PACKARD
Spill-Free Parallel Scheduling of
Precedence Graphs
Balas Natarajan, Computer Systems Laboratory
Michael Schlansker, Compiler and Architecture Research
HPL-95-131
November, 1995
balas@hpl.hp.com
schlansk@hpl.hp.com
VLIW scheduling, This paper concerns the problem of spill-free scheduling
register allocation of acyclic precedence graphs on a processor with

()

HEWLETT

multiple functional units and a limited number of
registers. The problem of minimizing the schedule
length is well known to be computationally intractable.
We present a heuristic for the problem, a general divide-
and-conquer paradigm that converts any insensitive
scheduling algorithm—one that is insensitive to register
constraints—to one that respects register constraints.
We estimate the goodness of the heuristic by relating its
performance to that of the insensitive algorithm. We
also present experimental results obtained by applying
the heuristic to basic blocks from the SPEC benchmarks
programs, for several machine models.

Internal Accession Date Only

A condensed version of this report will be published in and presented at the 28th Annual IEEE/ACM International
Symposium on Microarchitecture, November 28 - December 1, 1995, Ann Arbor, Michigan.

© Copyright Hewlett-Packard Company 1995

1 Background

Compilers that produce code for processors with instruction level parallelism need to jointly mini-
mize the schedule length and the number of registers required. The development of quality heuris-
tics for this problem is a difficult one, [7], [15], and is the focus of ongoing research. To gain an
understanding of the tradeoffs involved between the schedule length and the number of registers,
it is useful to analyze simplified abstractions of the problem. In this paper we examine a class
of algorithms that aim to minimize schedule length in the face of a bounded number of available
registers, in the absence of spill. The class of algorithms is characterized by a divide-and-conquer
paradigm that converts any scheduling algorithm that is insensitive to register constraints, to one
that respects register constraints. We study the performance of our algorithm on basic blocks drawn
from the SPEC bechmarks, and a simple machine model of heterogeneous non-pipelined units with
various choices of functional units and registers.

1.1 The Data Dependency Graph

It is the task of a compiler to convert a program into a sequence of instructions suitable for a target
computer. Specifically, the compiler must decompose the program into instructions for the target
computer, storing values on registers and manipulating these values as dictated by the semantics
of the program. To do so, a typical compiler rewrites program fragments into an intermediate
representation as follows. Each line in the intermediate representation would correspond to a single
operation on the target machine. The operands in the intermediate representations would be virtual
registers and memory locations, there being no limit on the number of virtual registers available.
Assuming that each operation produces a single result from zero or more operands, the intermediate
representation can be presented as a graph, with one vertex per operation, and an edge from vertex
1 to vertex j if the result of operation ¢ is used in operation j. If the initial program code is a basic
block, [1], or is superblock/hyperblock, [12], then the graph would be a directed acyclic graph or
DAG.

In our discussion, we will ignore the process of constructing the intermediate representation
graph, and assume that the graph is given to us as input. In particular, we limit ourselves to the
following abstraction. We consider directed acyclic graphs (DAGs) where each vertex corresponds to
an instruction, and is labeled with the virtual register defined in that instruction if any, an operation
code, and a latency. The latency of a vertex is the time taken to complete the corresponding
operation.

We use G to denote a graph, with vertex set V and edge set E. The indegree of a vertex is
the number of edges entering a vertex. A DAG is said to be binary if its indegree is at most 2.
The outdegree of a vertex is the number of edges leaving a vertex. We limit our discussions to
binary DAGs, without limits on the outdegree. Superblocks and hyperblocks may carry vertices
with indegree greater than two, since side exits may have a number of values that are live-out.
These can be converted into binary graphs by adding dummy-zero latency vertices. A source in a
DAG is a vertex with no incoming edges, and a sink is a vertex with no outgoing edges. A tree
is a DAG with a single sink (the root of the tree) and the outdegree of any vertex in a tree is at
most 1. A binary tree is a tree with indegree at most 2. The depth of a vertex in a DAG is the
maximum sum of the latencies along any path from that vertex to a sink in the graph. Let v be a
vertex in a DAG G, and let U C V be such that for every u € U, there exists a path from u to v.
The subgraph G, rooted at v is the subgraph of G induced by U.

