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Texture mapping is a frequently exploited
technique in computer graphics aimed at the
emulation of high-resolution details in surfaces.
In this paper we present a distance-ratios
preservation method for bivariate raster texture
mapping to free-form surfaces in an arbitrarily
precise manner. The proposed method reduces
the original general problem of computing the
inverse of a three-dimensional parametric surface
mapping into a problem of two-dimensional image
warping. Several examples that demonstrate the
proposed approach are also provided.
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1 Introduction

Photo-realistic rendering has been a prime goal of computer graphics research for over two

decades. Numerous methods have been developed to improve the accuracy of the constructed

image by employing physically based optical models of simulated illumination.

Texture mapping is a frequently exploited technique in contemporary computer graphics.

As opposed to physically based models, this method lacks any physical foundation. However

its success in emulating high resolution details on surfaces is unquestionable.

Two major types of texture mappings are frequently employed. The first defines the texturing

information in 3-space as a trivariate scalar or vector-valued texture function T(x, y, z) [17,

18]. Given a 3-space location, T provides an intensity level, an RGB color, or even a normal

perturbation factor, also known as bump mapping [6]. In practice, the trivariate texture

is typically functional. A significant amount of ingenuity is required in order to achieve

appealing texture styles such as marble or wood. A second approach exploits the mapping

of the bivariate parametric surface, S(u, v) = (x(u, v), y(u, v), z(u, v)). A bivariate scalar or

vector-valued texture function T(u, v) provides for each 3-space location on S the texture

information via the mapping function of S. This second method is more attractive because

T (u, v) can be easily approximated using real life texture imagery, such as photographs of

wood, grass, or clouds.

Both the above methods have their advantages and drawbacks. The use of trivariate texture

mapping imposes a greater computational burden, in general, and has little support in

hardware based graphics. Bivariate (also refered to as raster) texture mapping is typically

faster to evaluate, and is supported by many hardware based platforms such as SGI's GL

and Open GL, or HP's Starbase. However, while the trivariate texture is computed in

the Euclidean 3-space, the bivariate raster texture is transformed along with the surface

mapping. The latter can cause severe distortions to the input texture image, affecting both

distances and angles (see Figure 1). Clearly, in many instances, the original intent is to

preserve angles and distances in the image of the texture.
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A mapping S = S(u, v) is called isometric if it preserves the inner product of two directional

partials derivatives at any given point on surface S, Namely if Xi = (xf,xi), i = 1,2 are

vectors in the parametric space of S then,

where (.,.) denotes the inner product operator. Because inner products are preserved by

isometries, the first fundamental form is also preserved. Since the Gaussian curvature, K,

depends only on the first fundamental form and its derivatives, K is also invariant under

isometries, a result known as Theorema Egregium of Gauss [9]. Using bivariate raster texture

mapping, one always starts with a flat planar parametric domain for which K =O. Hence,

a necessary (but not sufficient) condition for a parametric surface S(u, v) to be an isometry

is that it has zero Gaussian curvature throughout. In other words, S must be developable.

Clearly, most parametric surfaces are not developable. Moreover, the developability of a

surface is intrinsic, while parameterization may be arbitrary. Consider a developable para­

metric surface Sl(U, v), O:s u, v :s 1, and its reparameterized alias S2(U, v) = Sl(2u, 3v), 0 :s

u :s ~' 0 :s v :s i. While S, and S2 are both developable, they cannot simultaneously be

isometries.

Techniques to alleviate all these difficulties and provide a close approximate solution that

preserves angles and/or distances in the bivariate raster texture have been suggested in re­

cent years. In [5], an arbitrary parametric surface is decomposed into strips, examining and

preserving the geodesic curvature of the curves that subdivide the different domains of the

surface when they are mapped onto the plane. The resulting decomposition is used to pro­

vide a skeleton for the texture mapping that is used, and to possibly preserve distances in

the texture during the mapping process. This approach preserves the geodesic curvature as

well as arc-length by tracing a piecewise linear approximation of the real curves, one point

at a time. In [13], a different approach that provides a piecewise developable surface approx­

imation with a global error bound to an arbitrary surface is described. This approximation

can be employed in a similar manner to approximate a bivariate raster texture map that

preserves distances.
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In this paper, a different approach is taken. Since one is, in general, unable to accurately

preserve the distances in the texture, we restrict ourselves in two ways. First, we consider

only distance-ratios. That is, we allow uniform scaling while the surface mapping takes place.

