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Abstract

A framework for object segmentation in vector-valued images is presented in this

paper. The scheme proposed is based on geometric active contours moving towards

the objects to be detected in the color or vector-valued image. Objects boundaries

are then obtained as geodesics or minimal weighted distance curves in a Riemannian

space. The metric in this space is given by a de�nition of edges in vector-valued images.

The curve 
ow corresponding to the proposed active contours holds formal existence,

uniqueness, stability, and correctness results. Based on an e�cient numerical algorithm

for curve evolution, we present a number of examples of object detection in real color

and texture images. These examples show the algorithm capability to automatically

handle changes in the deforming curve topology. We conclude the paper presenting an

extension of the color active contours which leads to a possible image 
ow for vector-

valued image segmentation. The algorithm is based on moving each one of the image

level-sets according to the proposed color active contours. This extension also shows

the relation of the color geodesic active contours with a number of partial-di�erential-

equations based image processing algorithms as anisotropic di�usion and shock �lters.

Key words: Object segmentation, color images, textures, vector-valued images, vector

edges, active contours, variational problems, di�erential geometry, Riemannian geom-

etry, geodesics, topology free boundary detection, anisotropic di�usion.

1 Introduction

One of the basic problems in image analysis is object segmentation. Object detection and

image segmentation has been studied since the early days of computer vision and image pro-
cessing, and di�erent approaches have been proposed; see for example [39, 61, 62, 108] and

references therein. Object segmentation can be associated with the problem of boundary

detection and integration, when boundary is roughly de�ned as a curve or surface separat-
ing \homogeneous" regions. Of course, a mathematical (and many times also perceptual)

de�nition of homogeneity is the fundamental component of any segmentation algorithm.
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\Snakes," or active contours, were proposed by Kass et al. [41] to approach this problem,

and received a great deal of attention from the image analysis community since then. The

work was later extended to 3D surfaces. The classical snakes approach, revisited in the

following Section, is based on deforming an initial contour or surface towards the boundary

of the object to be detected. The deformation is obtained by minimizing a global energy

designed such that its (local) minima is obtained at the boundary of the object. These active

surfaces are examples of the general technique of matching deformable models to image data

by means of energy minimization [9, 97]. The energy is basically composed by a term which

controls the smoothness of the deforming curve and another one that attracts it to the

boundary. This model is not capable of changing its topology when direct implementations

are performed. The topology of the �nal curve will be in general that of the initial one,

unless special procedures are implemented for detecting possible splitting and merging points

[59, 94]. See for example [8, 58, 107] and references therein for comments on advantages and

disadvantages of energy approaches for deforming contours, as well as an extended literature
on recent related works.

Geometric models of deformable contours and surfaces were simultaneously proposed by

Caselles et al. [11] and by Malladi et al. [57, 58], and are also revisited in the following
section. These models are based on the theory of surface evolution and geometric 
ows,
which has gained a large amount of attention from the image analysis community in the past
years [2, 3, 29, 30, 31, 44, 45, 46, 48, 64, 72, 77, 81, 83, 84, 85, 86, 95, 101]. In these models,
the curve or surface is propagating (deforming) by an implicit velocity that also contains

two terms, one related to the regularity of the deforming shape and the other attracting it
to the boundary. The model is given by a geometric 
ow (PDE), based on mean curvature
motion, and not by an energy function. This model allows automatic changes in topology
when implemented using the level-sets numerical algorithm introduced by Osher and Sethian
[69, 88, 89]. Thereby, several objects can be detected simultaneously, without previous
knowledge of their exact number in the scene, and without special tracking procedures.

