
F/ill HEWLETT
a:~ PACKARD

Fast DCT Domain Filtering
Using the nCT and the nST

Renato Kresch, Neri Merhav*
HP Israel Science Center**
HPL-95-140
December, 1995

DCT-domain
£iltering, discrete
sine transform,
data compression

The use of the discrete sine transform (DST),
together with the discrete cosine transform
(DCT), for processing of compressed digital video
and images, is introduced. Using this approach, a
method for efficient spatial domain filtering,
directly in the DCT-domain, is developed and
proposed. It is demonstrated that, in typical
applications, the proposed algorithm is
significantly more efficient than the conventional
spatial domain method, and a recently-proposed
advanced method. It assumes a separable kernel,
but no symmetry is required. The method is
applicable to any DCT based data compression
standard, such as JPEG, MPEG, and H.261.

*Currentlyon sabbatical leave at Hewlett-Packard Laboratories, Palo Alto, California
**Technion City, Haifa 32000, Israel
© Copyright Hewlett-Packard Company 1995

Internal Accession Date Only

1 Introduction

This work addresses the problem of efficient 2D linear filtering in the discrete Cosine trans­
form (DCT) domain, which is an important problem in the area of processing and manip­
ulation of images and video streams compressed in DCT-based methods, such as JPEG,
MPEG, H.261, and others (see, e.g., [1-7]). More specifically, suppose that an input image
is given in the format of a sequence of sets of DCT coefficients of 2D blocks. Our aim is to
calculate efficiently a filtered image, in the same format, that corresponds to spatial convolu­
tion between the input image and a given filter. We derive and propose an efficient filtering
algorithm that operate directly in the DCT domain without explicit transformations from
the DCT domain (compressed domain) to the spatial domain (uncompressed domain) and
vice versa.

There are several advantages to the direct compressed domain approach as opposed to the
standard spatial domain approach:

1. It avoids the computationally expensive operations of moving to and from another
transform domain.

2. The input data, given in terms of quantized DCT coefficient sets, is typically sparse,
i.e., it consists mostly of null coefficients.

3. Since the DCT is closely related to the discrete Fourier transform (DFT) it has rela­
tively simple convolution-multiplication relationships.

None of the previously reported proposed algorithms for DCT-domain filtering enjoy all three
advantages at the same time. The ap-proaches developed by Chen and Fralick [1J, Ngan and
Clarke [2], and Chitprasert and Rao [3] have the three properties, but perform circular rather
than linear convolution, and therefore are not suitable for translation-invariant filtering. Lee
and Lee [4], Chang and Messerschmitt [5], and Neri et al. [6] proposed algorithms for linear
convolution that enjoy the first and the second properties above but not the third one.
Merhav and Bhaskaran [7] significantly improved this approach by proposing an algorithm
which uses sparser matrices for processing in the compressed domain. This algorithm actually
represents a step forward in the direction of property 3. All the above algorithms assume a
symmetric filter.

In this work, we fully explore the third property, at the expense of the first one. The
main underlying idea is that the discrete sine transform (DST) together with the DCT
provide simple convolution-multiplication relationships induced by the DFT. Since the DST
coefficients are not available in advance, they have to be computed from the given DCT data.
To this end, we develop fast algorithms that directly transform from the DCT to the DST
(denoted CST) and vice versa (SCT). Incorporating these algorithms in the filtering scheme,
we obtain an overall complexity that, for symmetric filters, is 14% smaller than that of [7],
and 35-64% smaller than that of the standard spatial approach. In the non-symmetric case
(for which no previous work has been reported literature), up to 64% of the computations
are saved, compared to the spatial domain filtering method, depending on the kernel size.

The outline of this document is as follows. Section 2 briefly describes the theoretical back­
ground behind the derivation of the proposed algorithms. Section 3 presents the mathe­
matical derivation, whose key element is a diagonalization theorem that provides simple

1

convolution-multiplication properties of the DST and the DCT. In section 4, the proposed
filtering, and some of its especial cases, are described. Implementation and Complexity are
analyzed in section 5, and the conclusion is presented in section 6.

2 Preliminaries and Problem Description

Discrete Cosine Transform

The8-point 1D DCT-II transforms a vector {x(nn~=o in the spatial domain into a vector
of frequency components {XC(knk=o, according to the following equation [8]:

XC(k) = "((k) t x(n) cos(2n + 1 . k7r),
2 n=O 16

where "((0) = 1/.;2 and "((k) = 1 for k > O. The inverse transform is given by:

x(n) = i: "((k) XC(k) cos(2n + 1 . k7r).
k=O 2 16

(1)

(2)

In order to rewrite the above in a matrix form, let us define the column vectors x = {x(n)}~=o
and X" = {XC(k)}k=o, and define the 8-point DCT-I1 matrix C = {c(k,n)}k,n=O' where

Then:

and, similarly:

c(k, n) = "((k) cos(2n + 1 . k7r).
2 16

XC=Cx,

(3)

(4)

x = C-1xc = cx- (5)

where the superscript t denotes matrix transposition. The second equality follows from the
unitarity of C.

Discrete Sine Transform

Similarly to the DCT, the 8-point 1-D DST-II can be represented in the following matricial
terms:

X" = Si»,

where S = {s(k,n)H,n=l is the 8-point DST-I1 matrix, defined by [8]:

(k) a(k). (2n-1 k)s ,n = -2- sin 16 . 7r,

with a(8) = 1/.;2 and a(k) = 1 for k < 8.

2

(6)

(7)

2-D Transforms

Different 8 x 8 2-D transforms of a 2-D block x ..:l {x(n,m)}~,m=O are obtained by pre­
multiplying and post-multiplying it by the I-D DCT and DST in the following manner:

XC ..:l ceo: (8)
xr ..:l sse' (9)
xes ..:l CxSt (10)

X S ..:l ses. (11)

The first and the last of the above transforms characterize, respectively, the 8 x 8 2-D Discrete
Cosine and Sine Transforms. Input data, compressed by the JPEG or MPEG standards are
usually available in the form of 2-D DCT blocks. We denote here the transforms (9) and
(10) by Mixed DST jDCT and DCTjDST transforms, respectively.

Image Convolution

Filtering, or convolution, of an input image {I(i,j)}, (where i and j are integers taking on
values in ranges that correspond to the size of the image), by a filter with impulse response
{f(i,j)} (also called kernel), results in an output image {J(i,j)} given by:

J(i,j) = L L f(i',j')/(i - e. j - j')
i' j'

(12)

where the range of summation over i' and j' is, of course, according to the support of the
impulse response {f(i,j)}. In this work we assume that the filter {f(i,j)} is separable, that
is, f(i,j) can be factorized as

f(i,j) = vihj , (13)

for some one-dimensional sequences {vd and {hj}. The supports of {Vi} and {hj} are
M- ~ i ~ M+ and N- ~ j ~ N+, respectively, meaning that f(i,j) = 0 outside a
(M+ - M- + 1) x (N+ - N- + 1) rectangle.

