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Successful deployment of open distributed processing requires integrated performance
management facilities. This paper describes measurement and modeling technologies that provide
quality of service (QoS) measures and projections for distributed applications. The vital role of
performance instrumentation and modeling is applied to the Reference Model for Open
Distributed Processing. We discuss an architecture and prototype for an efficient measurement
infrastructure for heterogeneous distributed environments. We present an application model
useful for application design, deployment and capacity planning. We demonstrate that integrated
measurement and modeling yields the QoS measures that guide application deployment and
increase management capability.
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1 INTRODUCTION

Open Distributed Processing (ODP) offers advantages in performance, availability and
resource sharing. However, managing applications in a distributed environment is a complex task
and the lack of integrated performance management facilities is an impediment to large-scale
deployment. The performance management tasks of application design, deployment, bottleneck
analysis, and capacity planning require the collection, modeling and analysis of workload data.
Previous techniques used to design and manage high performance, monolithic applications are
inadequate for ODP. A systematic approach based on performance engineering is required,
supplemented by stronger support of performance metrics in the Reference Model for ODP (RM-
ODP) [11].

This paper describes the architecture of an efficient, scalable Distributed Measurement System
(DMS). The DMS is a software-based measurement infrastructure that defines standard
performance metrics, instrumentation and interfaces. DMS provides correlated performance
metrics across objects and their channels, integrates disparate measurement interfaces from a
node’s nucleus object (operating system) and channels (networking), and efficiently transports
collected data. The architecture is realized in an object-oriented prototype based on the OSF
Distributed Computing Environment (DCE).

Strong interdependence exists between measurement and modeling. The DMS architecture
was designed in concert with distributed application modeling requirements. We demonstrate the
benefit of this integrated methodology on the QoS specification and measurement of a distributed
application. The models ease application deployment by estimating expected resource demands
and QoS for various designs and network topologies. DMS enables performance management by
measuring application QoS and reporting exceptions.

InterRSCAGEsdioMPHiassour research and summarizes related research. We describe how
performance management maps to the ODP framework in section 3. The DMS architecture and
prototype are discussed in section 4. Derived metrics are provided to performance models of two
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distributed applications in section 5. Conclusions and future work are summarized in the last
section.

2  MOTIVATION

The complexity of distributed applications bewilder application designers and system
managers. We illustrate this complexity in Figure 1 with the RPC-flow diagram of a simple query
transaction of a client-server application using a distributed transaction processing monitor. Each
arrow indicates an RPC request/response. The thick arrows indicate the logical RPC operation
from the application developer’s perspective and the thin arrows represent supporting RPCs
necessary for explicit binding from a transaction monitor. Note that RPCs are nested such that the
primary RPC will not return until the secondary RPC is complete (e.g., RPC 13 and its nested
RPC 14), thus further complicating analysis. Arrows that cross a dotted line indicate that a
network communication occurs with the potential of adding tens or hundreds of milliseconds to
the transaction’s latency. How is the user’s QoS estimated or measured in this complex and
dynamic environment?

Our research focuses on measurement and modeling solutions that decrease the risk of ODP
application deployment. The application of these techniques in a user environment results in
performance management. Specifically, our objective is to ensure realizable application
deployment by:

* estimating the cost of an object’s invocation as a function of resource consumption, target
hardware capacity, and channel latency and contention, prior to deployment;

+ creating an efficient, pervasive measurement infrastructure that collects, transports, corre-
lates and analyzes the performance metrics of monitored applications;

» providing effective performance management that supplements the ODP architecture with
abstractions of performance metrics and measurement interfaces, and integrates measure-
ments and models to address system management what-if questions before initiating an
expensive, risky course of action.
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2.1 Related research

Our work extends previous research in measurement and modeling and integrates them to
provide distributed application performance management. Several trends exist in the performance
measurement of distributed systems. A hardware monitor approach [20] has the advantage of
minimal perturbation effects on the system under test. However, it cannot support application
measurements in an enterprise environment and deployment cost is excessive. A second approach
is a software monitor [17] that collects application and distribution infrastructure metrics, but
requires careful design to minimize perturbation of the system under test. A variation is hybrid
software and hardware monitors [5][12]. These suffer from the enterprise deployment issues of
hardware monitors. A growing trend is to use the Internet SNMP protocols [3] for more than
network management. Software subsystems from operating systems to databases are
implementing SNMP access for distributed management. We believe that SNMP’s polling nature
makes it unscalable for large distributed application environments and that its trap function can
flood the network with data. Our research uses a software monitor to provide an efficient, scalable
infrastructure for operational enterprise environments.