In [13], we showed the relation between these two approaches for two dimensional ob-
ject detection (two dimensional curve evolution), proposing what we called \geodesic active
contours." The work was extended to 3D based on the theory of minimal surfaces [71] in

[14] (see also [42, 91]). We �rst proved that for a particular case, the classical energy snakes
approach is equivalent to �nding a geodesic curve in a Riemannian space with a metric de-

rived from the grey-level image. This means that the boundary we are looking for is the
path of minimal distance, measured in the Riemannian metric, that connects given image

points. We then showed that assuming a level-set representation of the deforming contour,
we can �nd this geodesic curve via a geometric 
ow which is very similar to the one ob-

tained in the curve evolution approaches mentioned above. (The same 
ows were recently

independently obtained in [42, 91]. See also [22, 101].) This 
ow, however, includes a new

term that improves those models. (Although this term appears in similar forms in classical

snakes, it was missing in curve evolution models. This term is naturally incorporated by the
geodesic formulation.) The new term allows to track in an accurate way boundaries with

high variation in their gradient, a task that was impossible with previous curve evolution

models. We also showed that the solution of the 
ow exists in the viscosity framework,

and is unique and stable. Therefore, the active contours approach presented in [13] has the
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following main properties: 1- Connects energy and curve evolution approaches of active con-

tours. 2- Presents the snake problem as a geodesic computation one. 3- Improves existing

models as a result of the geodesic formulation. 4- Allows simultaneous detection of interior

and exterior boundaries in several objects without special contour tracking procedures. 5-

Holds formal existence, uniqueness, and stability results. 6- Stops automatically.

In this paper we �rst extend the results in [13] to object detection in vector-valued

images, presenting what we denote as \color snakes" (\color active contours"). 1 Vector-

valued images are not just obtained in image modalities were the data is recorded in a

vector fashion, as in color (RGB, luminance-chrominance), medical (MRI, X-ray, ultrasound)

and LANDSAT applications. The vector-valued data can be obtained also from scale and

orientation decompositions for texture analysis as in [6, 52, 107], or as a way to to improve

color metrics [100]. The framework proposed in this paper applies to all these cases.

In general, two di�erent approaches can be adopted to work on vector-valued images.

The �rst approach is to process each plane separetly, with the geodesic active contours in
[13] for example, and then to somehow integrate the results of this operation to obtain one
unique segmentation for the whole image. The second approach is to integrate the vector

information from the very beginning, and deform a unique curve based on this information,
directly obtaining a unique object segmentation. The �rst approach su�ers from three main
problems: 1- Boundaries (objects) may be de�ned by the combination of the di�erent planes
and not by a plane in particular, or they may be missing in some planes. Examples of this
are color images, where iso-luminance or iso-color areas show boundaries only in particular

planes. 2- While di�erent planes are in general highly correlated, as for example in color and
medical images, this correlation is not used in the segmentation process. This correlation
can help for example to avoid local minima due to noise. 3- The step of curve integration,
being critical, is not trivial. For example, it is not clear how to integrate when boundaries
appear only in a subset of the planes.

In this work, we adopt the second approach, that is, we integrate the original image infor-

mation to �nd a unique segmentation directly. The main idea is to de�ne a new Riemannian
(metric) space based on information obtained from all the components in the image. More
explicitly, edges are computed based on classical results on Riemannian geometry [50], fol-

lowing the developments in [24, 25, 82]. When the image components are correlated, as in
color images, this approach is less sensitive to noise than the combination of scalar gradients

obtained from each component [51]. These vector edges are used to de�ne a new metric
space on which the geodesic curve is to be computed. The object boundaries are then given

by a minimal \color weighted" path. The resulting approach holds the properties mentioned
above for the geodesic active contours developed in [13].

We then extend the color active contours to obtain an approach for combined color

anisotropic di�usion and shock �ltering of vector-valued images, leading to a possible image


ow for segmentation/simpli�cation. This is based on moving all the level-sets of the image

according to the color geodesic snakes. The resulting 
ow, denoted as color self-snakes,
is closely related to a number of previously reported image processing algorithms based on

PDE's, as anisotropic di�usion [3, 15, 74] and shock-�lters [70], as well as the Mumford-Shah

variational approach for image segmentation [62, 90]. (Relations between a number of those

1In this paper we use the word \color" to refer to general multi-valued images.
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PDE-based approaches were previously also reported in [2, 4, 106]. Here (and in [12]) we add

the (color) geodesic snakes to the connection.) These relations, as well as examples for color

images, are described in this paper. More examples and details on self-snakes for grey-level

(single-valued) data can be found in [12].

