
.,~ HEWLETT
~!II PACKARD

Fast Volume RendertngUsing an Efficient,
Scalable Parallel Formulation of the
Shear-Warp Algorithm

Minesh B. Amin, Ananth Grama,
Vineet Singh
Computer Systems Laboratory
HPL-95-132
November, 1995

volume rendering,
raytracing,
algorithms,
shear-warp
algorithm,
performance
modeling and
analysis, scalability,
adaptive
load-balancing

. This paper presents a fast and scalable parallel
algorithm for volume rendering and its implementation
em distributed-memory parallel computers. This
parallel algorithm is based on the shear-warp algorithm
of Lacroute and Levoy. Coupled with optimizations that
exploit coherence in the volume and image space, the
elhear-warp algorithm is currently acknowledged to be
the fastest sequential volume rendering algorithm. We
have designed a memory efficient parallel formulation
of this algorithm that (1) drastically reduces
CIOmmunication requirements by using a novel data
partitioning scheme and (2) improves multi-frame
Rerformance with an adaptive load-balancing technique.
All the optimizations of the Lacroute-Levoy algorithm
are preserved in the parallel formulation. The paper
also provides an analytical model of performance for the
parallel formulation that shows that it is possible to
snstain excellent performance across a wide range of
practical problem sizes and number of processors. Our
implementation, running on a 128 processor TMC CM-5

.stributed-memory parallel computer, renders a 2563

xel medical data set at 12 frames/sec.

To be published in and presented at t e 1995 Parallel Rendering Symposium, Atlanta, Georgia,
October 30-31, 1995.
© Copyright Hewlett-Packard Company 1995

Internal Accession Date Only

Fast Volume Rendering Using an Efficient, Scalable Parallel
Formulation of the Shear-Warp Algorithm*

Minesh B. Amin Ananth Grama

August 11, 1995

Vineet Singh

Abstract

This paper presents a fast and sc~able parallel algorithm for volume rendering and its implemen
tation on distributed-memory parallel computers. This parallel algorithm is based on the shear-warp
algorithm of Lacroute and Levoy. Coupled with optimizations that exploit coherence in the volume and
image space, the shear-warp algorithm is currently acknowledged to be the fastest sequential volume
rendering algorithm. We have designed a memory efficient parallel formulation of this algorithm that
(1) drastically reduces communication requirements by using a novel data partitioning scheme and (2)
improves multi-frame performance with an adaptive load-balancing technique. All the optimizations
of the Lacroute-Levoy algorithm are preserved in the parallel formulation. The paper also provides an
analytical model of performance for the parallel formulation that shows that it is possible to sustain

excellent performance across a wide range of practical problem sizes and number of processors. Our
implementation, running on a 128 processor TMC CM-5 distributed-memory parallel computer, renders
a 2563 voxel medical data set at 12 frames/sec.

Keywords: volume rendering, raytracing, algorithms, shear-warp algorithm, performance modeling
and analysis, scalability, adaptive load-balancing

1 Introduction

Volume rendering is an important tool for visualizing three dimensional volume data. This data is gathered

from such varied sources as medical imaging and modeling physical phenomena using finite element and

finite difference methods. The rendering problem involves the projection of this volume data on to a two

dimensional image plane that can be viewed on a screen.

Most of these applications require t~ generation of a sequence of images for different orientations of

the volume. This places a requirement pn the rendering algorithm that images should be generated in a

reasonable amount of time. Ideally, it i+ desirable that images be generated in real-time. This enables a

continuous visualization of the volume's its orientation is changed. A number of approaches have been

adopted towards achieving this goal. Th se include advances in algorithms, using dedicated hardware, and

general purpose parallel processors.

A number of algorithms have been roposed for volume rendering. They can be broadly classified

as ray tracing [5], splatting [4], cell-proj ction [8], or shear-warp algorithms [3]. Raytracing algorithms,

"To appear in proceedings of the 1995 Paral 1 Rendering Symposium. Authors' affiliation: HP Labs, Palo Alto. Internet
addresses: amin@cs.umn.edu, ananth@cs.umn.e u, and vsingh@hp1.hp.comrespectively.