Hence after, we use the term isometry to denote a distance-ratios preserving transformation.

Moreover, we examine the problem of mapping a texture onto a surface such that distance

ratios are preserved when the surface is orthographically projected at a particular direction.

Thus, when viewed from that direction the texture mapped surface appears as an isometric

copy of the original.

By considering this problem we are able to reduce the general problem of an isometry ap­

proximation of the bivariate texture mapping to that of two-dimensional image warping.

Section 2 presents the proposed algorithm while in Section 3 we demonstrate the proposed

solution on several examples. Finally, we conclude in Section 4 by discussing some theoret­

ical and implementation issues associated with the problem as well as the generalization of

the problem to other types of isometries.

2 The Algorithm

Assume one desires to map a certain shape onto some location on a free-form surface. For

clarity and without loss of generality, we assume one needs to place a square texture shape,

T, on a free-form surface so that from the +X orthographic viewing direction, V, the shape

is seen as square.

2.1 Reduction to 2-D

Consider the plane P : z = Zo that contains a horizontal boundary of the projected texture

map ofT. Parameterize P as P(r, s) = (r, s,zo). The intersection ofP and surface S(u, v) =
(x(u, v), y(u, v), z(u, v)) yields,

x(u, v) = r, y(u, v) = s, z(u, v) = zoo (1)

The third equation, z(u, v) = zo, implicitly defines the curve of intersection in u and v.

Parameterizing this implicit curve with the parameter t results in a representation of the
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Figure 1: The grid/grass texture on this model is a result of employing the exact same bivariate
raster texture for all four (body, handle, spout, and cap) surfaces of the Utah teapot. Notice the
way the grid is distorted on the spout and the cap.

intersection curve in the parametric space of S as C(t) = (u(t), v(t)). The 3-space Euclidean

representation of the curve of intersection can be computed as the composition S(C(t)) =
S(u, v) 0 C(t). S(C(t)) from direction V, is seen as a straight line (the horizontal boundary

of the mapped texture T) along the Y axis.

In addition to seeing the boundary of T as a straight line, the speed along the line should be

constant. The curve C(t(s)) provides a reparameterization for C(t) that is of constant speed

for the projection of S(C(t)) on the Y axis. The proper constant speed reparameterization

for the projection of S(C(t)) on the Y axis can be computed by solving for the inverse of

y(C(t)) = y(u(t), v(t)) = s.

In general, C(t) can assume an arbitrary shape in the parametric space of S. Thus, after

C(t(s)) has been derived we will need to warp one boundary of the texture map of T to fit
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C(t), in the parametric space of S.

Compute a similar surface-plane intersection for the other three boundary lines of the re­

quired mapped texture, T, resulting in four intersection curves Ci(t), 0 ::::; i < 4. Then,

for the boundary of a square shaped texture, T, to show up square from viewing direction

V, one needs to warp the square image of the texture to fit the four intersection curves,

Ci(t), 0::::; i < 4.

One can compute the surface-plane intersections by exploiting Boolean operation tools: Posi­

tion a two-dimensional rectangular frame in an Y Z-parallel plane sufficiently far away from

the textured model, such that no intersection between the plane and the textured model

occurs. Sweep the frame along the -X direction. The front-most intersection of the rectan­

gular tube with the original surface, S, provides the four boundary curves, Ci(t), 0::::; i < 4,

of the texture in the parametric space of S.

Constraining only the four boundaries provides no guarantee as to the behavior of the texture

mapping in any interior location of the domain. However, assuming all mappings concerned

are continuous and a bounded Lipschitz condition on S is provided, one can clearly bound the

expected error by adaptively introducing curves into the interior of the domain to guide this

inverse transformation. We refer to this network of curves as guiding curves. A sufficiently

fine network of guiding curves will provide an arbitrarily precise isometric texture mapping

throughout the approximated domain.