We should mention that a number of results on color or vector-valued segmentation

were reported previously in the literature; see for example [52, 73, 107]. Here we address

the geodesic active contours approach with vector-image metrics. Other algorithms can be

extended as well to work on vector-valued images following the framework described in this

paper.

This paper is organized as follows. In Section 2 we brie
y review both classical energy

based and curve evolution based deformable models. In Section 3 we describe the main

results on 2D geodesic active contours as presented in [13]. In Section 4 we deal with

the computation of edges in vector-valued images, following [82]. The vector-valued active

contours are then presented in Section 5. Here we present theoretical results regarding the
proposed model as well. Experimental results on the color snakes are given in Section 5.2.
The color self-snakes are described in Section 6. Discussion and concluding remarks are given

in Section 7.

2 Basic approaches on active contours

2.1 Energy based snakes

Let C(p) : [0; 1] ! IR2 be a parametrized planar curve, and I : [0; a]� [0; b] ! IR+ a given
image where we want to detect the objects boundaries. The classical snakes approach [41]
associates to the curve C an energy given by

E(C) = �
Z 1

0
jC0(� )j2d� + �

Z 1

0
jC 00(� )j2d� � �

Z 1

0
jrI(C(� ))jd�; (1)

where �, �, and � are real positive constants (� and � impose the elasticity and rigidity of the
curve). The �rst two terms basically control the smoothness of the contours to be detected
(internal energy), while the third term is responsible for attracting the contour towards the

object in the image (external energy). Solving the problem of snakes amounts to �nding,
for a given set of constants �, �, and �, the curve C that minimizes E. Note that when

considering more than one object in the image, and for example the initial prediction of C

surrounds all of them, it is not possible to detect all the objects in a straightforward form.
In other words, a direct implementation of the classical (energy) approach of snakes can not
deal with changes in topology, unless special topology handling procedures are added [59, 94].

The topology of the initial curve will be the same as the one of the (possible wrong) �nal

solution. The models in [11, 13, 42, 57, 58, 95, 101] automatically overcome this problem.
It is clear that the classical snakes method can be generalized to 3D data images, where

the boundaries of the objects are surfaces. This extension is known as the deformable surfaces
model, and was introduced by Terzopoulos et al. [97] for a 3D representation of objects and

extended and used by many others (see for example [19, 20, 21, 60, 96]).

This is the basic formulations of 2D energy based snakes. Other related formulations
have been proposed in the literature. Reviewing all of them is out of the scope of this paper.
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2.2 Deformable models based on curvature motion

Recently, novel geometric models of deformable curves were simultaneously proposed by

Caselles et al. [11] and by Malladi et al. [57, 58]. Assume in the 2D case that the deforming

curve C is given as a level-set of a function u : IR2 ! IR. Then, we can represent the

deformation of C via the deformation of u. In this case, the proposed 2D deformation is

given by

@u

@t
= ggrey(I)jrujdiv

 
ru

jruj

!
+ �ggrey(I)jruj (t; x) 2 [0;1[�IR2 (2)

u(0; x) = u0(x) x 2 IR2 (3)

where � is a positive real constant,

ggrey(I) =
1

1 + jrÎjp
; (4)

Î being a regularized version of the original image I where we are looking for the contour of

an object O, and p = 1 or 2. Typically, the initial condition u(0; x) = u0(x), in the case of
outer snakes (curves evolving towards the boundary of O from the exterior of O), is taken as
a regularized version of 1� �C where �C is the characteristic function of a set C containing
O. Using the fact that

div

 
ru

jruj

!
= �;

where � is the Euclidean curvature [26, 37] of the level-sets C of u, Equation (2) can then be
written in the form

ut = ggrey(I)(� + �)jruj:

Equation (2) can be interpreted as follows: Suppose that we are interested in following
a certain level-set of u, which to �x ideas we suppose to be the zero level-set. Suppose also

that this level-set is a smooth curve. Then the 
ow

ut = (� + �)jruj;

means that the level-set C of u we are considering is evolving according to

Ct = (� + �) ~N ; (5)

where ~N is the inward normal to the curve. 2 This equation was �rst studied in [69, 88, 89],

where extensive numerical research on it was performed, introducing the level-sets curve
evolution approach. It was introduced in computer vision in [44, 45], where deep research

for shape analysis was performed, presenting a novel geometric scale-space for planar shape
analysis and decomposition among other things.