1

specifically those based on object space Lethods, trace rays through each point in the image plane as they

pass through volume elements. The contribution of each volume element to an image pixel is computed by

trilinearly interpolating neighboring voxels. This contribution is composited with accrued opacity and color

of the intermediate image. Since interpo'ation weights change for each ray and each slice, these have to be

computed repeatedly. In contrast, splatting is an object space technique in which object contributions are

projected onto the intermediate image plaine and composited there. The shear-warp algorithm can be viewed

as an image space technique capable of lutilizing both image and object space coherence. This approach

has shown particular promise. Lacroute ~d Levoy [3] combine this technique with optimizations such as

early termination and run-length encoding to obtain single processor performance that exceeds that of most

parallel formulations of volume rendering thus far. Improvements in rendering speed come at the expense

of a second resampling step. Its implications on image quality are discussed by Lacroute and Levoy [3].

The fastest sequential time for rendering a typical volume of size 256 x 256 x 256 using the shear-warp

algorithm is approximately one second on a R4000 Indigo. The desired goal of achieving real time rendering

requires a further thirty-fold speedup over this time. Commodity microprocessor speeds are not expected

to go up by that factor in the near future.: Until that happens, parallel computing provides a viable and cost

effective means of achieving this. Finally, as uniprocessor speeds increase, the need for larger datasets may

increase also, and we may still require parallel processing.

This paper explores the application or parallel processing to volume visualization with the objective of

achieving real time performance. Volume rendering presents conflicting scenarios for exploiting parallelism.

Faster sequential algorithms incorporate ~ higher degree of coherence in the object and image space. This

limits the extent of available concurrency. Conversely, approaches offering higher degrees of concurrency

tend to be significantly slower. In this paper, we present a parallel formulation of the shear-warp algorithm.

The critical aspects of this parallel formulation are the partitioning techniques for the object and image

spaces. We demonstrate near real-timei performance for our formulations. We also present analytical

performance models for our formulation to indicate the performance trends as problem sizes and number of

processors vary.

In Section 2, we discuss the sequential shear-warp algorithm in greater detail. In Section 3, we present

possible partitioning techniques and comment on their relative performance. Section 4 describes the various

steps ofthe parallel algorithm in more detail and includes an analytical model. Section 5 gives experimental

results on a 128 processor CM-5. Sectibn 6 summarizes the findings and describes some directions for
future research.

2 Shear-Warp Algorithm for Volume Rendering

Volume rendering techniques project a set of 3-D volume slices on to a two dimensional viewing plane.

Before describing the shear-warp algorithm, let us consider raytracing algorithms based on object space

methods [5]. For each pixel in the viewing plane, a ray is driven through the volume slices and their color

and opacity accrued in a front to back order, Since the volume slice samplings may not coincide with

the point at which rays are driven, they are resampled using trilinear interpolation of neighboring volume

elements. The resampling weights for each of these interpolations are different. Consider an n X n pixel

viewing plane and an n x n X n voxel ~ataset. The raytracing algorithm will drive e(n2) rays through

the volume. Each of these rays is drive4 through n slices. This requires a total of n3 interpolations and

k x n3 resampling weight computations] Here, k is the number of weights that need to be computed for

2

each iteration and is either four or eightjdependlng on the number of interpolation planes.

count can be reduced by using various o~timizationsdiscussed later.
This operation

viewing rays

.~-""",,-- volume
->.,..------''ci-- slices

shear
---------------------~·1--+---:

·: project

·

?
Figure I: She,-warp algorithm for volume rendering.

'I

Raytracing algorithms spend a Signifi~ant amount of time computing resampling weights. If the incident
rays are perpendicular to the volume sli e, the resampling weights are identical across the slice. This is

the basic premise of shear-warp algorit rms. When viewed at an orientation other than perpendicular to

the volume slices, the volume slices can be sheared in such a way that the rays can be assumed to be

perpendicular to the slices. This is illustrated in Figure 1. Each slice can now be translated and resampled

using weights that are invariant across t~e slice. The slices can be composited in a front to back order to

yield an intermediate image. This intermediate image must now be warped to yield the final image. This

requires a second resampling phase. F<f each pixel in the final image, the four nearest neighbors in the

intermediate image are located. The color value of the pixel in the final image is determined by interpolating

from the color values of these neighbors. For generating an n X n pixel image from an n X n X n voxel

dataset, this technique would require E>(~3) interpolations and E>(n) weight computations. We can see that

the operation count for the shear-warp algorithm is less than that of the raytracing algorithm. However,

the algorithm uses an additional resampling step in the warp phase instead of the single resampling step in
raytracing algorithms. Fortunately, it haslbeen shown that this does not lead to a significant deterioration in

the quality of rendering [3]. Our parallel algorithm maintains the image quality of this sequential algorithm.