Clearly, one should avoid such costly computations when real-time rendering is required.

Alternatively, if one could pre-compute a warped bivariate texture mapping that preserves

the shape of the square as seen from direction V, the real-time rendering will suffer no

penalty, thus enabling the texture mapping of the pre-warped raster image in a conventional

way and with no delays.

The rectangular texture should be warped to fit the guiding curves in order for it to be

seen rectangular from the +X direction. An image warping technique (see Section 2.2) that

takes a rectangular mesh into the domain that is bounded by the guiding curves of the
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Figure 2: Left: A rectangular frame is swept in space in the +X direction and the resulting tube is
intersected with the glass surface. Right: The corresponding intersection curves in the parametric
space of the glass are shown, including several interior guiding curves, forming a network of size
4 x 32.

rectangular tube and 5, in the parametric space of 5, will satisfy the isometry constraint on

the boundary of T.

Figure 2 illustrates the first part of the procedure. A rectangular frame is swept along the

- X direction and intersected with a free-form surface of a glass. Additional interior curves

are also constructed by intersecting the surface of the glass with parallel planes, forming a

network of guiding curves of size 4 x 32. The intersection curves are computed using regular

Boolean operation tools, extracting the intersection curves in the parameter space of 5, the

glass.

2.2 Image Warping

Image warping techniques are computer graphics/image processing procedures that have

gained increasing popularity in recent years. In general an image warp is a 1-1 continuous
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transformation of the plane (or a bounded usually simply connected subset of the plane)

onto itself with grey-level or color associated with each point transformed accordingly. This

technique is currently widely used as an image registration tool [11, 14f and for the creation

of special effects in computer graphics [4, 3].

In the sequel, we will be (pre)-warping a parametric domain defined and bounded by a

network of guiding curves onto a domain with equivalent topology. This leads us naturally

to the notion of grid distortion [1] - a warping procedure first suggested by D. Thompson [21]

for the investigation of related forms in comparative anatomy.

As opposed to the well-known technique of point-to-point warping, in which the mapping

is governed by the movement of a finite, and usually small, set of points [20, 7, 8, 19],

grid-distortions are controlled by the mapping of equivalent sets of curves arranged in a

grid structure. In most practical cases, the grids are of a regular rectangular structure.

However, regularity is not essential, and only minor geometric restrictions need to be adhered

to [2]. The resulting warp is guaranteed to be parametrically smooth (C1 ) throughout, and

geometrically smooth (G1
) on the guiding curves themselves. It is designed to be as smooth

as possible in the sense that the mapping function minimizes (in each coordinate) the well

known thin-plate warping functional [7]

(2)

where n is anyone of the patches defined by the bounding curves. This implies that the

warp will be, in a certain sense, the simplest possible. For example, it results in an affine

mapping if the geometry of the guiding curves allows. Finally, the curves composing the grid

are regarded as point-sets, i.e, they are not assumed to belong to any particular algebraic

family, and thus only geometric properties of the curves are used.

Minimizing the functional (2) is equivalent (under suitable boundary conditions) to solving

the biharmonic equation ~2f = 0 [10]. This is an elliptic fourth-order partial differential

equation, and as such admits to extremely efficient numerical solutions [15].

Figure 4 demonstrates the role of the image warper, and continues the example of Figure 2.
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Figure 3: A naive texture mapping of a rectangular shape resulting in a distorted shape once
mapped to the Euclidean 3-space parametric surface of the glass.

A rectangular grid of the same order as the one computed from the model is placed on

the texture, and the texture plane is warped so that the the two sets of guiding curves are

mapped one to another. The resulting warped texture plane is then mapped by the mapping

function S to the surface.

3 Examples

In this section, we present several examples that employ the proposed scheme. In figure 3, an

example of a naive texture mapping attempt is shown. A raster texture map of a rectangular

shape is mapped onto a wine glass with no pre-warping. The result is a large shrinkage of

the texture image along the neck of the glass, totally distorting and loosing distance ratios

within the texture map.