Incorporating the separability assumption into eq. (12), we get

M+ N+

J(i,j) = LVi' L hj'I(i - i',j - j'),
i'=M- j'=N-

(14)

namely, one can first perform a one-dimensional convolution on each row with the hori­
zontal filter component (HFC) {hj}, and then another one-dimensional convolution on each
resulting column with the vertical filter component (VFC) {Vi}' Of course, the order can be
interchanged and the vertical convolutions can be carried out first without affecting the final
result.

An important special case, frequently assumed in previously reported work (see, e.g., [1, 3,
7]), is that of symmetric filter components, namely, Vi = V-i and hj = h_j for all i and j.

3

Symmetry, however, will not be assumed in the main parts of this document, but it will be
considered as a special case later.

The input image {I(i,j)} is given in the compressed domain, that is, we are given a sequence
of 8 x 8 matrices X~, X~, ... of DCT coefficients corresponding to spatial domain 8 x 8 spatial
domain blocks Xl, X2, .,. that together form the input image {I(i,j)}. Our task is to compute
the sequence of 8 x 8 matrices y~, y~, .,. of DCT coefficients of the spatial domain blocks
YI' Y2' ... associated with the filtered image {J(i,j)}, directly from X~, X~, .., without going
via the spatial domain and performing spatial domain convolution.

We further assume that IM+I, 1M-I, IN+I, and IN-I do not exceed 8 (that is, the filter
size is always smaller than 17 x 17), so that every DCT block y c (associated with the
spatial domain block y) of the filtered image {J (i, j)} depends on the corresponding DCT
block X" (associated with the spatial domain block x) of the input image {I(i,j)} and the
eight immediate neighbors of X", We shall label these neighbors according to their relative
location w.r.t the current block X", i.e., "north", "northeast", "east", etc. Accordingly, the
input DCT blocks will be denoted by the appropriate subscript, i.e., XN' X NE, X~, and so
on. Similarly, the respective spatial domain blocks will be denoted XN, XNE, XE, etc. This
can be expressed in the following block matrix form:

(ZNW XN ZNE)
Y = V· Xw X XE .n: (15)

Xsw Xs XSE

where V and Hare 8 x 24 matrices defined by:

Vs V7 VI Vo V-I V-7 V-s 0 0
0 Vs V7 VI Vo V-I V-7 V-s 0 0

V= (16)

0 0 Vs V7 VI Vo V-I V-7 V-s

hs h7 hI ho n, h_7 s., 0 0
0 hs h7 hI ho s., h_7 h-s 0 0

H=

0 0 hs h7 hI ho «.; h:» u.,
(17)

In summary, we are interested in an efficient algorithm that computes yc from XC, XN'
X NE, X~, X SE' X s,X sw,X~, and, X NW'

4

3 Mathematical Derivation

3.1 Basic Derivation

The following theorem forms the mathematical foundation for the filtering scheme developed
in the sequel. It provides tools for diagonalizing spatial domain convolution operator matrices
(demonstrated in the sequel), yielding simple convolution-multiplication relationships.

Theorem 1 Let {gd, i = 0, ... ,8, be an arbitrary vector of real numbers, and let {GR(k)+j·
G1(k)}, k = 0, ... ,15, be the 16-point DFT of its zero-padded extension (go, ... ,gs, 0, ... ,0).

Define also:

o 0 0 0 0 0 0 0
100 0 0 000
o 1 0 0 0 0 0 0
o 0 1 0 000 0
000 1 0 000
o 0 0 0 1 000
o 0 000 1 0 0
o 0 0 000 1 0

gs g7 g6 g5 g4 g3 g2 gl
o gs g7 g6 g5 g4 g3 g2
o 0 gs g7 g6 g5 g4 g3
o 0 0 gs g7 g6 g5 g4
o 0 0 0 gs g7 g6 g5
o 0 0 0 0 gs g7 g6
o 0 0 0 0 0 gs g7
o 0 0 0 0 0 0 ~

o 0 000 0 0 1
o 0 0 0 0 0 1 0
o 0 0 0 0 1 0 0
o 0 0 0 1 000
000 1 000 0
o 0 1 0 0 0 0 0
o 1 0 0 0 000
1 0 0 0 0 0 0 0

A.8=

go 0 0 0 0
gl go 0 0 0
g2 gl go 0 0
g3 g2 gl go 0
g4 g3 g2 gl go
g5 g4 g3 g2 gl
g6 g5 g4 g3 g2
g7 g6 g5 g4 g3

000
000
000
000
000
go 0 0
gl go 0
g2 gl go

(18)

The matrices G1 and G2 satisfy the following relations:

C (G2; G~ + G1
; Gt q» c' diag{GR(O) , "', GR(7)}

S (
G2 +2 G~ - G1 +2 GLT-) st {() ()}':I.' - diag GR 1 ,"', GR 8

C (G2; G~ + G1
; Gtq» st diag{G1(0),"', G1(7)} . 8

S(G2 ; G~ _ G1
; Gtq» C t -diag{G1(1), " ' ,G1(8)} . st

The proof is given in Appendix A.

5

(19)

(20)

(21)

(22)

Kernel Decomposition

Our aim is to use the relations in Theorem 1 to derive a simple convolution rule in the
DCT-domain, using the DCT and the DST.

Our first step is to rewrite the matrix V, defined in (16), in the form [VI+,V2+ + V2- , VI-],

where VI+, V2+, V2- , and VI- are defined as follows.

Vs V7 V6 Vs V4 V3 V2 VI
0 Vs V7 V6 Vs V4 V3 V2

0 0 Vs V7 V6 Vs V4 V3

~+-
0 0 0 Vs V7 V6 Vs V4 (23)I - 0 0 0 0 Vs V7 V6 Vs

0 0 0 0 0 Vs V7 V6

0 0 0 0 0 0 Vs V7

0 0 0 0 0 0 0 Vs

a'Va 0 0 0 0 0 0 0
VI a'Va 0 0 0 0 0 0
V2 VI a'Va 0 0 0 0 0

\1:+ - V3 V2 VI a'Va 0 0 0 0
(24)2 -

V4 V3 V2 VI a'Va 0 0 0
Vs V4 V3 V2 VI a'Va 0 0
V6 Vs V4 V3 V2 VI a'Va 0
V7 V6 Vs V4 V3 V2 VI a'Va

f3 .Va V-I V-2 V-3 V-4 V-s V-6 V-7

0 f3 .Va V-I V-2 V-3 V-4 V-s V-6

0 0 s- Va V-I V-2 V-3 V-4 V-s

~- =
0 0 0 f3. Va V-I V-2 V-3 V-4 (25)
0 0 0 0 f3. Va V-I V-2 V-3

0 0 0 0 0 f3 . Va V-I V-2

0 0 0 0 0 0 f3. Va V-I
0 0 0 0 0 0 0 f3 .Va

V-s 0 0 0 0 0 0 0

V-7 V-s 0 0 0 0 0 0

V-6 V-7 V-s 0 0 0 0 0

VI- = V-s V-6 V-7 V-s 0 0 0 0
(26)

V-4 V-s V-6 V-7 Vs 0 0 0
V-3 V-4 V-s V-6 V-7 V-s 0 0
V-2 V-3 V-4 V-s V-6 V-7 V-s 0
V-I V-2 V-3 V-4 V-s V-6 V-7 V-s

6

where a is an arbitrary real number, and {3 ~ 1 - a. In the general case considered herein
the choice of a is immaterial from the aspects of computational efficiency. In certain special
cases that will be studied later, however, the choice of a will be important.