1.2 The Machine Model

Our discussion is based on a machine model that is made as simple as possible to facilitate analysis,
while retaining the inherent computational complexity of the problem. In particular, we study a
machine model with a specified set of functional units, and a specified number of registers. All
the registers are considered identical. With each functional unit comes a specification of the set
of operations that can be carried out on it. The functional units may be pipelined, with distinct
latencies. An operation on a functional unit can be a load from a memory location to a register, a
store from a register to a memory location, a unary operation from one register to a second register,
or a binary operation on two registers placing the result in a third register.

1.3 Problem Statement

Suppose that we are given a DAG and a machine model, and seek to translate the DAG into
a schedule of instructions for the machine. The schedule would have to obey the precedence
constraints specified by the edges in the DAG, as well as the latencies labeling the vertices of the
DAG. Formally, a schedule for a DAG is an assignment of a time ¢; and functional unit p; to each
vertex ¢ satisfying

(1) If : — j is an edge of the DAG, t; > t; + latency(s).

(2) Processor p; is capable of carrying out the operation corresponding to vertex .

(3) For any two vertices 7 and j such that p; = pj, t; + d(i) < t; or t; + d(j) < t;, where d(i) is
the delay of operation 7 on the functional unit, i.e., the minimum time required after the start of ¢
on the unit, to the start of a subsequent operation on the same unit.

For a given schedule, the lifetime of a virtual register v is the time interval [s, f] where s is
the time at which v is defined, and f is the time at which the last use of v terminates. We
could equally well stipulate that the lifetime ends when the last use of v begins execution, but
the difference between the two models is not central to the problem. A register allocation for a
schedule is a mapping of the virtual registers to the physical registers. A register allocation is valid
for a schedule if no two virtual registers with overlapping lifetimes are mapped to the same physical
register. With the above preliminaries established, we can state the following problems.

Register Constrained Scheduling Problem: For a given DAG on a non-pipelined machine model
of one functional unit and specified number of registers, construct any schedule with a valid register
allocation, if such exists.

Minimum Length Scheduling: For a given DAG on a given machine model, construct a minimum
length schedule.

Register Constrained Minimum Length Scheduling: For a given DAG on a given machine model,
construct a minimum length schedule with a valid register allocation.

1.4 Prior Work

All three problems listed above are computationally intractable, even for the restricted case where
all the functional units are identical and capable of all operations, and every operation has unit la-
tency. Specifically, the Register Constrained Scheduling problem is NP-hard, [18], [8]; the Minimum
Length Scheduling Problem is NP-hard, [8]; Register Constrained Minimum Length Scheduling is
at least as hard as the Register Constrained Scheduling problem.

On the other hand, a number of algorithms are known for restricted cases of the above problems.
In [19] an algorithm is given for scheduling a data dependency tree using a minimum number of
registers, thereby addressing the Register Constrained Scheduling problem for trees. For the case

of a DAG, Klein et al., [13], give an approximate algorithm for the Register Constrained Scheduling
problem that finds a schedule using at most r*log?(IV) registers, where NN is the number of vertices,
and r* is the minimum number of registers for which a schedule exists. Specifically, their algorithm
makes a minimum balanced directed cut of the DAG, i.e., splits the DAG G into two roughly equal
pieces G and Gy, so that the number of registers required to carry live values across the cut is
minimized, and so that there are edges from G; to G3, but no edges from G; to G;. All of G, is
then scheduled before G2 by recursively applying the same procedure.