Researchers and practitioners have recognized the critical need for model and instrtumentation
integration [19]. There has been work in developing requirements and standards for performance
measurement and management [1][3][8] but others note the current paucity of instrumentation
and tools in distributed client/server systems [4][16][21]. With the increasing role that
middleware components play in ODP applications, Software Performance Engineering (SPE)
methods [19] are dependent on pervasive performance instrumentation. Advocates of
performance modeling early in the design cycle support the notion of decompositional techniques
[21]. Impressive efforts by ESPRIT to create this performance design environment have been
mounted for ANSAware systems [10]. Franken and Haverkort [7] describe a performance model-
based Performability Manager that uses SPN techniques to analyze QoS in a distributed
environment, guaranteeing user-requested QoS and reliability. They demonstrate its use in an
ANSAware-based environment for performability management, but recognize the complexity
involved in the mapping of SPN components to alternative configurations.

RM-ODP

Viewpoint Applicable Aspects of Performance Engineering

Enterprise Establish end-to-end user QoS requirements. These specifications guide design decisions
and dynamic binding and are compared to measurements or performance models.

Information The information schemas of this viewpoint define performance metrics that describe appli-

cation behavior. This schema describes logical groupings of metrics that allows user-level
QoS analysis and isolation.

Computational An object’s Interface Description Language (IDL) serves to map object functions to other
objects, independent from distributional concerns. Since objects interact through their IDL,
this enables performance management objects to collect and aggregate performance data
measured at an object’s interface. The environment contract for each object is specified
here which includes QoS constraints. These object contracts must satisfy mappings to the
engineering viewpoint.

Engineering This viewpoint is expressed in terms of nodes and channel objects that are mapped from
the computational viewpoint using transparencies. These mappings require QoS agree-
ments comprised of performance measures that are dynamic and change in real-time. A
measurement architecture is needed to implement transparencies efficiently and provide
performance knowledge of an application’s distributed domain.

Technology The distribution infrastructure must have a low overhead, pervasive performance instru-
mentation facility that is complete and provides metrics to monitor and manage QoS.




3 PERFORMANCE MANAGEMENT IN ODP

We map the aspects of performance engineering as applied to the RM-ODP framework in
Table 1. ODP transparencies are subject to application constraints specified in the enterprise
viewpoint. Transparencies mask the difficult programming decisions about distribution semantics
yet their performance determines if the application can achieve the enterprise QoS requirements.

We believe that ODP objects that manage the enterprise viewpoint’s QoS requirements are
essential to knit together the dynamic needs of an application across the RM-ODP viewpoints,
and negotiate the channel-object relationships as necessary. This need is highlighted and argued
forcefully for multimedia applications by Campbell and Fédaoui [2][6]. Indeed, we believe that
the QoS architecture described in [2] is extensible to on-line transaction processing (OLTP). Their
focus is on the multimedia streams interactions between objects in the computational viewpoint
of the RM-ODP and specifies a QoS manager object using its own channel. Our emphasis is
similar but applied to the operational interactions between objects using a client-server model.
Our research on performance methodologies has focused on OLTP and its version of QoS, the
service level agreement.

4 DISTRIBUTED MEASUREMENT SYSTEM
This section discusses the DMS architecture and prototype implementation.

4.1 DMS architecture

DMS is a software architecture that facilitates the routine measurement of performance metrics
on distributed objects. Furthermore, it provides a measurement infrastructure that collects and
transports data independent of the underlying distribution mechanism.

DMS provides information for application design, deployment, QoS monitoring, load
balancing and capacity planning. DMS specifies a common set of performance metrics and
instrumentation to ensure consistent collection and reporting across heterogeneous nodes [8]. It
defines standard application programming interfaces (APIs) to ensure pervasive support for
performance metric measurement. The DMS objects shown in Figure 2 are capable of monitoring
distributed technologies such as DCE and CORBA. DMS also supports integrating performance
measurement interfaces from external sources, such as the host operating system and networking,
into a single unified measurement infrastructure. This results in a seamless, integrated view of the
behavior of a distributed application in a heterogeneous environment.

Instrumentation is specialized software incorporated into programs or libraries to calculate
performance metrics. DMS sensor objects are instances of a general performance metric for a
specific function. The sensors calculate and buffer primitive statistical quantities such as counts,
summations, or interval times, but defer the computation of more complex statistics such as
moments to higher-level DMS objects. Individual sensors are uniquely named within the
enterprise with a string name or an object identifier (OID).