Note that, if {giH=o is given by

{
a ' vo, i = °

gi =
Vi, i = 1, ... ,8 '

(27)

gi = { {3. Vo,
V-i,

then GI = (VI-)t and G2 = (V2-)t.

Let

i=O
i = 1, ... ,8 '

(28)

y+ ~
DFT{a • Vo, VI, V2, V3, V4, Vs, V6, V7, VB, 0, 0, 0, 0, 0, 0, O} (29)F

y- ~
DFT{{3 . VO, V-I, V-2, V-3, V-4, V-5, V-6, V-7, V-B, 0, 0, 0, 0, 0, 0, O} (30)F

and let vt ~ ~e{Vt}, V/ ~ 8'm{Vt}, Vi ~ ~e{Vp}, V/- ~ 8'm{Vp},

We define:

vto
~ ! [V,+ + (V,+)' + V,+ + (V,+)' "'] (31), 2 2 2

VtI
~ ! [112+ + (V2+)t _ V/ + (v;.+)t <p] (32), 2 2 2

V/o
~ ! [V/ - (\I2+)t v;.+ - (V/)t <p] (33), 2 2 + 2

V/I
~ ! [\12+ - (VlY _ VI+ - (VI+)t <p] (34), 2 2 2

Vii 0
~ 1 .

(35)2' dIag{Vt(O) , .. " Vt(7)},

vt. ~ 1
(36)2'·diag{Vt(1), ... , VJt(8)},

Vio
~ 1 .

(37)2' dIag{V/(O),"', V/(7)} . S,

ViI
~ 1 .

(38)2.dIag{V]+(l) , ... ,V/(8)} . st.,

and define similar quantities with all "+" superscripts replaced by "-."

7

Now, Theorem 1 gives

cv+ ct - V+ .R,O - R,O'
SV+ st - V+ .

R 1 - R l', ,

CV/oSt = vi0;, ,

SV+Ct - V+·II -- II', ,

CVioc t = V R- °, ,

SVii S t = Vill, ,

CVI-OSt
= - VI°, ,

SVj-I C t = VII, ,

(39)

(40)

(41)

(42)

In words, the above equations tell us that combinations of row/column DCT and DST
operations diagonalize the matrices V;'q, P E {R,I}, q E {O, I}, and r E {+, -}. The
elements on the main diagonals are directly related to the DFT of the causal and anti-causal
parts of the filter. Observe also, that since the elements of V are real, V/(O) = V/(8) =
VI- (0) = VI- (8) = o.
In the same manner, we have for the HFC, H

CH+ Ct-H+ .R,O - R,O'
SH+ St-H+ .

R,I - R,I'

CHtoSt
= Hto;, ,

SH+ ct - H+·
1,1 - - 1,1'

with suitable definitions of these matrices.

Input Butterflies

CHi,oCt
= Hil,o

SHii S t = Hill, ,

CHioSt = -HI O, ,

SHiICt = H I I, ,

(43)

(44)
(45)

(46)

(47)
(48)

Eq. (15) can be directly rewritten in terms of v:r and Hi, i = 1,2, r E {+, -}, as follows:

y = (VI+:VNW + V2+:vw + V2-:vw + VI-:VSW) (Ht)t +
(VI+:VN + V;+:v + V2-:v + VI-:vs) (Hif +
(VI+:VN + V2+:v + V2-:v + VI-:vs) (Hi)t +
(VI+:VNE + V;+:VE + V2-:VE + VI-:VSE) (HI)t,
zw(Htl + z(Htl + z(Hi)t + zE(HI)t,

where

Zw .6. ~+:VNW + V;+:vw + V;+:vw + VI+:vsw,

z .6. VI+:VN + V;+:v + V;+:v + ~+:vs,

ZE .6. V;+:VNE + V/:VE + V2+:VE + VI+:VSE.

(49)

(50)

(51)

We next generate "butterflies" at the input level in order to express y in terms of V;'q and
H;,q' P E {R, I}, q E {O, I}, and r E {+, -}, which are diagonalizable by C and S. This will
enable us to take advantage of properties (39)-(42) and (43)-(46). The basic idea is to use
the identity ax + by = Ha + b)(x + y) + Ha - b)(x - y).

8

For instance, ZE is given by

ZE = VtO(~E + <P~NE) + Vtl(~E - <P~NE) +
liJ~(~E + <P~NE) + liJ+l (~E - <P~NE) +, ,

VR;O(~E + <P~SE) + VR;l (~E - <P~SE) +
VI~O(~E + <P~SE) + VI~l(~E - <P~SE)' (52)

Similar expressions are obtained for Z and Zw by using (52) and replacing ~NE, ~E, and
~SE by ~N,~, ~S, and ~NW, ~w, ~SW, respectively.

Similarly, we obtain:

y (Z + Zw<p) (HJto)t + (z - zw<P)(H~,l)t +
(z + zw<p) (Hto)t + (z - zw<p) (Htl)t +
(z + zE<P)(H"Ro)t + (z - zE<P)(H"R l)t +, ,

(z + ZE<P) (Hio)t + (z - zE<P)(Hil)t., , (53)

(54)

The DeT-Domain Equations

So far, our derivations referred to the spatial domain solely. In order to express the DCT of
the output block in terms of the DCT sets of the input data, we use the distributive property
of the DCT w.r.t matrix multiplication. To this end, we first pre-multiply and post-multiply
both sides of (52) and of (53) by C and C", respectively. Secondly, in order to use (39)-(42)
and (43)-(46), we strategically insert the terms cc = I or sts = I, I being the 8 x 8
identity matrix, between every two multiplied matrices in eq. (52) and (53). This results in

Z~ = Vlo(X~ + ~X~E) + Vt,o(XE+ ~X~E) +
V"R,o(X~ + ~XSE) - VI,o(XE+ ~XSCE) +
T t [Vib(XE- ~X~E) - Vt,l(X~ - ~X~E) +
VR,l(XE- ~Xs~) + VI,l(X~ - ~XSE)]

where T ~ scr is interpreted as the I-D DCT-to-DST domain transform (CST) operator
matrix (hence T" is the SCT operator matrix), and

~ ~ esc: = S<pSt = diag{(_1)k}7 .
k=O

(55)

Equation (54) yields an efficient filtering scheme provided that the SCT can be implemented
efficiently. This is true because all the V-matrices in (54) are diagonal. Note, that multipli­
cation by ~ is costless.

