
r~3 HEWLETT.:!II PACKARD

Performance Evaluation of a Distributed
Application Performance Monitor

Richard J. Friedrich, Jerome A. Rolia*
Broadband Information Systems Laboratory
HPL-95-137
December, 1995

performance models,
distributed
applications,
client-server,
performance
monitors

The Distributed Measurement System (DMS) is a
software-based measurement infrastructure for
monitoring the performance of distributed
application systems. In this paper we evaluate
DMS in two configurations: a monitor for quality
of service and a collector for model building
parameters. Three distributed application
workload types are defined and a model for DMS
is given. The model parameters for DMS are
based on measurement data from an
implementation of DMS for the Open Software
Foundation's Distributed Computing
Environment. We use the model with our
workloads to consider the impact of DMS on
processor and network utilization and on
workload responsiveness. We show how the
various factors that control DMS affect its
overhead. Lastly, the scalability of DMS is
considered for large distributed environments.
Our results indicate that DMS is well suited for
monitoring QoS and supporting workload
characterization for model building.

"Carleton. University, Ottawa, Ontario, Canada
To be published in and presented at IFIP /IEEE International Conference on Distributed Platforms,
Dresden, Germany, February 1996
© Copyright Hewlett-Packard Company 1995

Internal Accession Date Only



Performance evaluation of a distributed
application performance monitor

R. J. Friedrich" and J. A. Roliab

"Hewlett-Packard Laboratories, Hewlett-Packard Company,
Palo Alto, California, USA 94304; richf@hpl.hp.com
bDepartment ofSystems and Computer Engineering, Carleton University,
Ottawa, Canada K1S 5B6; jar@sce.carleton.ca

Abstract
The Distributed Measurement System (DMS) is a software-based measurement infrastructure
for monitoring the performance of distributed application systems. In this paper we evaluate
DMS in two configurations: a monitor for quality of service and a collector for model building
parameters. Three distributed application workload types are defined and a model for DMS is
given. The model parameters for DMS are based on measurement data from an implementation
of DMS for the Open Software Foundation's Distributed Computing Environment. We use the
model with our workloads to consider the impact of DMS on processor and network utilization
and on workload responsiveness. We show how the various factors that control DMS affect its
overhead. Lastly, the scalability of DMS is considered for large distributed environments. Our
results indicate that DMS is well suited for monitoring QoS and supporting workload
characterization for model building.
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1 INTRODUCTION
Collecting, analyzing and modeling application workload data is necessary for predicting and
managing the dynamic behavior of distributed applications. Researchers at Hewlett-Packard
developed the Distributed Measurement System (DMS) [6], a software-based distributed
application performance monitor, to address these measurement needs. Using the terminology
of the Reference Model for Open Distributed Processing (RM-ODP) [1], DMS provides
correlated performance metrics across objects (application components) and their channels
(network communication), integrates disparate performance measurement interfaces from a
node's nucleus object (operating system), and efficiently transports collected data from network
nodes to management stations. The data collected by DMS is useful to application designers,
model developers, quality of service (QoS) monitors and distributed application managers.

DMS sensors (instrumentation) are designed and placed to facilitate data collection for
application workload characterization. This data is used to build and validate predictive
performance models of distributed applications. For example, the data can be used to capture the
parameters for Layered Queueing Models (LQM) [3][11] of distributed applications. These
models arC? similar to Queueing Network Models [9], which are used to estimate a workload's
contention for processors and input-output subsystems, but also capture software interactions
between capsules (operating system processes) that can affect application throughput and
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Figure 1 The OMS architecture. OMS objects are represented as oval figures and interfaces are shown
as rectangles. The control and data paths are shown by arrows.
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An Observer object within each instrumented capsule implements a sensor access and control
interface named the Performance Measurement Interface (PMI). It minimizes in-line overhead
by allowing the sensors to defer some computation and off-loads sensors of the need to manage
and transmit data. The observer transmits intervalized sensor data from the local capsule's
address space into the collector object. Multiple nonzero sensor values are transferred at the
same time to minimize IPC cost.

The Collector is a node level object that controls sensors and performs node-level sensor data
management. It provides transparent network access and control of sensors for higher levels of
the DMS architecture using the Collector Measurement Interface (CMI). The collectors obtain
sensor data from all observers on the node using the Collector Data Interface (COl). The
observer periodically "pushes" sensor data to the collector using the CDI. The CDI eliminates
the need for polling of sensors and provides an asynchronous data transport channel for
acquiring sensor data.