Voxel Scanline

Intermediate
image scanline

II
III

Transparent voxels

Saturated pixels

Computation
during compositing~---=...I: :+1 r :+ :

Next pixel to be computed

II Nocomputationneeded

Figure 2: Compositing volume slices: kip transparent voxels and saturated intermediate image pixels.

The operation count can be further r duced by using a variety of optimizations. These optimizations

are based on two key observations: one the accrued opacity of the intermediate image crosses a certain

threshold, subsequent volume slices have negligible impact on the final image; and, transparent voxels have
no impact on the intermediate image. Th first observation forms the basis for early termination of rays. It
is implemented by having a forward poin er associated with each intermediate image pixel that points to the

next un-saturated pixel. Composition of olume slices follows this chain of pointers and saturated pixels are

3

120

Time (msecs)

70

1100

900

Warp ,

Total !

I

,

AlgOrithm Component

Shade kable
I

Composite
I

Table 1: Breakdown of sequential time on SGI Indigo R4000 workstation

skipped. The second optimization is implemented using a run-length encoded representation of the volume.

Using this, runs of transparent voxels are skipped. In this way, the algorithm follows two pointer chains

computing interpolations only for non-transparent voxels and un-saturated intermediate image pixels. This

is illustrated in Figure 2. For the implementation in [3], three run-length encodings are precomputed, one

for each possible principal viewing direction, The encoding used for a particular frame is the one with

slices most perpendicular to the viewingirays. For the medical datasets used in [3], total memory required

for the volume representation is lower than an uncompressed 3D array representation despite the need for

three run-length encodings. Our parallel algorithm uses the same run-length encoded data-structure used in

this sequential algorithm. Furthermore, our parallel formulation is memory efficient; i.e. the sum total of

memory used across all the processors is approximately the same as that used by the sequential formulation.

The shear-warp algorithm can be viewed as consisting of three main functional units: lookup table

computation (shading information), compositing (projecting volume slices onto intermediate image), and

warping intermediate image. Although the bulk of the time may be spent on the compositing step, the other

steps are not negligible. Table 1 shows ~he breakdown of the time taken for the sequential algorithm on

a single SGI Indigo R4000 workstation for a 256x256x167 voxel "brain" data set (from a MRI scan of a

human brain) and image size 256x256 pixels [3]. This implies that each one of these functional units must

be effectively parallelized.

Although Lacroute and Levoy [3] discuss versions of their algorithm to deal with perspective projections

and run-time change in the opacity transfer function, we do not discuss them in our paper. Our paper deals

exclusively with parallel projections of classified volumes for which run-length encodings have been pre
computed.

3 Parallel Algorithms for Volume Rendering

The shear-warp algorithm augmented with early termination and run-length encoding yields excellent per

frame rendering times. This algorithm forms the basis of our parallel formulations. Parallelizing this

algorithm presents considerable challenges. The critical issues in any parallel algorithm are concurrency,

minimizing communication overhead and balancing load among processors. The fast rendering times of the

shear-warp algorithm are derived by exploiting coherence in image and object space. In the parallel context,

these optimizations limit the amount of doncurrency, Since runs of image and object data span scanlines,

an efficient parallel formulation shouldl'oid cutting across scanlines. Therefore, a single scanline (of the

intermediate image) can be viewed as a it of work.

Parallel formulations must assign s. anlines of the intermediate image and volume slices with the

4

i
combined objective of minimizing communication and balancing load. If it is indeed possible to replicate
the entire volume at each processor, the communication problem can be solved relatively easily. However,

such an assumption is unreasonable since it increases the overall memory requirement significantly. Each

scanline has a widely differing amount! of computation associated with it. Therefore, naively assigning

equal scanlines to each processor can lead to significant load imbalances. Furthermore, it is impossible to

evaluate accurately the amount of comp~tationfor each scanline. Efficient load balancing techniques must

therefore be designed for assigning scan ines to processors.

The two critical aspects of paralleli .ng the algorithm are partitioning the volume data and partitioning

the computation. Fixing either of these automatically induces a partitioning of the other. Let us explore

possible partitioning techniques and the r performance. We first discuss different types of data partitioning

and then an adaptive load balancing me hanism for the chosen data partitioning type.

3.1 Types of Data Partitioning

3.1.1 VolumeSpace Partitioning

Volume Slices
Non-overlapping

Intermediate
Images

~

Overlapping
Intermediate

Images

Sheared Volume Slices

..............r-- - Shear
........... r---r-- t-

~- -............ b,., ~.........r-- r--

-- r--
... ::::::;:

~13 -r--
l.. -r-- --.J

14 --r--
....................................~

12

II

Image to be
warped

I I I
I I I

I I I
I I I

I I I
I I I

I I I
I I I

II

12

14

13

Image to be
warped

(a) Striped partitioning, no shear (b) Striped partitioning, with shear

II
112

12

.... ············:i3·..· .
134

14

(c) Two-dimensional volume partitioning with shear

Figure 3: Volume space partitioning for four processors.