Nevertheless, unlike Xi, the Mixed DST/DCT coefficients X:c = TXi are not available in
advance and therefore a fast CST is required for obtaining these matrices. In section 3.2, fast

9

CST and SCT algorithms are developed. The overall computational complexity is assessed
in section 5.

Equivalent expressions for ZC and Zw are derived from (54) simply by replacing
X~E' X~, X~E by X~,x; X~, and X~w, X w,X~w, respectively. Assuming that the
blockwise filtering procedure is performed in a raster scan order (i.e., left-to-right and top­
to-bottom), then it is easy to note that ZC is identical to Z~ of the previously processed
DCT block, and similarly, Zw is the same as Z~ two steps ago. Thus, one needs only to
calculate Z~ in every step and to save it for the next two steps.

Finally, transforming eq. (53) to the DCT domain yields

yc = (Z C+ ZC iP)H+ + (ZCS + ZCS iP) (H+)t +W R,O W 1,0

(Z C+ ZC iP)H- _ (ZCS + zcsiP)(H-)t +
E R,O E 1,0

[(Z CS_ ZCS iP)H+ _ (ZC _ ZC iP)(H+)t +
W R,1 W 1,1

(Z CS_ ZCSiP)H- + (ZC _ ZC iP)(H-)t] T.
E R,1 E 1,1 (56)

Here, the Mixed DCT/DST coefficients ZE must be derived from Z~ by using ZE = Z~Tt,
and it must be stored to be used as ZCS and Zw in the following 2 steps of the scanning
process.

3.2 The CST and SCT Algorithms

In this section we derive efficient CST and SCT algorithms, i.e., fast multiplication by T
and T", The main idea is to factorize these matrices into products of sparse matrices.

First, we shall use the following property relating the DST matrix to the DCT matrix:

s = <pCiP (57)

where <P and iP are defined in (18) and (55), respectively.

In addition, we shall use a factorization of C that corresponds to the fastest existing algorithm
for 8-point DCT due to Arai, Agui, and Nakajima [9] (see also [10]). According to this
factorization, C is represented as follows.

(58)

where D is a diagonal matrix given by

D = diag{0.3536, 0.2549, 0.2706, 0.3007, 0.3536, 0.4500, 0.6533, 1.2814}, (59)

10

P is a permutation matrix given by

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0

p= 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

and the remaining matrices are defined as follows:

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0

B1=
0 0 0 1 0 0 0 0

B2 = 0 0 -1 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 -1 0 0 0 0 0 0 0 1 0
0 0 0 0 -1 0 0 1 0 0 0 0 0 -1 0 1

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0.7071 0 0 0 0 0

M= 0 0 0 1 0 0 0 0
0 0 0 0 -0.9239 0 -0.3827 0
0 0 0 0 0 0.7071 0 0
0 0 0 0 -0.3827 0 0.9239 0
0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0
1 -1 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 -1 0 0 0 0 0

A1=
0 0 0 1 0 0 0 0

A2 = 1 0 0 -1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 -1 -1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

11

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0

Aa =
0 0 0 1 1 0 0 0
0 0 0 1 -1 0 0 0
0 0 1 0 0 -1 0 0
0 1 0 0 0 0 -1 0
1 0 0 0 0 0 0 -1

Thus, we have

T = set = scec: = iPDPBIB2MAIA2Aa~A~A~AtMtB~BfptDt (60)

The proposed CST algorithm is based on the observation that the product

G A MAIA2Aa~A~A~AtMt (61)

is a fairly sparse matrix, given by:

0 0 0 0 0 0 0 2
0 0 0 0 -5.2264 0 2.1648 2
0 0 0 0 0 -2 0 1.4142

G=
0 0 0 0 1.0824 0 2.6132 2
0 -5.2264 0 1.0824 0 0 0 0
0 0 -2 0 0 0 0 0
0 2.1648 0 2.6132 0 0 0 0
2 2 1.4142 2 0 0 0 0

Using part of the inter-relations between the elements of G, one can implement the multi­
plication of a vector by G with 8 multiplications and 12 additions.

The final implementation is based on:

(62)

where
T A iPPBIB2GB~Bfpt. (63)

and where iJ A iPDiP is a diagonal matrix having the same elements as D but in reversed
order.

The multiplication by T takes 8 multiplications and 28 additions.

In the next section, we show how to avoid the multiplications by the matrices ii and D,
by absorbing them in the dequantization and quantization tables of the JPEG (or MPEG)
decompression and compression processes, respectively, and in the kernel matrices V;,q,
p E {R,I}, q E {O, 1}, r E {+, -}.

The column-wise SCT, corresponding to T", is obtained similarly as above.

T t = DTtiJ = D(iPTiP)iJ, (64)

and, therefore, can be implemented with the same number of operations as T.

12

4 The Proposed Filtering Scheme

We now present the proposed filtering scheme. It consists of a modification of the basic
scheme developed in section 3.1, by absorbing the matrices D and D in the dequantization
and quantization tables of the JPEG (or MPEG) algorithm, and the kernel matrices, in
order to avoid their actual multiplication.

The scheme modification is based on pre-multiplying and post-multiplying both sides of eq.
(56) by tr-, and both sides of eq. (54) by tr: and D, respectively. We also strategically
insert the terms DD-l or iJ-lb in the above equations. The resulting filtering scheme is
the following.

1. Let Qd be the dequantization table used in the decoding algorithm. Qd must be altered
in the following way:

Qd +- D . Qd . D (65)

Therefore, instead of the data blocks X~, r E {NW, W, SW, N, 0, S, N E, E, S E}, we
- e

now manipulate the blocks X r = DX~D.

2. The modified DST-block X~eE is calculated by:

- Be - - e
X S E = TX S E ' (66)

and stored to be used as X;e, p E {NW, W, SW, N, 0, S, NE, E}, in future steps of the
scanning procedure.

3. Calculate:

where:

- + - e - e - + - Be - Be
VRO(X E+~XNE) + VIO(X E +~XNE) +, ,

y;,o(X~ + ~X~E) - y;,O(X~ + ~X~eE) +

T [Y~,l(X~ - ~X~E) - Y;'l(X~ - ~X~E) +

V~,l(X; - ~X~eE) + V;'l(X~ - ~X~E)] , (67)

y+ b. D-lV+ tr-.R,O - R,O'
Y- b. D-lV- tr:',R,O - R,O'

-+ b. - + ­V RI = DVRlD;, ,
-- b. - _ -

V R,l = DVR,lD;

y+ b. tr:'V+ D
1,0 - 1,0

- - b. -1 - ­
VI,O = D VI,OD
y+ b. DV+ tr'

1,1 - 1,1

- - b. - - -1
VIl=DVIlD ,, ,

(68)

(69)

(70)

(71)

z,c z.c z.,c
Z E is stored to be used in future steps as Z and Zw.