An Analyzer object analyzes the data gathered by collector objects. It computes the higher
moments of the collected data, correlates data from application elements residing on different
nodes, and prepares data for expert system or human analysis. The collector periodically pushes
sensor data collected from the observers on a node to the analyzer via the Analyzer Data
Interface (ADI). The ADI is required to support a remote procedure call (RPC) interface since it
most likely resides on a node elsewhere in the network.

We have used optimization techniques to minimize the amount of CPU and network
utilization required and to improve scalability. Specifically, the OMS architecture uses:
• sensors that periodically report summarized data,
• thresholds so that only exceptions are reported in a normal executing environment,
• and non-polling, bulk transfer algorithms for network requests to minimize bandwidth use.

Other performance monitors focus on distributed debugging with either expensive custom
hardware monitors or highly intrusive software-based event tracing [12]. Although distributed
debugging is a very important feature in distributed systems management these approaches have
too high an overhead for the continuous monitoring of distributed applications in operational
environments.

2.2 DMS performance model
A prototype of the OMS architecture was implemented on DCE. It supports the sensor,
observer, collector, and analyzer objects. The use of DCE as the prototype's distribution
infrastructure impacts only the placement of sensors and the implementation of observers. All
other DMS objects are independent of the distribution infrastructure.
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The communication mechanism used to exchange data between observers and the collector,
RPC versus shared memory IPC, also has an impact on DMS overhead.

Table 1: DMS functions and costs on an HP9000n20 running HP-UX 9.02

Function/event

Total sensor collection
Update global sensor data store (DS)
Observer get sensor data from DS
Observer report data (via RPC)
Observer report data (via shared memory)
Collector receive data (via RPC)
Collector receive data (via shared memory)
Collector reports data (via RPC)
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label

a
b

c
d

e
f
g

h

Cost
(instructions)

280

232

232

21,264

2,264

430,280

46,280

51,200

Our experimental design considers four factors:
1. strategies for applying DMS (which determines the number of active sensors per object mem-

ber, their information level, and the frequency of reporting data);
2. the number of object member functions monitored per server capsule;
3. the communication mechanism between observer and collector;
4. and the workload type.

We now discuss the levels of the first three factors and their corresponding resource costs.
The workload types are discussed in section 3.

First we assume that there are no active sensors. This gives us our baseline performance
without monitoring. In the second case we examine the cost of monitoring application QoS and
in the third case we examine the cost of collecting the data necessary for workload
characterization and model building. These cases are considered for both RPC and shared
memory communication between observer and collector.

In the QoS monitoring case, 2 sensors are active for each application capsule object member
function. These two sensors provide data for response time and throughput. Our motivation for
collecting these values is from QoS requirements for transaction processing systems. Such
requirements are often expressed in the form "under a load of30 transactions per second, 90%
of the transactions must complete in less than 5 seconds." The response time (timer) sensor
collects percentile data using the p2 algorithm [7] and the throughput (counter) sensor collects
counts, sums and sum of squares (used by the analyzer to compute means and standard
deviations.) In this example we define the information level of the response time sensor as the
percentile information level and the throughput sensor as the basic information level.

In the model building case we consider detailed measurements with 5 sensors active for all
capsule member functions. These 5 sensors provide data for response time, throughput, network
bytes transmitted and received, and queueing time (for server objects that do not have an
available thread to handle an incoming service request). All 5 of these sensors are set to the
basic information level. In addition, once per reporting interval, the observer collects nucleus
(operating system) metrics for capsule (process) CPU resource consumption and disk I/O counts
using an OS sensor. The sensor cost and data size values are summarized in Table 2.

Note that when DMS is used for continuous application QoS monitoring thresholds are likely
to be employed to reduce the amount of data collected and analyzed. Sensors with thresholds
report data only when a user configured requirement is exceeded; for example, when 10% of the
client response times exceed 5 seconds. The lise of thresholds significantly reduces the amount
of data transmitted between observer and collector, and collector and analyzer. This limits the
collection and communication overhead to only those member functions behaving in an
abnormal manner. At first we present results which assume that reporting always takes place.
This gives us the worst case behavior for DMS. Later we describe the sensitivity of resource
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In actuality these workloads are based on experiences with commercial applications. The
light workload reflects an on-line transaction processing application consisting of simple
queries of medium size (100 MB) databases with minimal CPU and disk resource demand but
with a frequent issue rate (similar to TPC-A). An example of this workload is a banking
application that provides customers with account information and financial transactions such as
account debits and credits. Typically a large number of clients access a given server, 100 in this
case.

The medium workload is similar to the light but with increased query complexity.
Consequently, the CPU and disk resource utilization is larger than in the light case and the user
think time is larger. An example of this class of applications is an inventory control program for
a manufacturing company where parts are entered and deleted from inventory based on
incoming customer orders and outgoing shipments. The number of clients per server is still 100.