For the Minimum Length Scheduling problem, a number of good heuristics are known under the
restrictions of unit latency and identical non-pipelined functional units. For example, the greedy
scheduling algorithm is known to be optimal within a factor of 2 —1/m, [9], where m is the number
of function units in the machine model. That is, the length of the schedule produced by the greedy
algorithm is no more than 2 — 1/m greater than the shortest schedule. The critical path schedule
given below, is known to be optimal for trees with unit latency, [11], and within a factor of 2—1/m
for general DAGs on m functional units, [9]. Finally, the Coffman-Graham scheduling algorithm is
within a factor of 2 — 2/m for unit latency DAGs on m > 1 functional units, [14], [5], and hence is
optimal for m = 2.

The Critical Path Schedule

While there remains an unscheduled vertex
On each idle functional unit, amongst vertices
whose predecessors have already been scheduled
schedule the one with the greatest depth first.

end

Given that the Minimum Length Scheduling problem is NP-hard, it is clear that the Register
Constrained Minumum Length problem is NP-hard as well. The problem remains NP-hard even
for trees, with heterogeneous processors as in [2], or homogeneous non-pipelined processors, [6].
However, for the very simple non-pipelined machine model of a single memory unit and a single
arithmetic unit,[3], a heuristic is known that performs very close to optimal for trees. The heuristic
is not extensible to multiple functional units, or to DAGS. There have been a number of hueristics
proposed for the general case of the problem, as reviewed in [10]. Broadly speaking these decouple
the problem into the subproblems of register allocation and minimum length scheduling. Prepass
algorithms carry out the scheduling prior to register allocation, to scheduling, and postpass al-
gorithms carry out the scheduling after register allocation. Goodman and Hsu, [10], suggest a
heuristic to integrate register allocation and scheduling, but offer no estimate of goodness. In brief,
their algorithm runs a scheduling strategy they call CSP, that attempts to minimize schedule length
without regard to the number of registers used. When the number of registers crosses a threshold,
the algorithm switches to a scheduling strategy they call CSR that attempts to minimize the num-
ber of registers used. When the number of registers in use falls sufficiently, the algorithm switches
back to CSP. Pinter, [17], presents another heuristic for the Register Constrained Minimum Length
Schedule problem. His strategy attempts to allocate registers in a manner that is guaranteed to
be valid for all possible schedules for the input DAG. If the number of registers available is in-
sufficient for such an allocation, scheduling-order constraints or spill is introduced in an ad hoc
fashion. Global register allocation is the problem of partitioning the physical registers amongst the
various blocks of a procedure so as to minimize the overall execution time of the procedure. This
is discussed in [4], [16], wherein local schedulers-which are the subject of our study—are assumed
to be given, and global allocators are built around them.

2 Theoretical Results

We denote a DAG G by its vertex set V' and edge set E. The directed edge from u to v is denoted
as the ordered pair (%,v) in E. If a DAG G has more than one sink, we combine these repeatedly
with zero-latency vertices of indegree two. The edges used will not be dataflow edges, and will not
participate in the definitions that follow. Henceforth, we assume that the DAG has only one sink,
and we refer to this sink as the root.

We now define two properties that we will use in developing our scheduling algorithm. The first
property is the thickness of a DAG G = (V, E), which is a measure of the deviation of the graph
from a tree. Let v € V, and let U be the set of vertices in the subgraph rooted at v. Let ¢ be the
number of vertices in U with edges terminating in V' — U, i.e., vertices v € U such (u,u) € FE and
% € V — U. The thickness of G is the maximum value of ¢ over all vertices v. It is easy to see that
every tree has unit thickness. For our purposes, only the data flow edges of the precedence graph
will be used in the definition of the thickness of the graph, and for the rest of the paper, we will
retain this restriction tacitly. The second property is the notion of the weight W (v) of a vertex v in
a DAG G. Asshown in Claim A.1 of the Appendix, the weight of a vertex is an upper bound on the
number of registers required to compute the vertex on a processor with infinitely many functional
units, in the shortest possible time. Let G, denote the subgraph rooted at v.

W (v) = #(sources s in G,) +
(edges in G,) — # (vertices in G,) +1 .

If G is a tree, the weight of a vertex is the number of leaves in the subtree rooted at that vertex.
We are now ready for our scheduling algorithm for DAG’s.