13

4. The modified DST-block Z~ is calculated by:

- cs - cs
and used in future steps as Z and Z w

5. Calculate:

-C -c -+ -cs -cs -+ t
(Z + ZW~)HR,O + (Z + ZW~)(H1,O) +
(Zc + Z~~)iI~,o - (Zcs + Z~~)(iI;'o)t +
[(Zcs _ Z~~)iI~,1 _ (Zc - Z~~)(iI;'l)t +
(Z cs _ ZCS~)iI- + (Zc _ ZC ~) (iI-)t] T

E R,1 E 1,1

where:

(72)

(73)

(74)

(75)

(76)

(77)

6. The resulting block yC is related to the desired output yc by: yc = DYCD. Therefore,
to obtain the desired quantized block, the quantization table, denoted Qq, must be
altered in the same way as Qd before it, i.e.:

(78)

In summary, if one alters the quantization and dequantization tables, and the kernel (V- and
H-type) matrices as described above, the CST and the SCT can be implemented according
to T and i-, respectively, i.e., without explicit multiplications by D and b.

4.1 Symmetric and Anti-Symmetric Filters

An important special case is the symmetric case, i.e., h_ n = hn and V-n = Vn, n = 1, ... ,8.
-+ -- -+ --

Here, by setting a = {3 = 1/2 in (29) and (30), we obtain Vp,q = Vp,q and Hp,q = Hp,q, for
p E {R,I} and q E {0,1}.

- ~-+ - ~-+
Therefore, in this case, by defining V p,q = V p,q and H p,q = H p,q' the schemes presented in
(73) and (67) become, respectively:

yC = [2Z
c+ (Z~ + Z~)~]iIR,O + (Z~ - Z~)~(iI1,O)t +

{[2Z
cS

- (Z; + Z~)~]iiR,1 + (Z~ - Z~)~(iI1,1)t} T (79)

14

YR,o[2XE
c+ 4)(X~E + X~E)] + YI,04)(X~E - X~CE) +

'i't {yR,tl2X~ - 4)(X~E + X~~)] + YI,l4)(X~E - X~E)} (80)

In the anti-symmetric case, i.e., h_n = -hn and V- n = -Vn , n = 1, ... ,8, ho = Vo = 0, a
similar scheme is obtained, with some sign changes.

4.2 Causal and Anti-Causal Filters

In the causal case, defined by hn = Vn =°for n < 0, setting a = 1 - f3 = 1, gives

V R- 0 = V R1= VIa = VII = H RO= H RI = H I O= H I 1= 0, (81), , , , , , , ,

where 0 is the 8 x 8 null matrix. Incorporating this fact into the filtering equation (73), one
obtains

-C -c z,.c -+ -C8 -C8 -+ t
Y = (Z + Zw4))HR,o + (Z + Zw4)) (HI,o) +

[(ZC8 _ Z;4))iI~,l - (Zc - Z~4))(iI~l)t] 'i' (82)

-c -c -c
Notice that, in this case, ZE does not need to be calculated, because only Z and Zw are
used in (82). Therefore, as opposed to the previous cases, where Z~ is calculated and stored

-c -c
for 2 steps, here we have to calculate Z and store it for the next one step to be used as Zw.
The following formula for calculating ZC is derived from (67) by replacing X~E' X~, X~E
by X~, Xc, X~, and incorporating (81) in it.

- C - + - C - C - + - 8C - 8C
Z = VRO(X +4)XN)+VI O(X +4)XN)+, ,

i: [y+ (X8C_ 4)X8C) _ y+ (Xc _ 4)Xc)] (83)R,l N 1,1 N

The anti-causal filtering scheme, where hn = vn . 0, for n < 0, is obtained similarly, by
setting the V+ -type matrices to zero, instead of the V- -type ones.

4.3 Causal-Symmetric Filtering

The best special case of the proposed scheme, in terms of complexity, is obtained with
a 4-pixel delayed causal-symmetric filter, for which both the causality and the symmetry
properties can be used to save computations.

A k-pixel delayed causal symmetric filter will be defined as a causal filter {hn}~=o with
hn = h2k - n for all °::; n ::; 2k. Obviously, a causal symmetric filter is a delayed version of a
non-causal filter that is symmetric about the origin.

In the causal symmetric case, when k = 4, the computational benefits of both symmetry
and causality are combined. Specifically,on the top of the simplification due to causality for
a = 1, we also have

Vt(k) = H1i(k) = 0,

Vl(k) = Ht(k) = 0,

15

k=I,3,5,7,

k =0,2,4,6,8.

(84)
(85)

- + - +Therefore, the matrices V p,q and H p,q' p E {R, I}, q E {O, I}, have only 4 nonzero elements
each. This case can b e of much interest for fast symmetric convolution with a :
when the user does not mind a 4-pixel translation of the resulting image.

5 Implementation and Complexity

In this section, we focus on implementation considerations and on comparison between the
proposed filtering scheme and previously reported schemes in terms of computational com­
plexity.

So far we have studied merely the computational benefits associated with certain assumptions
on the filter structure (symmetry, causality, and the combination of both). No assumptions
were made, however, on the structure of the input data. An additional important factor to
be taken into account in the implementation is that of typical sparseness of the quantized
DCT input data blocks. Similarly as in [11], r12], and [7], we shall define a DCT coefficient
block as sparse if only its 4 x 4 upper left quadrant (corresponding to low frequencies in both
directions) contains nonzero elements. A very high percentage of the DCT blocks usually
satisfy this requirement, which is fairly easy to check directly in the compressed format.

Incorporating the sparseness assumption in the above definition into the CST algorithm
proposed in section 3.2, results in 7 multiplications and 17 additions, as opposed to 8 mul­
tiplications and 28 additions in the general case. As demonstrated below, these and other
computation savings contribute to a significant increase in the efficiency of the proposed
algorithm, in the case of sparse data.

This section is organized as follows. The different subsections correspond to the different
degrees of generality of the assumed filter structure, similarly as in Section 4. In each
subsection both the sparse and nonsparse input data cases will be studied. Computational
complexity will be expressed in the form of M m + Aa, which means M multiplications and
A additions. For the purpose of comparison between the different schemes, we will assume a
PA-RISC processor, where each multiplication is assumed to be equivalent to three additions
on the average.

The General Case

As described in Appendix B.1, the general scheme, described by equations (73), (72), (67),
and (66), can be implemented with a total of 1216m+2688a (6336 basic PA-RISC operations)
per 8 x 8 image block, if sparseness is not assumed, or 716m + 1516a (3664 basic PA-RISC
operations), if sparseness is assumed.