A sensor’s collection granularity, and thus overhead, is controlled by specifying an information
level. The information level controls the statistical detail of the collected data. The lowest
information level corresponds to instantiated but inactive sensors and incurs nearly zero
overhead. The threshold information level is the lowest overhead setting for active sensors and is
used to monitor QoS. This level reports data only when user specified threshold values are
exceeded. Higher levels provide moments and histograms for analyzing distributions.



Three categories of standard sensors are defined: timers provide interval times, counters
record the number of occurrences or state of an event, and composers return an arbitrary structure
to higher level DMS objects.

Application objects may define custom sensors that supplement the standard sensors by
recording application specific behavior. These sensors support extensible measurement of
business or organizational units of work that are not available in the distribution infrastructure.

An observer object resides within each instrumented process and provides a sensor control
point. It minimizes in-line overhead by allowing the sensors to defer some computation and off-
loads sensors of the need to manage and transmit data. The observer exports a sensor access and
control interface named the Performance Measurement Interface (PMI). The observer supports
sensor registration and unregistration and transmits intervalized data generated by sensors within
the local process address space to the collector object. Multiple sensors are transferred
simultaneously to minimize the overhead.

A collector is a network-node level object that controls sensors via the PMI and performs local
node data management. There is one collector per node. It provides network transparent sensor
access and control to higher levels of the architecture using the Collector Measurement Interface
(CMI). The collectors accumulate sensor data from all observers on the node using the Collector
Data Interface (CDI). The observer summarizes sensor data and periodically “pushes” it to the
collector using the CDI. The CDI eliminates the need for polling of sensor data by providing an
asynchronous data transport channel. The collector provides a sensor registry that contains the
state of all registered sensors on the node.

An analyzer object analyzes the data gathered by collectors within a specific domain. It applies
statistical routines to compute the distributional characteristics of the collected data, correlates
data from application elements residing in different processes and on different nodes, and
prepares data for expert system or human analysis. Simple operations, such as counting events,
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are most efficiently provided by the sensor, but an analyzer performs complex statistical
calculations such as computing moments. One analyzer can request subsets of sensor data from
multiple collectors; multiple analyzers can access a specific collector. The analyzer provides data
to a presentation service for visualization or an interpretation service for autonomous agent
operation. An analyzer provides the basis for dynamic end-to-end QoS negotiation and
monitoring.

The CMI is a network communication interface exported by a collector. An analyzer uses this
interface to communicate with collectors anywhere in the network to request sensor data and
specify sensor configurations. Multiple sensor values are batched by the collector and returned in
bulk using the Analyzer Data Interface (ADI). This minimizes the number of network packets
between the collector and analyzer. The collector periodically “pushes” data to the ADI which
eliminates the overhead of an analyzer polling for its next update. This technique improves
scalability and reduces overhead. The collector must use self-describing data techniques to
facilitate interpretation of data formats since collector and analyzer may reside on heterogeneous
nodes.

Additional DMS objects complement the measurement infrastructure objects. The presenter
object supports the human user interface and interactively produces reports, displays, and alarms.
It presents a logically integrated view that resembles that of an application executing on a single,
centralized node. Visualization techniques are necessary to provide efficient on-line analysis of
the collected data. The interpreter object is an intelligent entity, human or expert system, that
evaluates and identifies complex relationships between the data and the environment and then
draws meaningful interpretations. It relies on dynamic models to estimate and compare measured
data with QoS requirements. The controller object provides control of the application and system
parameters and states. The controller decides to set or change system parameters or configurations
based on the interpretation of monitored performance data. Together with the measurement
system and dynamic models, the controller provides the closed feedback loop necessary for
providing self-adapting systems that manage themselves with less human intervention.

Collecting performance data must not significantly impact the applications and systems under
measurement. We have used optimization techniques to minimize network bandwidth utilization
and to improve scalability. We used thresholds that report data only when QoS levels are violated,
sensors that report summarized data periodically but do not report unchanged data, and bulk
transport of aggregated sensor data at the observer and collector level.

4.2 DMS prototype implementation

The DMS prototype provided a research tool to evaluate functional partitioning of the
architecture. It implemented the sensor, observer, collector, and presenter objects, and was based
on OSF DCE [15] because of availability and commercial interest. The use of DCE as the
prototype’s distribution infrastructure impacts only the implementation of sensors and observers
but not the interface.