In volume space partitioning, the volume data is partitioned among various processors. The simplest instance
of volume space partitioning is sliced partitioning. This is illustrated in Figure 3 for four processors. The

volume data is sliced into p parts where pis the number of processors. Each processor drives rays through

5

the volume segment assigned to it. Th~ resulting intermediate images 11, 12, 13, and 14 are composited

to yield the final intermediate image that can be warped. This algorithm works well when there is no

shear in the volume. This is illustrated itt Figure 3(a). The intermediate volumes are non-overlapping and

no compositing is necessary. However, ia shear in the volume results in significant overheads. The most

obvious overhead results from communidation of overlapping areas of the intermediate image (Figure 3(b».

Here, the intermediate images have to b¢ composited in a front to back order, i.e. 11 over 12 over 13 over

14. Consider a case in which each processor gets two scan lines and the shear is 45 degrees. If there are

a total of n volume slices, the shear translates to n scanlines. In this case, after computing two scanlines,

each processor will have to communicate intermediate image data corresponding to n scanlines. This is a

significant overhead. A second source of overhead is wasted computation. A part of intermediate image

12 is obscured by image 11. It is likely that many of the rays would get saturated in intermediate image

11. This results in wasted computation in overlapped areas. This is a major overhead when the number of

processors becomes large.

An alternate partitioning technique (or volume space partitioning is illustrated in Figure 3(c). Here,

in addition to striping each slice, the slices themselves are partitioned among processors. In the example,

the top n/2 scanlines of the first n/2 slices are assigned to the first processor, and of the last n/2 slices

to the second processor, and so on. The processors generate intermediate images 11, 12, 13, and 14 that

are composited in a front to back order. This partitioning technique allows us to use a larger number of

processors. However, the overhead due to wasted computation is more severe for this partitioning scheme.

3.1.2 Image Space Partitioning

One simple technique for partitioning the computation (and required volume data) is by slicing the final

image along its scanlines and assigning them to different processors. A horizontal slicing plane through the

final (warped) image is however not a horizontal slicing plane through the volume data and intermediate

image if the volume is sheared. This implies that the partitions cut across scanlines. Cutting across scanlines

reduces coherence in the image and volume space. As the number of processors increases, scanlines might

be cut into a large number of segments arid eventually, all benefit of spatial coherence in volume and image

may be lost. As pointed out in [3], coherence in volume and image space is responsible for reducing

the computational complexity of this problem from O(n3) to O(n2) and exploiting this coherence leads to

significant performance gains in practice.

3.1.3 Sheared Volume Space Partittoning

A principal drawback of volume space partitioning is the excess computation resulting from an inability to

incorporate early termination effectively. One way of remedying this is using partitioning planes parallel

to the rays. Combining this with our earlier restriction that any partitioning plane must be parallel to the

scanlines yields sheared volume space partitioning illustrated in Figure 4.

In this partitioning technique, the vohime is first sheared and then partitioned by slicing orthogonal to
volume slices. Each processor can nowldrive rays through its assigned volume segment. The resulting

intermediate images at different processo s are disjoint and can be independently warped. Since the partial

intermediate images are disjoint, the corr sponding partial warped images are also disjoint. In this way, no

compositing is required across processor oundaries. The resulting final image segments are then assembled

at a single processor where they can be d splayed.

6

The principal overhead of this algorithm results from communication of volume data when the volume

is sheared. This communication is illustrated in Figures 4(b,c). When the volume shear is changed from a to

b, the shaded scanlines must be communicated. The volume of communication is a function of the relative

shear between two orientations. Since the objective of real time rendering is to generate a smooth motion

of the object, the relative shear between successive orientation is not expected to be significant. Therefore,

the communication overhead incurred by this partitioning technique is not expected to be significant.