Let us compare the above result with the total number of computations associated with the
straightforward approach of going explicitly via the spatial domain, detailed as follows:

1. Compute the IDCT XSE = C'X~EC, and store for future use as XE, and XSE. (total:
16 x (5m + 29a) = 80m + 464a)

2. Compute the vertical convolution. (64(M+ - M- + l)m + 64(M+ - M-)a)

3. Compute the horizontal convolution. (64(N+ - N- + l)m + 64(N+ - N-)a)

16

4. Compute the DCT of the filtered block. (16 x (5m + 29a) = 80m + 464a)

The total number of operations associated with the straightforward approach is (64L +

288)m+(64L+928)a, where L Ll (M+-M-)+(N+-N-). In terms ofPA-RISC operations,
the straightforward approach requires 256L + 1792 operations.

According to the above figures, the proposed approach is preferable for every L > 17, when
sparseness is not assumed. In the extreme case L = 32, it saves 37% of the computations.
When operating on sparse data, the proposed approach is preferable for every L > 7, and it
saves 63% of the computations in the extreme case.

Symmetric Filtering

The implementation of the proposed scheme for symmetric kernels is detailed in Appendix B.2.
According to the analysis presented there, it requires 736m + 1984a (4192 basic PA-RISC
operations) per image block, when sparseness is not assumed, and 448m + 1124a (2468 basic
PA-RISC operations) when sparseness is assumed.

As before, we compare the results obtained for the proposed scheme to that of the straight­
forward approach. In the symmetric case, the straightforward approach can also be sim­
plified, by using the kernel symmetry to efficiently perform the convolutions, leading to
smaller complexity than in the general case. The symmetric straightforward approach re-
quires (64L++288)m+(128L++928)a, where L+ Ll M++N+. This represents 320L++1792
basic PA-RISC operations.

We also compare the efficiency of the scheme with that of the scheme proposed in [7]. It
requires 1152m + 1664a (5120 basic PA-RISC operations) when sparseness is not assumed,
and 432m + 544a (1840 basic PA-RISC operations) when sparseness is assumed. The sym­
metric and causal-symmetric are the only particular cases of the proposed scheme which can
be compared to [7]. This is because symmetry of the kernel is assumed there.

According to the above results, for non-sparse data the proposed scheme provides the best
results, in terms of complexity, unless the kernel is short (L+ ~ 7), in which case the
straightforward approach is preferable. If the DCT-data is sparse, then the scheme proposed
in [7] provides the best results, even for short kernels. As mentioned before, and stressed in
the sequel, if a 4-pixel translation of the filtered image is tolerable, and if the kernel has up
to 9 nonzero terms, then the proposed scheme using a causal-symmetric offers an efficient
alternative to this case.

Causal Filtering

Appendix B.3 analyzes the proposed scheme for causal filtering. It indicates that 736m +
1728a are required for non-sparse data, whereas 448m + 980a are required for sparse data.

By comparing the above to the straightforward approach using a causal kernel (in which
case, L ~ 16), the proposed scheme in this case is preferable to the straightforward approach
when the data is sparse and L > 2, or when the data is not sparse and L > 8.

17

Causal-Symmetric Filtering

The implementation and complexity of the proposed algorithm when using a causal-symmetric
kernel are shown in Appendix B.4. It requires 512m + 1280a and 296m + 688a in the non­
sparse and sparse cases, respectively.

The proposed algorithm is compared to the symmetric version of the straightforward ap-
- - - ~proach, which requires (64L + 288)m + (128L + 928), where L = (M+ - 1)/2 + (N+ - 1)/2.

This is equivalent to 3201,+ 1792 basic PA-RISC operations. Moreover, the causal-symmetric
approach is compared to the symmetric (non-causal) approach in [7]' because causal kernels
are not allowed there. The complexity figures for the approach in [7], used in the comparison
here are identical to those used in the comparison for the symmetric case above.

By performing the above comparisons, we reach the following conclusions. For sparse data,
the proposed approach is the most efficient one, regardless of the size of the filter. Further-
more, for non-sparse data, it is the most efficient approach, for every 1, > 3.

6 Conclusion

In this work, we introduce the use of the Discrete Sine Transform (together with the Discrete
Cosine Transform) for image processing in the DCT-domain. This is shown to provide good
theoretical basis and tools for analysis in that domain. Moreover, by manipulating some
of these theoretical tools, a fast filtering scheme, suitable to be used on compressed digital
video and images, using the two transformations, was developed and proposed.

Comparison between the proposed algorithm and the straightforward approach, of converting
back to the uncompressed domain, convolving in the spatial domain, and re-transforming to
the DCT domain, was carried out. Comparison to the approach recently proposed in [7] is
also presented. It was demonstrated that, by taking into account the typical sparseness of the
input DCT-data, the proposed algorithm provides the best results for symmetric filtering, if
a 4-pixel translation of the image in both directions is allowed. In this case, 35-64% of the
computations are saved, depending on the kernel size, in comparison to the straightforward
algorithm, and 14% of computations savings are obtained in comparison to the approach
in [7]. The approach is also typically the most efficient one for long or medium-length,
non-symmetric, kernels. Twice as much memory is required by the proposed algorithm
in comparison to the two others, since DCT and DST coefficients are to be temporarily
stored, instead of only the spatial data (as in the straightforward approach) or only the
DCT coefficients (as in [7]).

Appendices

A Proof of Theorem 1

Let us define
G ~ (G2 + G~ G1 + Gi 4» .

R,O 2 + 2

18

(86)

The i-th column of GR,O, which we will denote G~~o is given by:

G(i) -
R,O -

7-i times i times
1 (," l)t 10 ,. ... t2 9i,· . ·,90,0, ... ,0 + 2 0, ... ,0,90, ... , 97-i) +

~(9i+I,'" ,98,~t + ~(~'98"" ,98_i)t
i times 7-i times

(87)

(88)

The i-th column of the product CGR,o is the DCTofG~~o' Therefore, the elements (CGR,o)(k, i),
k = 0, ... , 7, i = 0, ... , 7, of the matrix CGR,O are given by:

(CG)(k ') -y(k) {~ 9i-n (2n + 1 k) ~ 9n'-i (2n' + 1 k)
R,O ,1, = -2- LJ -2- cos 16 7r + LJ. -2- cos 16 7r +

n=O n'=~

~ 9i+l+m (2m + 1 k) ~ 915-m'-i (2m' + 1 k)}LJ .::........:......:...- cos 7r + LJ cos 7r.
m=O 2 16 m'=7-i 2 16

We perform the following changes of variable in (88): n -+ i - £, n' -+ £ + i, m -+ £ - i-I,
and m' = 15 - £ - i, obtaining:

(CG)(k ') 1 -y(k) {~ (2(i - £) + 1 k) ~ (2(i + £) + 1 k)
R,O ,1, = -2 . -2- LJ 9£cos 6 7r + LJ 9£cos 6 7r +

£=0 1 £=0 1

~ (2(£ - i-I) + 1 k) ~ (2(15 - i - £) + 1 k)} (89)
LJ 9£cos 16 7r + LJ 9£cos 16 7r .