Sensors were developed and placed within the DCE runtime library (RTL). A copy of the RTL
is linked with all clients and servers. Thus standard sensors are available without modifying client
and server application source. The observer was implemented within the RTL. The collector was
implemented as a daemon process that communicated with all the observers on the node via IPC
using the PMI and CDI interfaces. The analyzer was implemented as a daemon and it
communicated with all the collectors in the network via RPC.



Figure 3 illustrates the prototype run time environment. The RTL supports a pool of
application call threads, represented by vertical arrows, that execute within a single application
address space. Curved arrows represent data transfer paths. The RTL and application RPC
requests are executed on an available thread. Sensors are reentrant and use locks to access the
global sensor data since they execute in a threaded environment. The analyzer periodically
retrieves the data temporarily held for it from each collectorr DCE RPC marshalling/
unmarshalling handles data translation.

We integrated DMS into a network management infrastructure provided by current SNMP-
based tools. These tools provide a possible foundation for QoS monitoring and we wanted to
demonstrate coexistence. In Figure 4 we display the Performance Management Information
Screen (PMIS) that includes DMS integration into the Hewlett-Packard OpenView network
management framework [14].

Effectively displaying an application’s performance is necessary after collecting, correlating
and analyzing its data. The presentation of performance management information is shown in
Figure 4 for the application PhoneDB. The row of icons at the top of this Motif-based screen
represents the integrated view of the application’s performance metrics. The data available to this
display is independent of the location of the application’s objects. Selecting one of these icons
displays a graph of the corresponding performance metrics.

DMS objects measure, map, and isolate any violations of the application’s specified QoS.
During normal operation, a particular ODP node or channel becomes visible to the administrator
only if a QoS service level exception occurs. The inset of Figure 4 graphs a client and server
object’s response time. It illustrates that client perceived performance has a server latency that is
only one component of its response time (solid line in graph). Channel latency and binding, stub,
and protocol objects that participate in the distribution transparencies contribute an additional
response time component (difference between dashed and solid lines). In this example, network
loading markedly degrades the client’s response time but does not affect server response.

The lower portion of the PMIS screen shows two nodes, boom and winch, with their
corresponding performance metrics and node-centric tools. Other node based tools, such as
SNMP or PerfView (a Hewlett-Packard performance monitor), are used as necessary for further
analysis.

We learned valuable architectural and implementation lessons from the prototype. First,
measurement infrastructure activities that have bursty behavior, especially sensor registration and
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data transportation, require bulk functions in the CDI and ADI interfaces to minimize the use of
expensive communication mechanisms. Second, obtaining timestamps is an expensive operation
if using standard library functions such as gettimeofday. We were motivated to create a custom,
low overhead timer mechanism, portable to other operating systems. Finally, the viability of the
DMS architecture depends on overhead incurred and channel bandwidth utilized. Our prototype’s
primary focus was on flexibility and adaptability, yet the overhead of the prototype was negligible
(on the order of a few percent).

5 MODELING AND MEASUREMENT INTEGRATION

This section demonstrates the benefit of modeling distributed applications with data provided
by DMS measurements.

Modeling eases the design, deployment, and management of ODP applications. Models
provide the basis for evaluating the partitioning of application functionality, upgrading
performance, developing new designs, and planning capacity. Capacity planning, for example,
requires modeling of various application environments and network topologies since few large
distributed environments are built solely to benchmark application design alternatives.
Furthermore, the dynamic nature of ODP applications makes transparency mapping of location,
migration, resource, and transaction semantics impossible to predict and manage without
modeling techniques. Models answer what-if questions regarding load balancing, capacity
planning, or QoS violation causes.
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DMS plays a crucial role in modeling by providing data for workload characterization, and
model construction, parameterization, and validation. Models have little value without effective
parameterization based on instrumentation. As further illustration of the synergy between
measurement and modeling, the placement of DMS sensors was driven by modeling
requirements.

5.1 Model description

Based on the complexity of distributed systems and the uncertainty in treating them
analytically we approached this research using a general discrete simulation engine. We used
SES/Workbench from Scientific and Engineering Software, Inc. [18]. Our prototype model was
designed to meet the functional modeling requirements of client/server applications in an OLTP
environment [13]. The model was designed to satisfy requirements for flexible topology
specifications, nested and asynchronous RPC’s, statistical model termination, and a network
abstraction with realistic latencies. The simulation model is based on a resource-centered event
paradigm that lends significant flexibility to the specification of the model. A simple ASCII
configuration file specifies a large variety of distributed applications and topologies. This file
input includes number and type of compute nodes, application transactions, users, networks,
routers and routing technology. Nested and asynchronous RPCs were accommodated.