We now constrain the rectangular shape to be seen as a rectangle from the +X direction.
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Figure 4: The pre-warped raster texture map computed on the right using an image warping tool
with the aid of the network of guiding curves seen in the middle from the original texture map on
the left. See also Figure 2.

In Figure 2(a), this rectangle is swept in space, and intersected with the surface of the wine

glass of Figure 3. Also shown in Figure 2 (b) is a network of guiding curves in the parametric

space of the surface of the glass. This network is used as input to the two dimensional image

warper that pre-warps the image of the texture. Then, this pre-warped raster image can be

used as input for the regular raster texture mapping.

Figures 5 and 6 shows two different approximations of the pre-warped image needed for an

isometric raster texture mapping. Figure 5 exploits a network of guiding curves of size 8 x 8

while Figure 6 shows the result of a network of size 4 x 32. The second approximation is

indeed coarser in one dimension while still able to deliver a much better result, hinting on

the need for adaptive sampling of the network.

Finally, in Figures 7 and 8, a model of a B-58 bomber is decorated with several emblems and

symbols, all preserving relative distances. These marks were placed by sweeping different

rectangular tubes, with interior parallel planes, and intersecting them against the model.

The resulting networks were then fed into the image warping tool to pre-warp the different

symbols. The pre-warped textures of the different surfaces of the model are shown in Figure 9.
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Figure 5: Approximating an isometry by using a network of guiding curves of size 8 x 8. Notice
the distortion near the bottom and top regions of the neck of the glass. Compare with 6

All the images presented were rendered using a software based scan conversion renderer

that supports bivariate raster texture mapping, while reading the pre-warped raster texture

maps. The pre-warped texture maps are regular raster textures, and as such are completely

transparent to the scan converter. Thus they may be as easily fed into any hardware-based

scan conversion Z-buffer that supports bivariate raster texture mapping.

4 Conclusion

We have presented a method to approximate bivariate raster texture map that appears iso­

metric from a particular viewing angle with the aid of a network of guiding curves. While

in this work the guiding curves are automatically extracted using Boolean operations, any

method that generate guiding curves may fit into the framework presented. Specifically, con­

sider the application of parallel curves. Measure distances between two points on the surface
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Figure 6: Approximating an isometry by using a network of guiding curves of size 4 x 32. Compare
with 5

Figure 7: Side view of a B-58 bomber with various emblems and symbols, all preserved by locally
approximating an isometric mapping.
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Figure 8: General view of a B-58 bomber with various emblems and symbols, all preserved by
locally approximating an isometric mapping.

S along geodesic curves and measure distances between two curves using the Hausdorff met­

ric [16]. Then, a rectangular domain with two vertical and two horizontal boundaries can

be possibly mapped into a strip on S with two pairs of parallel curves, that are not neces­

sarily orthogonaL If these curves can be computed, then the approach proposed here can be

exploited to pre-compute the necessary pre-warped raster texture for a parallel constraint

preservation. This parallel constraint will converge to a real distance as well as angle isom­

etry on developable surfaces. Furthermore, any set of guiding curves that preserves some

prescribed property may be employed in a similar manner.

The adaptive computation of the network of guiding curves is a non-trivial task. The first

fundamental form [9] of S plays a major role in how a surface S locally behaves as an isometry.

The magnitude of the two first partials of S as well as the angle between the two partials

can serve as indicators as to the quality of S in a local neighborhood and hence can hint as
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Figure 9: The prewarped texture maps of the B-58 bomber. The top row contains the two texture
maps of the front (top right) and back (top left) sides of the fuselage. The middle row contains
the two pre-warped textures of the wings while the bottom row contains the texture map of the
rudder.

to the necessary refinement of the network that is required in this neighborhood. Symbolic

computation of the magnitude square of the partials [12] as well as the angle between them

can provide global bounds on the local behaviors of S as well as a Lipschitz bound.
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