£=i+l £=8-i

Next, we use the following properties, due to the symmetry and periodicity of function cosine:

(
2(£ - i-I) + 1 k)

cos 16 7r

(
2(15 - i - £) + 1 k)

cos 16 7r

(
2(i - £) + 1 k)

cos 16 7r ,

(
2(i + £) + 1 k)

cos 16 7r ,

(90)

(91)

which yield

(CGR,o)(k, i) 'Y~k) {tog" ~ [cos C(i -1~ + l"k) + cos CU +1~ + l"k)]}

- {to9c cos (~~7rk) } { -Y~k) cos (2\~ 17rk) } (92)

GR(k)C(k, i) = (diag{GR(j)}}=o' C)(k, i). (93)

Therefore,
(94)

which leads to (19).

The remaining relations in Theorem 1 are obtained similarly,

19

B Algorithmic Implementations

In the algorithms detailed throughout this appendix, W is a 8 x 8 temporary memory
allocation. At each algorithm step, we provide between parenthesis the number of arithmetic
operations associated with each step in the form of an expression M .m + A .a, which means
M multiplications plus A additions.

B.l General Algorithm

The general scheme is described by equations (73), (72), (67), and (66). This scheme can be
implemented in the following way:

- sc - - c - sc - sc
1. Compute X SE = TXSE and store for future use as X E and X NE.

(Not assuming sparseness: 8 x (8m + 28a) = 64m + 224a;

assuming sparseness: 4 x (7m + 17a) = 28m + 68a)

- + - sc - sc
2. Compute: W f- V R,1 (XE - 4>XNE)' (Non-sparse: 64m + 64a; sparse: 32m + 32a)

-+ -c -c -r
3. Compute: W f- W - V 1,I(XE - 4>XNE). Notice that the kernel matrices V1,q,

q E {O, 1}, r E {+, -}, have 7 non-null coefficients only, not 8. Therefore, in this case
only 7 rows of the image blocks have to be summed. (Non-sparse: 56m + 112a; sparse:
12m + 24a)

4. Compute: W f- W+V~,I(X~-4>X~cE)'(Non-sparse: 64m+128a; sparse: 32m+64a)

5. Compute: W f- W +V;'I(X~-4>X~E)' (Non-sparse: 56m+112a; sparse: 12m+24a)

6. Compute: W f- i'tW. (Non-sparse: 8 x (8m + 28a) = 64m + 224a; sparse: 4 x (8m +
28a) = 32m + 112a)

-+ -c -c
7. Compute: W f- W+VRO(XE+4>XNE). (Non-sparse: 64m+128a; sparse: 16m+32a),

- + - sc - sc
8. Compute: W f- W+V1,O(XE+4>XNE). (Non-sparse: 56m+112a; sparse: 32m+64a)

9. Compute: W f- W +V~,o(X~+4>X~E)' (Non-sparse: 64m+128a; sparse: 16m+32a)

10. Compute: Z~ f- W - V;'o(X~ + 4>X~cE)' and store for the next 2 steps, to be used
as ZC and Z~. (Non-sparse: 56m + 112a; sparse: 32m + 64a)

11. Compute Z~ = z~i't and store for the next 2 steps, to be used as ZCS and Z~.
(Non-sparse: 8 x (8m + 28a) = 64m + 224a; sparse: 8 x (7m + 17a) = 56m + 136a)

-cs z.cs -+
12. Compute: W f- (Z - Zw4»HR l' (Non-sparse: 64m + 64a; sparse: 64m + 64a),

-c -c - +
13. Compute: W f- W -(Z -ZW4»(H11)t. (Non-sparse: 56m+112a; sparse: 24m+48a),

20

14. Compute: W f- W+(ZCB -Z~~)iI~,I' (Non-sparse: 64m+128a; sparse: 64m+128a)

15. Compute: W f- W +(Zc-Z~iP)(iI~It (Non-sparse: 56m+112a; sparse: 24m+48a),

16. Compute W f- wi'. (Non-sparse and sparse: 8 x (8m + 28a) = 64m + 224a)

-C -c - +
17. Compute: W f- W +(Z +ZW~)HRO' (Non-sparse: 64m+128a; sparse: 32m+64a),

-CB -CB -+
18. Compute: W f- W + (Z + ZwiP)(HI o)t. (Non-sparse and sparse: 56m + 112a),

19. Compute: Wf-W+(Zc+z~~)iI~o' (Non-sparse: 64m+128a;sparse: 32m+64a),

20. Compute: yC f- W - (ZCB + Z~~)(iI~o)t. (Non-sparse and sparse: 56m + 112a)

The total number of operations is 1216m + 2688a, in the non-sparse case, and 716m + 1516a,
in the sparse case.

B.2 Proposed Algorithm for Symmetric Kernels

The algorithm is implemented in the following way:

- BC - - C - BC - BC
1. Compute X BE = T X BE and store for future use as X E and X NE'

(Not assuming sparseness: 8 x (8m + 28a) = 64m + 224a;

assuming sparseness: 4 x (7m + 17a) = 28m + 68a)

2. Compute: W f- V R,d2X; - ~(X~E + X~~)]. (Non-sparse: 64m + 128a; sparse:
32m + 64a)

3. Compute: W f- W + VI,I~(X~E - X~E)' (Non-sparse: 56m + 112a; sparse: 12m +
24a)

4. Compute: W f- ftw. (Non-sparse: 8 x (8m + 28a) = 64m + 224a; sparse: 4 x (8m +
28a) = 32m + 112a)

5. Compute: W f- W + V R,o[2X~ + ~(X~E + X~E)]' (Non-sparse: 64m + 192a; sparse:
16m + 48a)

6. Compute: Z~ f- W + VI,O~(X~E - X~~), and store for the next 2 steps, to be used
as ZC and Z~. (Non-sparse: 56m + 112a; sparse: 32m + 64a)

7. Compute Z~ = z~ft and store for the next 2 steps, to be used as ZCB and Z;.
(Non-sparse: 8 x (8m + 28a) = 64m + 224a; sparse: 8 x (7m + 17a) = 56m + 136a)

8. Compute: W f- [2Z
CB

- (Z; + Z~)iP]iIR,I' (Non-sparse and sparse: 64m + 128a)

21

9. Compute: W +--- W + (Z~ - Z~)q.(iII,l)t. (Non-sparse: 56m + 112a; sparse: 24m +
48a)

10. Compute W +--- wi'. (Non-sparse and sparse: 8 x (8m + 28a) = 64m + 224a)

11. Compute: W +--- W + [2Z
c + (Z~ + ZE)q.jHH,O' (Non-sparse: 64m + 192a; sparse:

32m + 96a)

12. Compute: yC +--- W + (Z; - Z~)q.(iII,ot (Non-sparse and sparse: 56m + 112a)

The total number of operations is 736m + 1984a, in the non-sparse case, and 448m + 1124a,
in the sparse case.

