multipliers were designed using the MMSE approach with p = 0.9, and fig. 5
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is associated with DOT domain multipliers designed by the minimax approach. As can
be seen, the approximate methods give images that are visually equivalent to that of the
exact convolution image. We have also examined the MMSE approach with various values
of p in the range [0,0.99] but since ho and Vo dominate the other coefficients, the resulting
multipliers were not very sensitive to p and the resultant images looked quite the same.
(There are merely minor changes in the multiplier values when p varies in that range.)

In a second experiment, we examined the design of an approximate highpass filter for edge
sharpening applications. The desired highpass filter is given by ho = Vo = 3, hI = VI = -1,
and hi = Vi = 0 for all i > 1. Fig. 6 is an original image of scanned text, fig. 7 is the
resulting image after exact convolution with the above filter, fig. 8 is the result of DOT
domain multiplication, where the multipliers were designed using the MMSE approach with
p = 0.9, and fig. 9 is associated with the minimax approach. As can be seen, the MMSE
approach gives a result similar to that of the exact convolution, that is, sharpening the text
at the expense of noticeable background noise. (Again, the results of the former were not
very sensitive to p.) The minimax approach, on the other hand, also enhances the text, but
the background is significantly cleaner.

In other experiments, with different kernels and different images, we always found that
both the MMSE and the minimax approach provide results that are perceptually equivalent
to that of the exact convolution, where sometimes the minimax approach, which does not
depend on the image statistics, is somewhat better.

5 Conclusion and Extensions

We have developed two methods for designing DOT domain coefficient multipliers, the
MMSE approach and the minimax approach. The first method depends on the second order
statistics of the image, or the class of images under consideration. If the covariance of the
image is assumed separable, the two dimensional problem breaks, without loss in optimality,
into two separate one dimensional problems corresponding to the vertical convolution and
the horizontal convolution. If, in addition, the central kernel coefficient is considerably large
compared to the other coefficients, then the resulting multipliers are relatively insensitive to
the spatial domain correlation between pixels. The second method does not depend on the
statistics of the image. Although we were unable to prove that the minimax problem, splits
without loss of optimality, into separate row and column problems, we have adopted this
approach for reasons of simplicity. Nevertheless, the suboptimal minimax approach provided
results which are equivalent or even better than the MMSE approach in approximating the
exact convolution.

It should be kept in mind that no matter what is the design criterion, DOT coefficient
multiplication can efficiently approximate symmetric kernels only. For example, if the kernel
is antisymmetric then V2 and hence also V 2 is an antisymmetric matrix, which means that
it cannot be diagonally dominant (as the main diagonal is all-zero), and so there is no hope
to approximate V 2 efficiently by a diagonal matrix D even in the one dimensional case.
Separability, however, is not a mandatory condition, as at least the MMSE approach can be
extended to the nonseparable case.

Another possible interesting extension is that of using a minimum weighted mean squared
error rather than the ordinary MMSE criterion. The weighting can be attributed either
to the spatial domain or to the DOT domain. In the former case, one has control of the
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tradeoff between errors at block boundaries and errors at internal pixels, which might help
in reducing possible blocky-ness effects. In the latter case, one may want to assign higher
weights to the more important frequency components, e.g., the DC component. A parallel
extension is possible for the minimax approach.
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Figure 1: The original image.

13



Figure 2: The noisy image.
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Figure 3: Exact convolution with a noise cleaning filter.
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Figure 4: MMSE approach with p = 0.9.
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Figure 5: The minimax approach.
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Figure 6: The original image.
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Figure 7: Exact convolution.
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Figure 8: The MMSE approach with p = 0.9.
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One ofthe greatest scientific mindsofalltime,Albert
·Einstein is best known for his contributionstotheJie1dof

:L., 'B · (""~>S_~. "10076 '0:-......... "ed h'p,nYSICs.ornm w",...u.l&U~ 1n Wl7f rdll.:tI.~mreCe1Vi .. : lS
. diploma from the ,Swiss Federal Polytechnic School'in
Zurich, where he trained as a teacher in physics and
mathematics~In1905, he received hisPh.D.and pUblished
fourresearch papers, themostsignificantbeing thecreation
ofthe special theotyofrelativity~ Hebecame internationally
famous when he was awarded the Nobel Prize for Physics
in 1922.

Theimportant military imp1ications of thediscovetyof
the fISsion of uranium in 1939 led Einstein to appeal to
PresidentFranklinRoosevelt. Einstein's letter tothepresident
Jedto the development ofthe atomic bomb.

Einstein left the' field of physics greatly changed
through hisbrlDiantcontributions.His discoveries provided
the impetus for future research into understanding the
mysteries of the universe.•

Figure 9: The minimax approach.
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