Volume Slices
Non-overlapping

Intermediate
Images

Image to be
warped

It

12

I3

14

I I I
I I I

I I I
I I I

I I I

I I I

I I I
I I I

It [:::::::::::E'?i~
12 1·· .. ·· .. ·· .. ··1 "'F

I3 L:::::::.J.S ~
14 l·.·.·.::·.·.·.:·.·.·.·.:·.·.·.:·.·.·.·.:·.·.·..~.;S.;J:

Non-overlapping
Intermediate

Images
Sheared Volume Slices

(a) sheared volume space partitioning, no shear (b) sheared volume space partitioning, shear: a

........................~

It b

......... - ~ --r- lIIIIlIIiIilIII.:oo-------:D~a~tacommunicated from previous processor

12

...........••............••..L..- --',[

············.. ·.. ········ ..·C-IIIIIiIIIIIIlII~.
I3

..."-.------'

·•••••••"••I••••••••••••·••••••••••••·· •••................
Non-overlapping

Intermediate
Images

Sheared Volume Slices

(c) relative shear of boa and resulting communication

Figure 4: Sheared volume space partitioning for four processors.

Note that for neighboring processors that share a boundary in the sheared volume space partitioning,

one scanline per slice is replicated on b~h sides of the boundary. No additional compositing computation

is required with this scheme. The entire volume is traversed only once exactly like the original sequential

algorithm [3], except for the replicated scanlines. When processor boundaries change (due to relative shear

between subsequent frames or due to loed balancing) additional communication is required for replication

of volume scanlines on processor boundaries.

7

To further illustrate the reduction of ¢ommunication overhead in using sheared volume space partition

ing compared to volume space partitioning, we note that the algorithm described in [6, 1] uses volume

partitioning. They have a phase they call "image composition". This is identical to what we have to do for

compositing of the overlap areas of the image if we use volume space partitioning (as described in Section

3.1.1). For a 1283 voxel dataset and 25(;2 pixel image using 128 processors on a eM-5, this phase takes

128.7 msecs in [6, 1]. As we will see later, our entire algorithm (not just this particular communication

overhead) based on sheared volume sp*e partitioning takes less than this time for a larger volume and

identical image size using the same numberof processors of the same parallel computer.

3.2 Load Balancing

Run-length encoding of scanlines combined with early termination makes it possible to skip empty voxels

and saturated pixels. This implies that different scanlines may have widely differing amounts of computation

associated with them. Therefore, naively partitioning the scanlines by assigning an equal number to each

processor results in significant load imbalances. Furthermore, it is impossible to accurately determine the

computational load of a scanline a-priori. Therefore, load balancing techniques must use heuristics to

determine load and balance load accordingly.

We augment our parallel formulation with an adaptive load balancing scheme. Since the volume does

not move significantly between two su¢cessive frames, it is possible to use load information from one

iteration as an estimate of the load at the processor during the next iteration. The time to process a scanline

is used as an indication of the load. Each processor keeps track of the time taken to compute the scanlines

assigned to it. This time is made available to all the processors through a single all-to-all broadcast. We also

assume that neighboring scanlines have similar loads associated with them. Therefore the load is assumed

to be uniformly distributed among the scan lines assigned to a processor. Based on this assumption, each

processor can determine the load at each scanline. Knowing the total load and load at each processor, a

processor can compute the new partitions independently. This is used in conjunction with the new value of

shear to determine the new destination of each scanline assigned to a processor in the current destination.

In this way, the communication due to shear and load balancing is integrated.

It is not necessary to balance load at each frame. This frequency is a function of the dataset. Although,

we adjust this frequency of load balance manually, it can be triggered when the load difference between the
highest and the least loaded processor as aratio of total load crosses a certain threshold. In certain instances,

we noticed that the best performance was obtained when load was balanced just once (at the start) in 89

frames.

The load balancing strategy described above can be viewed as belonging to a larger class of lookahead

load-balancing schemes. Instead of using just one frame to predict loads for the next frame, it is possible to

use more than one frame and extrapolate! to obtain load information for subsequent frames. Furthermore, it

is possible to store loads of scanlines separately rather than assuming them to be constant across partitions.

This increases the communication associated with the all-to-all broadcast of loads and may not result in a

significant improvement in performance.1
i

8

4 Analytical Model for Perf~rmanceEstimation

The objective of designing an algorithm whose performance scales to a large number of processors requires

that all steps of the algorithm are effectively parallelized. These include the construction of the shading-table,

volume data communication, compositing, and warp. In this section, we discuss each step and associated

time and space requirements.

4.1 Notation and Basic Assumptions

The following terminology will be used in this section:
I

• The volume dataset is assumed to beof size n x n X n voxels.

• The final rendered image is assumed to be of size n x n pixels.

• The parallel computer is assumed to have p processors connected using a direct network. The network
is assumed to have an O(p) bisection width. (Networks such as fat tree and hypercube fall in this
class. This assumption is made fonanalytical purposes only. The algorithm is suited for lower degree
networks such as meshes also.)