B.3 Proposed Scheme for Causal Filtering

The proposed scheme for causal filtering is described by equations (82), (72), (83), and (66).
This scheme can be implemented in the following way:

1. Compute X8C
= i x" and store for future use as X~. (Not assuming sparseness:

8 x (8m + 28a) = 64m + 224a; assuming sparseness: 4 x (7m + 17a) = 28m + 68a)

- + - 8C - 8C
2. Compute: W +--- V H,l (X - q.XN)' (Non-sparse: 64m + 64a; sparse: 32m + 32a)

-+ -c -c
3. Compute: W +--- W - V1,l(X -~XN)' (Non-sparse: 56m+112a; sparse: 12m+24a)

4. Compute: W +--- i'tW. (Non-sparse: 8 x (8m + 28a) = 64m + 224a; sparse: 4 x (8m +
28a) = 32m + 112a)

-+ -c -c
5. Compute: W +--- W +V H,O(X +q.XN). (Non-sparse: 64m+128a; sparse: 16m+32a)

- C - + - 8C - 8C

6. Compute: Z +--- W + V1,o(X + q.XN) + W, and store for the next 1 step, to be

used as Z~. (Non-sparse: 56m + 112a; sparse: 32m + 64a)

7. Compute ZC8 = zC'ft and store for the next 1 step, to be used as Z;'. (Non-sparse:
8 x (8m + 28a) = 64m + 224a; sparse: 8 x (7m + 17a) = 56m + 136a)

-C8 -C8 -+
8. Compute: W +--- (Z - Z wq.) H H,l' (Non-sparse: 64m + 64a; sparse: 64m + 64a)

-c -c - +
9. Compute: W +--- W -(Z -Zwq.)(H1,l)t. (Non-sparse: 56m+112a; sparse: 24m+48a)

10. Compute W +--- wi'. (Non-sparse and sparse: 8 x (8m + 28a) = 64m + 224a)

-c -c - +
11. Compute: W +--- W+(Z +ZW~)HH,O' (Non-sparse: 64m+128a; sparse: 32m+64a)

-c -C8 -C8 -+
12. Compute: Y +--- W + (Z + ZW~)(HI,O)t. (Non-sparse and sparse: 56m + 112a)

The total number of operations is 736m + 1728a, in the non-sparse case, and 448m + 980a,
in the sparse case.

22

B.4 Proposed Scheme for Causal-Symmetric Filtering

The implementation in this case can be done as follows:

1. Compute x" = i x" and store for future use as X~. (Non-sparse: 8 x (8m+28a) =
64m + 224a; sparse: 4 x (7m + 17a) = 28m + 68a)

- + - sc - sc
2. Compute: Odd rows of W f- V R 1(X - {PX N)' Note that only the odd rows of the

data vectors have to be summed.' (Non-sparse: 32m + 32a; sparse: 16m + 16a)

-+ -c -c
3. Compute: Even rows of W f- -V[1 (X - {PX N)' Here only the even rows of the

data vectors have to be summed. (Non-sparse: 32m + 32a; sparse: 8m + 8a)

4. Compute W f- ftw. (Non-sparse: 8 x (8m + 28a) = 64m + 224a; sparse: 4 x (8m +
28a) = 32m + 112a)

-C -+ -c -c
5. Compute: Odd rows of Z f- V R,O(X +{PXN)+Odd rows of W. (Non-sparse: 32m+

64a; sparse: 8m + 16a)

- C - + - sc - sc
6. Compute: Even rows of Z f- V[o(X + {PXN) + Even rows of W. (Non-sparse:

32m + 64a; sparse: 16m + 32a) ,

7. Compute ZCS = zCft and store for future use as Z~. (Non-sparse: 8 x (8m + 28a) =
64m + 224a; sparse: 8 x (7m + 17a) = 28m + 68a)

-CS -cs -+
8. Compute: Odd columns of W f- (Z - Zw{P)HR,l' Note that only the odd columns

of the data vectors have to be summed. (Non-sparse and sparse: 32m + 32a)

-C -c - +
9. Compute: Even columns of W f- -(Z - Zw{P)(H[l)t. Here only the even columns

of the data vectors have to be summed. (Non-sparse:' 32m + 32a; sparse: 16m + 16a)

10. Compute W f- wf. (Non-sparse and sparse: 8 x (8m + 28a) = 64m + 224a)

-c -c -c - +
11. Compute: Odd columns of Y f- Odd columns of W + (Z + Zw{P)HR O' (Non-

sparse: 32m + 64a; sparse: 16m + 32a) ,

-C z.cs -CS-+
12. Compute: Even columns of Y f- Even columns of W + (Z + {PZw)(H[o)t. (Non-

sparse and sparse: 32m + 64a) ,

The total number of operations is 512m + 1280a, when sparseness is not assumed, and
296m + 688a, when sparseness is assumed. In terms of basic PA-RISC operations, the
average complexity is 2816 in the non-sparse case, and 1576 in the sparse case.

23

7 References
[1] W. H. Chen and S. C. Fralick, "Image enhancement using cosine transform filtering,"

Image Sci. Math. Symp., Monterey, CA, November 1976.

[2] K. N. Ngan and R. J. Clarke, "Lowpass filtering in the cosine transform domain," Int.
Conf. on Commun., Seattle, WA, pp. 37.7.1-37.7.5, June 1980.

[3] B. Chitprasert and K. R. Rao, "Discrete cosine transform filtering," Signal Processing,
Vol. 19, pp. 233-245, 1990.

[4] J. B. Lee and B. G. Lee, "Transform domain filtering based on pipelining structure,"
IEEE Trans. on Signal Processing, Vol. SP-40, no. 8, pp. 2061-2064, August 1992.

[5] S.-F. Chang and D. G. Messerschmitt, "Manipulation and compositing of MC-DCT
compressed video," IEEE J. Selected Areas in Communications, Vol. 13, no. 1, pp.
1-11, January 1995.

[6] A. Neri, G. Russo, and P. Talone, "Inter-block filtering and downsampling in DCT
domain," Signal Processing: Image Communication, Vol. 6, pp. 303-317, 1994.

[7] N. Merhav and V. Bhaskaran, "A fast algorithm for DCT domain filtering," HPL Tech­
nical Report #HPL-95-56, May 1995.

[8] K. R. Rao, and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applica­
tions, Academic Press 1990.

[9] Y. Arai, T. Agui, and M. Nakajima, "A Fast DCT-SQ Scheme for Images," Trans. of
the IEICE, E 71(11):1095, November 1988.

[10] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard,
Van Nostrand Reinhold, 1993.

[11] N. Merhav and V. Bhaskaran, "A transform domain approach to spatial domain image
scaling," HPL Technical Report #HPL-94-116, December 1994.

[12] N. Merhav and V. Bhaskaran, "A fast algorithm for DCT-domain inverse motion com­
pensation," HPL Technical Report #HPL-95-17, February 1995.

24