Algorithm
input: DAG G, register bound r,
number of processors m.
begin
sched (root of G);
end

sched(vertex a)
{
if all registers are in use then fail;
Schedule subgraph rooted at a using the
insensitive algorithm without register constraints.
if enough registers are available for this schedule then
output schedule;
delete scheduled vertices from G}
free all registers containing dead values.
else
By depth-first-search find vertex b
such that 1/4W(a) < W(b) < 1/2W (a);
sched (b);
sched (a);

end

}

The algorithm converts an insensitive scheduling algorithm, i.e., one that attempts to minimize
schedule length, but is insensitive to register constraints, to one that attempts to minimize schedule
length respecting register constraints. Initially, the algorithm attempts to schedule the entire DAG
without regard to register constraints, using the insensitive algorithm. If the number of available
registers is insufficient, the algorithm finds a vertex whose weight is roughly half that of the root
of the DAG—in Claim A.3 of the Appendix, we show that it is always feasible to find such a vertex.
The subgraph rooted at that vertex is scheduled recursively, and then the remaining portion of
the graph is scheduled. The weights of the vertices are updated dynamically as the algorithm
progresses.

We now analyze the performance of our algorithm. Let L, be the length of the schedule produced
by the algorithm, for r registers in the machine model. In this notation, L, is the length of the
schedule produced by the algorithm, for unboundedly many registers, and hence is the length of
the schedule produced by the insensitive algorithm.

Claim 1: Let G be a binary DAG of thickness ¢, R = W(root) the weight of the root of G, and
r the number of registers available. Then, the length of the schedule constructed by the algorithm
satisfies

L <2 Lo,

where j is the smallest integer such that (3/4)7R < r — jt. If no such j exists, the algorithm may
fail.

Proof: If the algorithm does not call sched recursively, then the length of the schedule achieved
is Loo. If the algorithm calls sched recursively, the length of the schedule is at most doubled for
each level of recursion. Let G be the graph at entry to a level and let G be the graph at the entry to
the next level when a recursive call is made to sched(a). Let W (a) and W (a) be the corresponding
weights of a. By the definition of W, W(a) = W(b) + W (a) + k, where k is the number of edges
from vertices in the subgraph of G rooted at b, to vertices in the subgraph of G rooted at a. Since
W(b) > 1/4W(a), it follows that W(a) < 3/4W(a). By Claim A.1 of the appendix, the number
of registers required to schedule the subgraph rooted at a is at most W(a). It follows that the
recursion will bottom out at a level at which W{(a) is at most the number of free registers. When
the recursion is j deep, at most jt registers can be in use at earlier levels in the recursion, since
at each level at most ¢ registers could be holding values all of whose uses are yet to occur. Hence,
at least r» — jt registers are free at that level. Thus, the depth of the recursion cannot exceed the
smallest integer satisfying (3/4)’R < r — jt. O

We now give a corollary to the above claim for the particular case of identical non-pipelined
units, and all operations being of equal latency. In this simple situation, we can relate Lo, to L},
the optimal schedule length without register constraints, thereby relating the achieved schedule
length L, to L%,. -

Corollary: If the insensitive algorithm is the critical path scheduler, and all functional units
are identical and non-pipelined, and all operations have equal latency, then

L, <oitipr

Proof: The critical path scheduler is known to be within a factor of 2 of the optimal, [9], for
identical, non-pipelined, equal latency units. Hence Lo, < 2L, and the corollary follows. O

2.1 Interpreting the Theorem

Suppose that the number of available registers r is large compared to the fewest number of registers
at which the DAG can be scheduled, and smaller than the number of registers sufficient to schedule
the DAG using the insensitive algorithm. In this range, as a first approximation, the bound
established in the theorem says that the achieved schedule length L, varies as (R/r)2%. Hence, on
the average a 10% increase/decrease in the number of available registers would increase/decrease
the schedule length by roughly 24%.