2Based on the fact that ~N k ru, it is straightforward to prove that when the level-sets C of u evolve

according to Ct = � ~N , the function u should deform via ut = �jruj when the level-sets approach is well

posed.
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The motion

Ct = � ~N ;

denoted as Euclidean heat 
ow is very well know for its geometric smoothing properties

[5, 34, 36]. (This 
ow was extended in [83, 84, 85] for the a�ne group and in [67, 85] for

others. See also [29, 30] for the projective group.) This 
ow is also called the Euclidean

shortening 
ow, since it moves the curve in the gradient direction of the length functional

given by

L :=
I
C
ds; (6)

where ds = jCpjdp is the Euclidean arc-length element. Therefore, this 
ow decreases the

length of the curve as fast as possible. This property is important for the geometric inter-

pretation of the geodesic models in this paper.
The constant velocity � ~N in (5), which is related with classical mathematicalmorphology

[44, 45, 81], acts as the balloon force in [20]. Actually this velocity pushes the curve inwards
and it is crucial in the model in order to allow convex initial curves to become non-convex,
and thereby detect non-convex objects. This is necessary because a convex curve remains
convex when evolving according to the Euclidean heat 
ow [34]. Of course, the � parameter

must be speci�ed a priori in order to make the object detection algorithm automatic. This is
not a trivial issue, as pointed out in [11], where possible ways of estimating this parameter are
considered. A probabilistic approach for selecting � that can be adapted to this framework
was recently proposed in [107]. Recapping, the \force" (� + �) acts as the internal force in
the classical energy based snakes model. The external force is given by ggrey(I), which is

supposed to prevent the propagating curve from penetrating into the objects in the image.
In [11, 57, 58], the authors choose ggrey(I) given by (4). Î was smoothed using Gaussian
�ltering, but more e�ective geometric smoothers can be used as well [62]. Note that other
decreasing functions of the gradient may be selected as well. For an ideal edge, rÎ = �,
ggrey = 0, and the curve stops at the edge (ut = 0). The boundary is then given by the set

u = 0.
This curve evolution model given by (2) automatically handles di�erent topologies. That

is, there is no need to know a priori the topology of the solution. This allows to detect

any number of objects in the image, without knowing their exact number. This is achieved
with the help of the e�cient level-sets numerical algorithm for curve evolution, developed

by Osher and Sethian [69, 88, 89], and used by others for di�erent image analysis problems
[18, 44, 45, 48, 81, 84, 86], and analyzed for example in [17, 28]. In this case, the topology

changes are automatically handled, without the necessity for speci�c monitoring the topology
of the deforming curve.

3 Geodesic active contours

We now review the main results of [13]. Let us consider a particular case of (1), where

� = 0. Two main reasons motivate this selection: First, it allows to derive the relation

between energy based active contours and geometric curve evolution ones. Second, although
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having � 6= 0 adds 
exibility and other properties, the regularization e�ect on the geodesic

active contours comes from curvature based curve 
ows, obtained only from the other terms

in (1). This allows to achieve smooth curves in the proposed approach without having the

high order derivatives given by � 6= 0. The use of the curvature driven curve motions for

smoothing was proved to be very e�cient in previous works [2, 11, 44, 45, 58, 77, 84], and is

also supported by our experiments in [13] and Section 5.2. Therefore, curve smoothing will

be obtained also with � = 0, keeping only the �rst regularization term. Assuming this, and

replacing the edge detector jrIj by a general function ggrey(jrIj)
2 of the gradient such that

ggrey(r)! 0 as r!1, we obtain,

E(C) = �
Z 1

0
jC0(� )j2d� + �

Z 1

0
ggrey(jrI(C(� ))j)

2d� = Eint(C) + Eext(C): (7)