• The time taken to send a message of size b bytes from one processor to another on an uncongested

network is T; +Twb time units where T, is a start-up time constant and Tw is the inverse of the

network link bandwidth. Messages using the same network link, must be serialized. We explicitly

account for the serialized time in our analysis.

4.2 Analytical Model

In this section we analyze the runtime of various components of the algorithm:

Shade-Table Computation The shading table is a lookup table of approximately 8K (single precision

floating point) entries. These entries c~ be computed independently in parallel. Therefore, it is possible

to parallelize this phase by partitioning the table entries equally among the processors and computing them
independently. However, after computing the assigned entries, each processor requires the entire shading
table. This is accomplished using a single all-to-all broadcast operatiorr'. If each message is of length
b = 8~X4 = 3;K bytes, the time taken on a CM-5 hyper-tree network is T; logp +Twbp.

From this expression, it is clear that both computation and the communication overhead increase linearly
with the size of the table for a fixed number of processors. However, the time taken to compute a single entry
of the table is significantly higher than the time to communicate it. Therefore, as the table size increases

or the number of processors decreases, the time spent in computation increases as a fraction of total time

resulting in higher speedups.

3All-to-all broadcast requires that each processor starts with some data. At the end of the all-to-all broadcast, each processor

contains all the data from all the processors. This can be done in a tree of communication messages with message sizes doubling at
each level of the tree. See [2] for more details.

9

Communication for Sheared Volume ~artitiOning As the orientation of the volume changes, the shear
may change. This requires communication of scanlines between processors (Figure 4(c». Typically the
relative shear, () radians, (= b - a in Figure 4(c» between successive frames is small. For an absolute shear

of f3 radians, slice i is displaced downwards by i tan f3 ~ if3. Therefore, a relative shear of f) = b - a results

in a downward displacement of i(tanb -+- tana) ~ i(b - a) ~ if) for the ith slice. The total downward

displacement for all the slices is a summation of this expression from i = 1 to n or n(nz+
1
) f) scanlines. These

scanlines are shifted to neighboring proc~ssors. The last scanline gets displaced the most (by nO). We make

a simplifying assumption that each processor is assigned equal scanlines. We will discuss the implications of

relaxing this assumption when we discuss load balancing techniques. If each processor gets n/ P scanlines,

the maximum downward displacement c~rresponds to communication between processor Pi and processor

Pi+w, where w = ::tp = pf). Since f) is small, w = pf) is a small constant close to 1. Finally, each scan line
has from O(1) to O(n) non-transparent voxels each of which is represented by 4 bytes. Therefore, the total

time taken is

Compositing Slices to form Intermediate Images As pointed out in Section 3 the compositing phase

in sheared volume space partitioning cap proceed independently at various processors. We assume that

each processor has equal computational load. Although there are a total of O(n 3) voxels in the dataset, a

significant fraction of them are transparent. Furthermore, a large number of them are never visited due to

early termination of rays. Lacroute and Ilevoy [3] estimate that the computational complexity of this phase

of the algorithm is O(n Z) . Assuming ideal load balance, the parallel runtime ofthis phase is given by O(~2).

Warping In the warp phase, for each pixel in the final image, the four nearest intermediate image pixels

are located and interpolated. Since there are nZ such pixels and each pixel requires a constant amount

of computation, the computational complexity of this phase is 8(nZ) . We assume that the final image is

equally partitioned among the processors. It is not possible to ensure this while balancing load during the

compositing phase. However, the computational phase is much more expensive than the warp phase and we

have observed that balancing load in the!compositing phase does not lead to significant imbalances in the

warp phase. Since this phase is perfectly parallelizable and requires no communication, the parallel warp
time with good load balancing is O(~2).

Image Assembly After the warp phas , each processor has a segment of the final image. This must be

assembled at one processor for display. ote that more than one processor may contribute to a particular

pixel's value in the final image if the our nearest intermediate image pixels are spread among those

processors. Since addition is associative the final image pixel's value remains the same as in the original

sequential algorithm without requiring y additional computation or communication for pixels on the

boundary between neighboring processo . For the sake of analysis, we assume that each processor has an

10

equal number of final image pixels, n2 / p. Image assembly requires that O(~2) pixel data (one byte per pixel

for gray scale) at each processor be assembled at a single processor. This is done by sending a message

with O(~2) bytes from each processor to the final destination processor. Communication time taken is

O(p x (Ts + Tw ~2)). In typical renderings, a significant part of the image corresponds to empty space (i.e.
background color). The amount of data communicated can be reduced by eliminating these pixels. In our

implementation, these pixels are not sent in the messages to the final destination processor.