2.2 Run Time

Claim 2: If the insensitive algorithm costs T'(n + e) time on a graph of n vertices and e edges, our
algorithm costs O(T'(n + €)log(n + €)) time.

Proof: The entire DAG could be scheduled by the insensitive algorithm once for each level of
the recursion. Thus each level of the recursion costs T'(n 4 €). The number of levels of recursion is
at most O(log(R)), which is O(log(n + €)). Hence the claim. O

2.3 An Improved Algorithm

Our basic algorithm cuts the DAG in two in the recursive step, and calls sched on each of the
two pieces successively. While the simplicity of this approach aids in analysis and understanding,
functional units may be idle during the tail of the schedule of the first piece, units that could have
been used for the second piece thereby reducing the overall schedule length. We can modify the
algorithm to overcome this limitation, as given below.

Modified Algorithm
input: DAG G, register bound r,
number of processors m.
begin
sched (root of G);
end

msched(vertex a)
{
if all registers are in use then fail;
Schedule subgraph rooted at a using the
insensitive algorithm without register constraints.
if enough registers are available for this schedule then
output one cycle of this schedule;
delete the scheduled vertices from G;
free all registers containing dead values.
else
By depth-first-search find vertex b
such that 1/4W(a) < W(b) < 1/2W (a);
msched (b);
msched (a);
end

}

150.00

140.00

Schedule |44 4
Length

120.00

110,00 ; e N Model 1
. .
Moo
100.00
wo i\
80,00
Model it

70,00
60.00 -

Ll Model {11
50.00 i . b

20.60 40.00 60.00

Availuble registers

Figure 1: Length of the schedule constructed by the algorithm as a function of the number of available
registers for three different machine models, for a sample DAG of 137 vertices. For each model,
the upper plot corresponds to the basic algorithm and the lower plot to the modified algorithm. The
vertical tick marks on the plots mark the fewest registers sufficient for the critical path schedule.

In the modified algorithm, the split vertex b can be selected dynamically so that as scheduling pro-
gresses, the split will remain balanced with respect to the weights of the two parts. The rebalancing
is achieved by restricting sched(b) to schedule just one instruction at each call, after which sched(a)
will be called again. At this point, the weights are updated and a new split vertex b is selected.
This increases the computational complexity of the modified algorithm to O(T*(n + ¢)log(n + ¢€))
from the O(T(n + e)log(n + €)) of the basic algorithm.

3 Experimental Results

We now examine the performance of our basic and modified algorithms on some sample DAGS.
Since critical path scheduling is a popular and effective scheduling algorithmn in the absence of
register constraints, we used critical path scheduling as the insensitive algorithm embedded in both
our basic and modified scheduling algorithms. We applied both algorithms to DAGS generated by
the IMPACT compiler on SPEC benchmark programs, with the optimizer turned on. We studied
three machine models. Model I has 1 integer unit, 1 floating point unit and 1 memory unit for
load and store instructions. Model IT has 2 integer units, 1 floating point unit and 1 memory unit.
Model III has 2 integer units, 2 floating point unit and 2 memory units. In each model, an integer
operation takes 1 cycle, a floating point operation takes 4 cyles, loads take 2 cycles and stores 1
cycle. Since the behavior of our algorithms is essentially similar over the DAGS that we tested, we
report our results on sample DAGs. Figure 1 shows a plot of the schedule length achieved by both
the basic and modified algorithms as a function of the number of registers available, parametrized
by the machine model on a DAG of 137 vertices. For each model, the upper plot is obtained
from the basic algorithm and the lower plot from the modified algorithm. It is clear that the
modified algorithm performs consistently better than the basic algorithm. Referring to Figure 1,
the vertical tick marks on each of the the plots is the point at which the number of available registers

Registers in use

2200

= 22 insensitve algorithm
20.00

18.00
16.00
14.00
12.00

10.00

r=15 basic algorithm
8.00 : &

6.00

d

]

i

4.00 =15 modified |
algorithm -

2.00

0.00

0.00 50.00 100.00 150.00 200.00

Time

Figure 2: Number of registers in use as a function of time for a DAG of 189 vertices, machine
model III, and available registers of 15 and 22 respectively.