5.2 Benefits of integrated measurement and modeling
We illustrate the benefit of modeling and measurement by describing their use for two
distributed applications.

PhoneDB is a client-server application that provides a database of telephone numbers for a
user community. The PhoneDB server supports several remote functions that includes adding
database entries, deleting entries, and searching for an entry using either a regular expression or a
binary search algorithm.

We used DMS to measure application transactions using no-load single class techniques. This
provided an estimate of the service time for both classes of transactions: regular expression and
binary search (77 msec and 14.5 msec respectively). The network delay was measured at 1 msec.
The client contribution to the service time was 3 msec. We assumed one packet exchange per
RPC based on our knowledge of the application. The CPU times were converted to instruction
pathlength using an assumed MIPs rate for the nodes on which this test was run.

Clients in the sample application were simulated to initiate transactions with a uniform inter-
arrival time distribution between 0.25 and 0.75 seconds with a mean of 0.5 seconds, yielding an
average arrival rate of 2 TPS. We modeled this application for a combined transaction rate load
that varied from 4 transactions to 36 transactions per second. The model simulated the contention
at the server for the two transaction types and generated expected mean service times for each
transaction type. Up to the knee of the response time curve (around 10 TPS) the model results
agreed to within 10% of the actual system measured with DMS. In Figure 5 we plot the estimate
of two workload classes’ average transaction response time and DMS measurements as a function
of increasing load.

Using this validated model provides the benefit of estimating QoS applications and ODP
topologies while in the design phase. For example, we used the model to predict the impact on
QoS for a deployment environment that placed the PhoneDB server object on a node 1000 miles
from the client object [13]. We also used it to demonstrate the improvement in QoS provided by
upgrading the Phone DB server node to a 2-way multiprocessor. Furthermore, the model



improves performance management effectiveness by estimating QoS impacts for load balancing
and capacity planning before a system manager decides on a course of action. An extension to the
model and the addition of a QoS manager mechanism in the distribution infrastructure would
provide dynamic QoS negotiations among objects, and quantitative evaluation before binding
client and server objects.

In the second use of this model, we applied it to an OLTP application built on a DCE-based
middleware product that provides transactional-RPC semantics. A distributed order processing
application, Telshop, was measured using event-tracing and then modeled. In Figure 6 we plot the
modeled and measured results of a transaction consisting of five read queries to an inventory
database for a range of workload intensity. The agreement with the measured results was within
the normal modeling goals of 15% accuracy.

In summary, the integration of measurement and modeling results in two major benefits. First,
the validated models provide insight into application resource consumption and expected QoS
behavior prior to full-scale deployment. Second, measurements supply the data necessary to
comprehend dynamic application behavior, manage QoS, and parameterize models.

6 CONCLUSIONS AND CONTRIBUTIONS

This paper highlighted the benefits of integrating modeling and measurement for application
design, deployment and management in ODP.

RM-ODP provides a framework that requires extension to address the performance
engineering problems of building and managing distributed applications. We described a
distributed measurement architecture that provides an integrated view of application resource
consumption across heterogeneous nodes and network channels that node-based tools cannot.
DMS provides an extensible architecture for integrating disparate performance measurement
interfaces from operating system and networking software with the distribution infrastructure. It
provides efficient mechanisms for controlling, collecting and transporting performance data. We
have used techniques to minimize the amount of processing and network bandwidth required.

Distributed client/server application models are crucial to ensure efficient design, deployment,
and scalability. RM-ODP transparencies need modeling to help guide the binding, replication,
location, and migration activities specified by the application’s environmental contracts. The
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necessary modeling technologies are not generally available. We developed a simulation model to
address these requirements and validated it with the DMS prototype.

Many problems remain in providing performance management of large-scale ODP
applications. A few of the most important include:

* Include standardized performance instrumentation in the RM-ODP and implement the stan-
dard interfaces proposed by the OSF DCE community [9].

* Provide a methodology to decompose the activities of middleware dependent applications
so that a compound object’s behavior is more easily characterized by simpler objects, pref-
erably through the RM-ODP language specifications.

* Extend the models to include QoS negotiation for dynamic control of object selection based
on service requested, service pricing, and current service QoS levels.
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