(In order to simplify the notation, we sometimes write ggrey(I) or ggrey(X ) (X 2 IR2) instead

of ggrey(jrIj).) The goal now is to minimize E in (7) for C in a certain allowed space of

curves. Of course, in (7), only the ratio �=� counts.
As argued in [13], the functional (7) is not intrinsic, it depends on the parametrization

of the curve. This could be considered as an undesirable property since parametrizations
are not related to the geometry of the curve (or object boundary), but only to the velocity
they are traveled. Motivated by the discussion on ideal edges, in [13] we proposed to �x

this degree of freedom by �xing the energy level E0 = 0 at the local minima (other values
are analyzed in [13] as well). Then with the help of Maupertuis' and Fermat Principles [27],
we proved that the solution of (7) is given by a geodesic curve in a Riemannian space. The
metric in this Riemannian space is de�ned by gij dxidxj with gij = ggrey(I)

2�ij. This means
that the object is detected when a curve of minimal length is found. In other words, we
proved that under these conditions, minimizing (7) is equivalent to solving

MinC

Z 1

0
ggrey(jrI(C(� ))j)jC

0(� )jd�: (8)

We have transformed the problem into a problem of geodesic computation in a Riemannian

space, according to a new metric (length measure) given by

LR :=
Z 1

0
ggrey(jrI(C(� ))j)jC

0(� )jd�: (9)

Since jC0(� )jd� = ds (Euclidean arc-length), we may write

LR :=
Z L

0
ggrey(jrI(C(� ))j)ds:

where L denotes the Euclidean length of C(� ). Comparing this with the classical Euclidean

length as given in previous section by (6), we �nd that the new length is obtained by
weighting ds with ggrey(jrI(C)j), which contains information regarding the boundary of the

object. Therefore, when trying to detect an object, we are not just interested in �nding the
path of minimal classical length (

H
ds) but the one which minimizes a new de�nition of length

which takes into account image characteristics. Note that (8) is general, no assumptions on

ggrey were done, besides being a decreasing function. For example, ggrey can be derived
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from edge-type maps as those in [49]. Therefore, the theory of detection based on geodesic

computations given above, and fully described in [13], is general. This is fundamental for

the \color active contours" developed in this paper; Section 5.

In order to �nd this geodesic curve, we use the steepest descent method which will give

us a local minima of (9). Then, the 
ow minimizing LR is given by [13]

Ct = (ggrey��rggrey � ~N ) ~N (10)

We now introduce the level-set formulation [69, 88, 89] in the model. Let us assume that

a curve C is parametrized as a level-set of a function u : [0; a] � [0; b] ! IR. That is, C

is such that it coincides with the set of points in u such that u = constant. In particular

given an initial curve C0 we parametrize it as a zero level-set of a function u0. Then, the

level-set formulation of the steepest descent method says that solving the above geodesic

problem starting from C0 amounts to searching for the steady state (@u
@t

= 0) of the following

evolution equation:

@u

@t
= jrujdiv

 
ggrey(I)

ru

jruj

!
(11)

= ggrey(I)jrujdiv

 
ru

jruj

!
+rggrey(I) � ru;

with initial datum u(0; x) = u0(x). This equation is then obtained by computing the gradient
descent of LR and embedding the 
ow as the level-set of u. We have obtained the main part
of the geodesic active contours.

Figure 1: Geometric interpretation of the new term in the geodesic deformable model. The

gradient vectors are all directed towards the middle of the boundary. Those vectors direct

the propagating curve into the valley of the ggrey function.

Comparing Equation (11) to (2), we �rst observe that the term rggrey � ru is missing in

the old model. This is due the fact that in (2), a classical length in Euclidean space is used