r is just sufficient for the schedule constructed by the insensitive algorithm, i.e., the critical-path
scheduler. At this value of r, neither algorithm recurses. If the number of registers is reduced by
one from this value, the length of the schedule produced by the basic algorithm is sharply increased.
This is because the basic algorithm breaks up the DAG into two pieces and schedules the pieces
successively, potentially idling functional units. On the other hand, the schedule produced by
the modified algorithm suffers a smooth degradation. Figure 2 is a plot of the register profile
generated by the scheduling algorithms, i.e., the number of registers in use as a function of time,
with respect to Model III, on a DAG of 189 vertices. There are three plots in the figure. The first
plot corresponds to the insensitive scheduler i.e., without register constraints, and uses 22 registers.
The second plot corresponds to the basic algorithm, constrained to use no more than 15 registers,
and the third corresponds to the modified algorithm with the same constraint. Notice that the
schedules constructed by both the basic and modified algorithms are longer than the unconstrained
schedule constructed by the insensitive algorithm. Also, the schedule constructed by the modified
algorithm is shorter than that of the basic algorithm. Both the constrained schedules have similar
register profiles comprising an initial region with a build-up of register use, followed by a region of
maximum register use, and then followed by a region of decaying register use.

4 Conclusion

We presented a heuristic for spill-free scheduling of acyclic predence graphs under register con-
straints. We also obtained estimates of the goodness of the heuristic. The incorporation of spill is
an important extension to the heuristic in order to make it practicable.

Acknowledgements

Thanks to R. Motwani, B. Rau and N. Young for the discussions, and to R. Johnson for generating
sample graphs with the IMPACT compiler.

References

[1] Aho, A., Sethi, R., and Ullman, J.D., Compilers Principles, Technigques and Tools, Addison
Wesley, Reading, MA, 1988.

[2] Bernstein, D., Rodeh, M., and Gertner, 1., “On the complexity of scheduling problems for
parallel/pipelined machines,” IEEE Trans. Comp., Vol. 38, No. 9, pp. 1308-1313, 1989.

[3] Bernstein, D., Jaffe, J. M., and Rodeh, M., “Scheduling arithmetic and load operations in
parallel with no spilling,” SIAM J. on Computing, Vol. 18, No. 6, pp. 1098-1127, 1989.

[4] Bradlee, D.G, Eggers, S.J., and Henry, R.R., “Integrating register allocation and instruction
scheduling for RISCs,” ACM Conf. on Arch. Support for Prog. Lang. and Op. Systems, April,
1991.

[5] Braschi, B., and Trystram, D., “A new insight into the Coffman-Graham algorithm,” SIAM
J. on Computing, Vol. 23, No. 3, pp. 662-669, 1994,

[6] Chekuri, C., Private Communication, 1995.
[7] Ellis, J. R., A compiler for VLIW architectures, MIT Press, Cambridge, MA, 1985.

[8] Garey, M.R., and Johnson, D.S., Computers and Intractability: A guide to the theory of NP-
completeness, Freeman, San Francisco, 1979.

[9] Graham, R., “Bounds on multiprocessor timing anomalies,” SIAM J. on Applied Math., Vol.
17, No. 2, pp. 416-429, 1969.

[10] Goodman, J.R., and Hsu, W-C, “Code scheduling and register allocation in large basic blocks,”
in Proc. Intl. Conf. on Supercomputing, pp. 442-452. 1988.

[11] Hu, T.C., “Paralell sequencing and assembly line problems,” Operations Research, Vol. 9, pp.
841-848, 1961.

[12] Hwu, W.M., Mahlke, S.A., Chen, W.Y., Chang, P.P., Warter, N.J., Bringamann, R.A., Out-
llette, R.G., Hank, R.E., Kiyohara, T., Haab, G.E, Holm, J.G., and Lavery, D.M., “The

superblock: An effective technique for VLIW and superscalar,” Journal of Supercomputing,
7:229-248 (1993).