The heavy workload is based on a decision support application where a user issues complex
queries against a large (greater than 1 GB) database. The CPU and disk resource utilization is
much larger than for the previous two workloads. This workload has a much smaller number of
clients per server due to the client's workload intensity. This workload also has a much larger
think time reflecting user analysis of the results. Examples of this workload include retail
companies that use data warehouses containing historical data for trend analysis.

In our study the applications all have the same software capsule architecture as illustrated in
Figure 2. Clients reside on dedicated nodes and make use of a server node. The server node has
ten managed capsules (server processes) and a collector. The processing power (MIP rates) of
the server nodes has been chosen so that the processor utilization is 60% for the baseline case
without monitoring.

4 DMS PERFORMANCE EVALUATION
We now evaluate the performance impact of DMS when monitoring the three workload types.
We create baseline models for the three workloads that have no overhead due to DMS. A second
set of models reflects the use of DMS to monitor application QoS. The third set estimates DMS
performance to capture data needed to build and validate predictive distributed application
performance models.

In the models the number of member functions is essentially the number of different services
a server provides. It also controls the amount of monitoring data that is captured. The number is
set as either 1,25 or 50. The second and third levels seem sufficiently large to characterize real
applications and were chosen to stress DMS.

The utilization law U =X D is used to compute DMS processor and network utilization. The
processor utilization is the sum of the utilizations due to collector, observer, and sensor
overheads. Models for the demands of these three components were discussed in section 2.2.
The throughputs of the collector and observer instrumentation are based on their reporting
frequency. The throughputs of the sensor instrumentation are determined by the number of
clients N, their number of visits V to the server per think period, and their think times Z, related
by the formula X =NVIZ. The values for the workload's N, V, and Z are given in Table 3.

Our model is a closed model so the actual throughput is X =N/(Z + R) where R is the
(unknown) response time of a customer, so the sensor throughput and overhead estimates are
high. However, as we shall show, the sensors contribute very little to the overall overhead of
DMS so this pessimistic approximation does not significantly affect the results.

Network utilization depends on the number of different sensors that report data, the amount
of data reported for each sensor, and the reporting frequencies of the observers. Network
utilization by the workload itself is not modeled.

We are also interested in understanding how DMS affects client response times. To study this
we use the method of layers (MOL) [11]. It is a mean value analysis technique that takes into
account software interactions in distributed application systems.
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4.1 CPU utilization
QoS monitoring impact on CPU utilization

We consider three scenarios for monitoring quality of service labeled QoSA' QoSB and QoSc
and summarized in Table 4. In the QoSA and QoSB cases capsule object member function
response times and throughputs are measured by DMS. Response times are recorded at the
percentile information level and throughputs at the basic information level. In the QoSA case all
of the sensor data is reported by the observers. In the QoSB and QoSc cases all of the data is
collected but threshold values are set such that only 10% of the data is reported by an observer.
Note that we consider 10% reporting a high (pessimistic) value.

Table 4: Model Factors for QoS Scenarios

Number of Additional Sensors Capsule Observer
sensors per member- above object Observer- reporting

QoS member member thresh- member Collector [PC period
scenario function sensors old (%) functions method (sec)

QoSA 2 0 100% 1,25,50 RPC, Shared Memory 5
QoSB 2 0 10% 1,25,50 RPC, Shared Memory 5
Qo8c 2 10 10% 1,25,50 RPC, Shared Memory 5

Table 5: Model Factors for Model Building Scenarios

Number of Additional Sensors Capsule Observer
Model sensors per member- above object Observer- reporting
building member member thresh- member Collector [PC period
scenario function sensors old (%) functions method (sec)

MdlBldo 5+208 0 100% 1,25,50 RPC, Shared Memory 30
MdlBldE 5+208 10 100% 1,25,50 RPC, Shared Memory 30
MdlBldF 5+208 10 100% 1,25,50 RPC, Shared Memory 150

The QoSc case considers a complex QoS management scenario. We assume that server
member functions require service from other service providers (for example a security server or
database system). In this case a member function's QoS depends on the QoS provided by its
nested service providers. In this scenario's model each member function maintains timer
sensors to record percentile level information for ten of its nested service providers. We label
these member-member sensors.