(given by (6)). In the new model, the length takes into account the image structure, and

is given by (9), de�ning a new Riemannian space. This new term directs the curve towards
the boundary of the objects, the valley of ggrey. This is demonstrated in Figure 1. This
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new force increases the attraction of the deforming contour towards the boundary, being of

special help when the boundary has high variations of its gradient values. Note that in the

old model, the curve stops when ggrey = 0. This happens only along an ideal edge. Also, if

there are di�erent gradient values along the edge, as it often happens in real images, then

ggrey gets di�erent values at di�erent locations along the object boundaries. It is necessary

to consider all those values as high enough to guarantee the stopping of the propagating

curve. This makes the geometric model (2) inappropriate for the detection of boundaries

with (un-known) high variations of the boundary gradients. In our new model, we have both

a stopping term and an attraction one. Thereby, it is also possible to detect boundaries with

high di�erences in their gradient values. The second advantage of this new term is that we

partially remove the necessity of the constant velocity given by �. This constant velocity,

that mainly allows the detection of non-convex objects, introduces an extra parameter to

the model, that in most cases is an undesirable property. In our case, the new term allows

the detection of non-convex objects as well. This term also helps when starting from curves
inside the object. In case we wish to add this constant velocity, in order for example to
increase the speed of convergence, we can just consider the term �ggrey(I)jruj as an extra

speed (which minimizes the enclosed area [20, 107]), in the geodesic problem (8) obtaining

@u

@t
= jrujdiv

 
ggrey(I)

ru

jruj

!
+ �ggrey(I)jruj: (12)

This equation is of course equivalent to

@u

@t
= ggrey(� + �)jruj+ru � rggrey: (13)

Equation (12), which is the solution of the geodesic problem (8) with an extra area-based
speed, constitutes the geodesic active contours. As shown in the examples in [13], it is

possible to choose � = 0 (no constant velocity), and the model still converges in general to
the correct solution (in a slower motion). The advantage is that we have obtained a model
with less parameters.

This equation, as well as its 3D extension [14], was independently proposed by Kichenas-
samy et al. [42] based on a slightly di�erent initial approach. The authors in [42] derived (8)

motivated by gradient 
ows and the work in [11, 57], without showing its connection with

classical snakes as done in [13]. Of course, once (8) is obtained, (12) is derived, obtaining in
[42] the same curve 
ow. Shah [91] also recently presented an active contours formulation
using a weighted length formulation as in (8) as starting point. In his case, ggrey is obtained

from an elaborated segmentation procedure obtained from the Mumford-Shah approach [62].

Extensions of the model in [11, 57] are studied also in [95] motivated in part by the work
in [44, 45]. In [101] (see also [102]), related 3D models are studied as well. Minimization of

a normalized version of LR was proposed in [33] from a di�erent perspective, leading to a
di�erent geometric method.

4 Vector-valued edges

We present now the de�nition of edges in vector-valued images, based on classical Riemannian

geometry results [50]. The basic goal is to extend edge detectors for 2D and 3D single-valued
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data [10, 109] to vector-valued images.

The Riemannian geometry framework for edge detection in multi-valued images described

below was �rst suggested in [25]. Other approaches to vector-valued edge detectors consist in

combining the response of single-valued edge detectors applied separately to each of the image

components (see for example [63]). The way the responses at each plane are to be combined

is in general heuristic and has no theoretical basis. The Riemannian space approach has a

solid theoretical background and constitutes a consistent extension of single-valued gradient

computations. Di Zenzo applied these ideas to edge detection in color RGB space. Although

the work by Di Zenzo is performed assuming an Euclidean metric, which is not perceptually

correct in the RGB space, the basis given in [25] can be extended to other spaces and/or

other metrics as we explain below.

In [24], Cumani extended the analysis of the �rst fundamental form (see below) applied

to edge detection in multi-valued images. He analyzed the directional derivative of the

maximal change value (see below), in the direction of this change, de�ning an edge as a zero
crossing of this function. This work attempts to extend the ideas in [98] developed for single-
valued images. Cumani analyzed edges of multi-valued functions by means of transversal

zero crossings of the derivatives of this maximal change value alone. As we argue below,
for vector-valued edges, the relation between the maximal and minimal changes should be
analyzed. Analysis was carried out in [24] concerning the characteristics and topology of the
zero crossing sets.

Noise analysis of the vector-valued edge detector was performed in [51]. The authors

showed that for correlated data, this edge detector as presented below is more stable to
noise than the simple combination of the gradient components.