[13] Klein, P., Agrawal A., Ravi, R., and Rao, S., “Approximation through multicommidity flow,”
in Proc. IEEE Symp. on Foundations of Comp. Sci., pp. 726-737, 1990.

[14] Lam, S., and Sethi, R., “Worst case analysis of two scheduling algorithms,” SIAM J. on
Computing, Vol. 6, No. 3, pp518-536, 1977.

[15] Lowney G., et al., “The Multiflow Trace Scheduling Compiler,” Journal of Supercomputing,
Vol. 7, pp. 51-142, 1993.

10

[16] Norris, C., and Pollock, L.L., “A schedule-sensitive global register allocator,” Proc. Supercom-
puting, pp. 804-813, 1993.

[17] Pinter, S., “Register allocation with instruction scheduling: a new approach,” in Proc. ACM
SIGPLAN Conf. on Prog. Language Design and Implementation, pp. 248-257, 1993.

[18] Sethi, R., “Complete register allocation problems,” SIAM J. on Computing, Vol. 4, No. 3, pp.
226-248, 1975.

[19] Sethi, R., and Ullman, J.D., ”The generation of optimal code for arithmetic expressions,” J.
ACM, Vol. 17, No. 4, pp. 715-728, 1970.

Appendix

Claim A.1: Let G be a DAG rooted at v. Every schedule of G can be achieved with W (v)
registers, independent of the number of functional units used.

Proof: By the definition of W (v), we can reserve a register for every source vertex. We can
also reserve a register for all but one outgoing edge of each vertex in G. At this point, executing
any operation can only reduce the number of registers required. O

Claim A.2: For any interior vertex w,

Ww)< Y W(u).

(u,w)eE

Proof: If there is only one vertex u such that (u,w) is an edge, then it follows from the
definition of W that W(w) = W (u) and the claim holds. Suppose that there are two vertices u and
v with edges to w. Then,

W(u) +W(v) =
#(sources only in G,) +
#(sources only in Gy) +
2# (sources in both G, and G,) +
#(edges only in Gy,) +
#(edges only in G,) +
27 (edges in both G, and G,) —
{## (vertices only in Gy) +
#(vertices only in G,) +
2# (vertices in both G, and G,) } + 2.

Now

#(sources in Gy) =
#(sources only in G,) +
#(sources only in G,) +
#(sources in both G, and G,) .

and

#(edges in Gy,) =
#(edges only in G,) +
#(edges only in G,) +
#(edges in both Gy and G,) + 2,

11

where the additional 2 is the contribution of the edges (u,w) and (v, w). And finally,

#(vertices in Gy,) =
#(vertices only in Gy) +
#(vertices only in G,) +
(vertices in both G, and G,) +1,

where the additional 1 is the contribution of w. It follows that

W(u) + W(v) - W(w) =
#(sources in both Gy and G,) +
#(edges in both G, and G,) —
#(vertices in both G, and G,) .

We now show that expression on the right hand side of the above equation is non-negative. To do
80, it suffices to consider the vertices that are both in G, and G,. If such a vertex is a source, then
it occurs in the first term as well, and its net contribution to the sum is zero. Else, such a vertex
has incoming edges and these edges must occur in the second term and the net contribution must
be non-negative. The claim follows. O

Claim A.3: If v is a vertex with W(v) > 2, there exists a vertex u in the subgraph rooted at
v such that

1/4W (v) < W(u) < 1/2W(v) .

Proof: Set w = v. Let u be such W(u) is a maximum among all vertices with an edge to v. If
W(u) > 1/2W (v), set w = u and repeat until W(u) < 1/2W (v). By Claim A.2,

Ww)< Y, W().

(z,w)EE

Since the DAG has indegree at most 2, if W(u) < 1/4W(v), then W(w) < 1/2W (v), which is not
possible. Hence the claim. O

12