Table 4 gives a summary of the factor levels for our three scenarios. Figure 3 shows the
impact on CPU utilization for the three workload types. Results for the two alternatives for
observer-collector communication, RPC and shared memory, are given. From the figure we see
that DMS has its largest CPU impact on the light workload. Our name for the workload was
chosen to suggest that a small number of instructions are required for each client visit to the
server. However the Light client service demand of the server is small, so the relative sensor
overhead is highest. Note that the overhead for the medium and heavy workloads is less than
0.5%. Note that the use of shared memory for communication decreases processor utilization
between 0.1% and 0.6% depending on the case. Figure 4 illustrates the CPU utilization of the
various QoS monitoring configurations in Table 4 for the Light workload only.
Model building measurement impact on CPU utilization

Model building captures the resource demands needed to build predictive performance
models of distributed applications [4] [10]. We consider three scenarios for model building
labeled MdlBldo, MdlBldE and MdlBldF and summarized in Table 5. The MdlBldo and
MdlBldE cases have 30 second observer periods while the Mdlllldj, case has 150 second. The
MdIBldE and MdlBldF cases have additional instrumentation so that each member monitors its
interactions with 10 of its nested service providers using member-member sensors set at the
basic information level.
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Figure 5 graphs the impact of DMS on CPU utilization for the three workload types. Results
for the two alternatives for observer-collector communication, RPC and shared memory, are
given. DMS has its largest CPU impact on the light workload but the impact is less than 0.60%.
Note that the use of shared memory for communication decreases utilization less than 0.10%.
Figure 6 graphs the impact on utilization for the Light workload for the RPC case for the three
different model building configurations described in Table 5.

4.2 Network utilization
Figure 7 illustrates the network utilization per collector for the three QoS configuration cases

and the three Model Building cases. As expected QoS monitoring without effective threshold
values (100% of sensors reporting) has the highest network utilization while the more realistic
QoSBcase with 10% reporting is 10 times better -- only 0.05% utilization for 1000 sensors. For
the model building cases, the MdlBldE case of 30 second observer period and member-member
measurement has the highest network utilization as a function of number of sensors. The more
realistic MdlBldp case of 150 second observer period and member-member measurement has
the lowest network utilization of all the QoS and model building configurations -- only 0.12%
for 2500 sensors.
Figure 7 OMS network utilization per collector for three QoS and three Model Building scenarios

described in the text. The observer-collector IPC method is set to RPC and the network
utilization is based on a 10 Mbitlsec LAN. Only results from the Light workload are shown.
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4.3 Client response times
A Layered Queueing Model (LQM) is created to study the impact of DMS overhead on client
responsiveness for the light workload. The Method of Layers is used to estimate client response
times. The accuracy of this analytic technique with respect to simulation is favorably
demonstrated in [11].

There are several ways in which DMS contributes to response time delays. Greater
contention for the processor will have an impact as will software contention for the capsule
global data store. The method of layers takes both processor and software contention into
account when estimating the response times. The impact of network overhead on client
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However, in all cases there was a less than 1% increase in response times viewed by end users
at the client (note that Figure 8 graphs only the server response components). This response time
includes the 0.3 seconds of processing time on a client's own node.

4.4 Scalability
Monitoring performance in large, heterogeneous environments requires a scalable measurement
infrastructure. Several techniques were utilized in the design of the DMS to improve its
scalability. Figure 9 predicts the scalability of DMS for QoS monitoring cases for a range of
sensor reporting percentages of 1%, 10% and 100%, and for observer periods of 5 and 150
seconds. For good application performance we have constrained the amount of OMS network
utilization to 5% of a 10 MbitJsec LAN. We have assumed that the application network
requirements are met by this LAN technology and do not consider them further.

Scalability in this figure is the number of distinct nodes supporting a given number of
sensors. The left-most bar indicates that OMS can support 1.46 million nodes where each node
has 20 active sensors with a threshold level set such that no more than 1% of them report per
150 second observer period. The next bar indicates that 14.6 thousand nodes can be supported
where each node has 20 active sensors with a threshold level set such that no more than 1% of
them report per 5 second observer period. The trade-off for scalability is the number of nodes
supported versus the latency in receiving sensor data. As expected the number of nodes that can
be supported is inversely proportional to the number of sensors reporting data.
Figure 9 OMS node scalability for 18 OoS monitoring cases. The observer reporting period is set to 5 or

150 seconds, the observer-collector IPC method is set to RPC, and the threshold percent is set
such that 1%, 10%, or 100% of all sensors report per observer period. The results are plotted
for 1, 25, and 50 object member functions which results in 20, 500 and 1000 active sensors per
node. The number of nodes is constrained by a 5% network utilization for a 10 Mbitlsec LAN.
The scale is logarithmic.
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5 SUMMARY AND CONCLUSIONS
In this paper we present a predictive model for the overhead for the distributed application
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