We derive now these ideas, following [82]. Let �(u1; u2) : IR
2 ! IRm be a multi-valued

image with components �i(u1; u2) : IR2 ! IR, i = 1; 2; :::;m. For color images we have
m = 3 components. The value of the image at a given point (u01; u

0
2) is a vector in Rm, and

the di�erence of image values at two points P = (u01; u
0
2) and Q = (u11; u

1
2) is given by

�� = �(P ) � �(Q):

When the (Euclidean) distance d(P;Q) between P and Q tends to zero, the di�erence be-

comes the arc element

d� =
2X

i=1

@�

@ui
dui; (14)

and its squared norm is given by

d�2 =
2X

i=1

2X
j=1

@�

@ui

@�

@uj
duiduj: (15)

This quadratic form is called the �rst fundamental form [50]. Although we present now only
the Euclidean case, the theory we develop holds for any non-singular Riemannian metric in

the space. For di�erent metrics, either a space transform can be applied to an Euclidean

space if possible, or the metric induced by the given space can be used directly (if it is

non-singular). This is particularly useful for color images, as all the line element theories of
color vision [105] can easily be incorporated in our scheme.
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Using the standard notation of Riemannian geometry [50], we have that

gij :=
@�

@ui
�
@�

@uj
;

and

d�2 =
2X

i=1

2X
j=1

gijduiduj =

"
du1
du2

#T "
g11 g12
g21 g22

# "
du1
du2

#
: (16)

For a unit vector v̂ = (v1; v2) = (cos �; sin �), d�2(v̂) indicates the rate of change of the

image in the v̂ direction. It is well known that the extrema of the quadratic form (16)

are obtained in the directions of the eigenvectors of the metric tensor [gij], and the values

attained there are the corresponding eigenvalues. Simple algebra shows that the eigenvalues

are

�� =
g11 + g22 �

q
(g11 � g22)2 + 4g212

2
; (17)

and the eigenvectors are (cos ��; sin ��) where the angles �� are given (modulo �) by

�+ =
1

2
arctan

2g12

g11 � g22
; (18)

�� = �+ + �=2: (19)

The eigenvectors provide the direction of maximal and minimal changes at a given point
in the image, and the eigenvalues are the corresponding rates of change. We call �+ the

direction of maximal change and �+ the maximal rate of change. Similarly, �� and �� are
the direction of minimal change and the minimal rate of change respectively. Note that for
m = 1, that is, for grey-level images, �+ �k r� k

2, �� � 0, and (cos �+; sin �+) k r�.
In contrast with grey-level images (m = 1), the minimal rate of change �� may be

di�erent than zero. In the single-valued case, the gradient is perpendicular to the level-sets,

and �� � 0. The \strength" of an edge in the multi-valued case is not given simply by the

rate of maximal change, �+, but by how �+ compares to ��. Therefore, a �rst approximation
of edges for vector-valued images, analogue to selecting a function of k r� k in the m = 1
case, should be a function f = f(�+; ��). Selecting f = f(�+ � ��) is one choice, since for

m = 1 it reduces to the gradient-based edge detector.

Before concluding this section we should point out that based on the theory above,
improved edge detectors for vector-valued images can be obtained following for example the

developments on energy-based edge detectors [32, 75]. In order to present the color snakes,
the theory developed above is su�cient.
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4.1 Anisotropic di�usion of multi-valued images

In many applications, noise is removed before edge maps are computed. This is done while

computing ggrey in (4) for example. It is desirable that the smoothing operation does not

a�ect salient edges. For this, a number of schemes for anisotropic di�usion were recently

developed [3, 74, 79]. We brie
y review now the scheme for anisotropic di�usion of vector-

valued images proposed in [82]. This 
ow will be used to compute the vector-valued metric

in the color snakes developed below. The main goal of the work in [82] was to extend the

results in [3] to vector-valued images. The work in [74] was extended for these type of data

in [103]. Related work is reported in [16].

Given the directions ��, we proceed to derive the corresponding anisotropic di�usion.