5 Experimental Results

In this section, we report on the implementation of a massively parallel volume renderer. The parallel

formulation is based on the sheared volume space partitioning. The message passing implementation, using

the CMMD message-passing library, was run on up to 128 processing elements of a Thinking Machines
CM-5 parallel computer. The code itself is portable to such other platforms as workstation clusters, nCUBE
2 and the Cray T3D among others. Each processing element of the CM-5 multicomputer is a Viking Spare
microprocessor running at 40 MHz. We determined that for this application, each of these processing
elements is approximately three times slower than an Indigo R4000 workstation (by comparing the runtimes

on the two machines for the dataset used in Table 1). The processing elements are connected using a Fat Tree

interconnection network. The interconnection network is capable of yielding per-processor bandwidths in

the range of 10 - 20 Megabytes per second.

We tested our parallel formulation on a number of datasets. We report on the rendering time of two

datasets here: the "brain" dataset of dimensions 256 x 256 x 167 and the smaller 1:2 subsampled version

of this brain dataset of dimensions 128 x 128 x 84. The "brain" dataset is the same as the one used in [3].
In each case, the final image size was 256 x 256. Since the communication overhead changes as the dataset
is rotated, the per-frame times are computed as an average of 89 frames displaced from each other by a

rotation of one degree. Figure 5 shows an example of parallel rendering for the larger brain dataset.

Figure 5: Parallel rendering of the large brain dataset of 256x256x167 voxels

11

P Volume

No ~oad Balance Load Balance
LA} GE SMALL LARGE SMALL

1 31~3 976 3193 976

2 16~7 548 1625 551

4 8(2 309 910 310

8 6 0 197 593 196

16 3~ 5 127 327 121

32 2 6 86 204 81

64 1~ 2 74 118 70

128 1(3 85

msecs) per f ame on CM-5 parallel processor. ThTable 2: Rendering time (in e 256 x 256 x 167 dataset is

indicated by LARGE, and the 128 x128 Ix 84 dataset is indicated by SMALL.

The program consists of four main functional modules. The construction of the lookup table, load

balance and shear, compositing and warp, and assembly. The lookup table is a table of approximately 8K

entries which are computed independently, Each processor computes an equal number of entries. These are

then made available to everyone else through a single all-to-all broadcast operation [2]. Shearing the volume

results in communication between processors. This communication is integrated with the communication

resulting from load balance. Compositing and warp are completely local operations. Each processor is now

left with segments of the final image. nese are put together using an optimized assembly operation that

eliminates blank pixels on either extremity of the image. The load balanced version of the program starts

by assigning equal number of scanlines ~o all processors. For each successive iteration, load is balanced

using load estimates from the previous iteration.

We study the implementation of our parallel formulation with a view to establishing raw performance,

scalability and impact of load balancing (in descending order of importance). In particular, we do not

consider speedup results to be important by themselves. Table 2 presents runtimes (in msecs) of the parallel

formulations with and without load balance. Figure 6 presents the corresponding speedup curves for the

larger dataset. The smaller dataset is not run with 128 processors because there is insufficient parallelism
,

for this case. A number of observations ~e evident from these results:

• Per-frame times of 85 ms have beep demonstrated for the larger dataset. These were obtained without

using the vector units on the CM-5!nodes. This leads us to believe that with state of the art processors

(which are significantly faster than CM-5 nodes) and interconnects, real time rendering is within reach

for 2563 voxel datasets.

• The speedup increases consistent y up to 128 processors for the larger dataset. This implies that

provided there is available concu ency (scanlines), the parallel formulation scales up to at least 128

processors.

• Load balancing helps reduce the overall time of execution in some cases by up to 16%. The gains

from load balancing are a function of the dataset and the number of processors.

12

14012010080

NO LOAD BALANCE

604020

LOAD B-'iLANCED ------z-
..•......··················~·r······

............... IV

40

35

30
a,

25::::>
Cl
w 20w
o,

15en

10

5

0
0

Processor Count

Figure 6: Speedups obtained from the load balanced and load imbalanced versions of parallel rendering for

up to 128 processors on CM-5 for the latjger dataset

These results compare very favorab~y with existing results of other researchers. Lacroute and Levoy

achieved 10 frames/sec on an SGI Challenge 16 processor shared-memory computer for a comparable data

set by parallelizing the resampling and compositing steps (but apparently not the warp step which can take

10-20% of the time by their estimate). Since no details are available for this implementation, we are unable

to do a detailed comparison. However] we can make the following limited observations. The data set

used by them was a 256x256x225 voxel "head" generated from a CT scan. Each node of a Challenge

multiprocessor is significantly faster than an Indigo R4000 workstation (43% faster for our large dataset on

a Challenge and Indigo available to us). nis implies that each node of a CM-5 is 4.2 times slower than one

node of a Challenge multiprocessor (and 3 times slower than an Indigo R4000 workstation as mentioned

earlier). Our formulation achieves a performance of 12 frames per second on a 128 processor CM-5. The

implications of the result are however deeper than that. The scalability properties of the shared memory

implementation are not understood. In fact, performance on shared bus multicomputers is rarely known to

scale to a large number of processors.

There have been other attempts at parallelizing volume rendering. The best rendering times reported

in these papers range from a few hundred milliseconds [7] to a few seconds [1,6]. Our results are over
an order of magnitude better than most of these results and more than two orders of magnitude better than
some ofthem [1, 6].

6 Conclusions and Future Work

In this paper, we have presented a parallel formulation of the shear-warp rendering algorithm and demon

strated scalable performance up to 128 processors of a CM-5. Novel data partitioning and load-balancing

methods were instrumental in achievinglthe best performance reported so far on this problem.

In our continuing work, we are exploring the following improvements. First, we are developing alternate

formulations capable of larger degrees or parallelism. Second, we are reducing communication overhead in

the algorithm. In t.heparallel formUlatiOl· presented here, entire slices of the volume are sheared irrespective

of whether they are required or not. Thi s is because it is impossible to estimate a priori the depth at which

a ray terminates. One way of improvin the communication overhead of this formulation is to fetch voxel

13

data as and when they are required. The~first two improvements will reduce the communication overhead
due to sheared volume partitioning and ow us to use more than O(n) processors. Third, we are exploring

the use of a distributed frame buffer to duce communication overhead. One major source of overhead

in this formulation is the process of putt;"g the sub-images generated at various processors together into a

single image. This overhead can be eire vented using a distributed frame buffer.

Processor speeds have increased sign' cantly beyond the processors used in the CM-5. This is accompa

nied by an increase in communication speeds, All ofthis implies that the same formulation implemented on

a state-of-the-art machine is capable of yfelding real time rendering. We are currently exploring platforms

such as other MPPs, the Convex Exempl (based on the PA-RISC architecture), low-cost workstation clus

ters using high-speed interconnects (sue as ATM and Myrinet), and multiprocessors based on dedicated

digital signal processors. !

Acknowledgements

We are grateful to the following people: Philippe Lacroute and Marc Levoy for giving us access to their

original sequential code; Tom Malzbender for pointing us in the right direction; Fred Kitson and Chris

Hsiung for their encouragement and support.

References

[1] HANSEN, C. D., KROGH, M., AND WHITE, W. Massively Parallel Visualization: Parallel Rendering.

InProceedings ofthe Seventh SIAM !Conferenceon Parallel Processing for Scientific Computing (Feb.

1995), pp. 790-795.

[2] KUMAR, V, GRAMA, A., GUPTA, A., AND KARYPIS, G. Introduction to Parallel Computing: Design

and Analysis ofAlgorithms. Benjamin/Cummings, 1994.

[3] LACROUTE, P., AND LEVOY, M. Fast Volume Rendering Using a Shear-Warp Factorization of the

Viewing Transformation. In Proceedings ofthe SIGGRAPH 94 Conference (July 1994), pp. 451-457.

[4] LAUR, D., AND HANRAHAN, P. Hierarchical Splatting: A Progressive Refinement Algorithm for Volume

Rendering. Computer Graphics 25, 4 (July 1991),285-288.

[5] LEVOY, M. Display of Surfaces from Volume Data. IEEE Computer Graphics and Applications 8,3

(May 1988),29-37.

[6] MA, K.-L., PAINTER, J. S., HANSEN,C. D., AND KROGH, M. F. A Data Distributed, Parallel Algorithm

for Ray-Traced Volume Rendering. In Proceedings of the 1993 Parallel Rendering Symposium (Oct.

1993), ACM, pp. 15-22.

[7] NIEH, J., AND LEVOY, M. Volume Rendering on Scalable Shared-Memory MIMD Architectures. In

Proceedings of the Boston Workshop on Volume Visualization (October 1992).

[8] WILHELMS, J., AND GELDER, A. V. A Coherent Projection Approach for Direct Volume Rendering.
Computer Graphics 25,4 (July 1991),275-284.

14