This is done in an analogous way to the single-valued case discussed in [3]. Di�usion occurs

normal to the direction of maximal change �+ (i.e., in the direction perpendicular to the

color edge) which, in our case, is given by ��. Thus, we obtain

@�

@t
=

@2�

@�2�
; (20)

which is equivalent to

2
666666664

@�1

@t

�

�

�
@�m
@t

3
777777775
=

2
66666666664

@2�1

@�2
�

�

�

�
@2�m
@�2

�

3
77777777775
:

In order to have control over the local di�usion coe�cient we add a factor gcolor similar
to the one proposed in [3] for single-valued images. Based on the same arguments as in last
Section, gcolor should be an inverse function of the relation between �+ and ��, obtaining

@�

@t
= gcolor(�+; ��)

@2�

@�2�
; (21)

A suitable choice for gcolor is any decreasing function of the di�erence (�+���). The values

�� can be computed based on a smoothed estimate of �.

Before concluding this Section, let us make some further remarks on the use of the

results above in di�erent related frameworks. Since a function of the type f = f(��) (e.g.,

f = f(�+ � ��)) becomes the vector-images replacement of k r� k for single-valued images
(m = 1), as pointed out in [82], image processing algorithms for single-valued images based
on k r� k can be basically extended to vector-images replacing the gradient by f(��). An

example of this is the color snakes and self-snakes developed in following Sections. Other

examples include the total variation algorithm developed by Rudin at al. [79] (see also [7, 35])
for image denoising and the Mumford-Shah segmentation approach [62] (see also for a very

interesting extension to vector images applied to textures the work by Lee, Mumford, and
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Yuille [52]). In the case of the total variation denoising, Rudin et al. propose to minimize

(under certain constraints) the functionalZ


k r� k dxdy:

Of course, norms di�erent from the L1 can be used as well (see [7, 35]), but this norm proved

to give good results. The extension of this to vector-valued images will beZ


f(��)dxdy;

being this the vector-valued total variation. The 
avor of this variational approach to vector-

valued image denoising is very similar to the anisotropic di�usion described above, giving

also a system of coupled PDE's when the gradient-descent approach is used. Research in

this direction includes not only showing the algorithmic potential of the techniques, but also

proving analogues to the extended theoretical results reported for example in [53, 62], as
well as its numerical investigation. 3

4.2 Metrics of color images

From the results presented above, having a metric in the vector-valued image, we can obtain

the direction and values of maximal and minimal changes, and from them, de�ne edges. Since
color images (m = 3) will provide the basic examples used to demonstrate the vector-valued
snakes proposed in next Section, we conclude the current Section with a brief description of
perceptual color metrics.

One approach (the empirical method) in the search for a perceptually uniform color space

is to experimentally measure psychophysical human thresholds (or iso-performance surfaces)
from a reference point in di�erent directions in color space [105]. This de�nes the local
Riemannian metric at the reference point. This kind of measurement has to be repeated
at di�erent positions in color space. The method has been pioneered by MacAdam [54].
An alternative approach has been to develop theoretical models of human detection of color
di�erences based on our knowledge of the physiology and psychophysics of the visual system

[40, 87, 93, 99]. The predictions of these line element models provide the metric of the color

space. In general, all the line element models derived from simple theoretical assumptions
fail to represent many of the important features present in empirical data. Our algorithm
can easily incorporate any of the empirical or theoretical line element models mentioned

above (empirical data, however, has to be interpolated to cover the entire space).

The approach followed in this paper is the one in [82], to adopt one of the CIE standards
that attempts to achieve an approximate uniform color space (in which color threshold sur-

faces are roughly spherical) under the observing conditions usually found in practice. We use
the CIE 1976 L�a�b�-space [105] with its associated color di�erence formula (which is simply

the Euclidean distance in the space). The white reference point (Xw; Yw; Zw) is taken as the

one obtained when the R, G, and B guns are driven to half of their maximum amplitude.
That is, for a 256 values per color image, (Xw; Yw; Zw) = (128; 128; 128). More speci�cally,

3The vector-valued total variation and its numerical analysis is currently being investigated in collabora-

tion with T. Chan from UCLA and B. Rogo� from Stanford University.
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the transform from RGB space the L�a�b� space is given by �rst a linear transform from

RGB to XYZ space.2
64
XwX

YwY

ZwZ

3
75 =

2
64
0:0289 0:0406 0:0256

0:0165 0:0782 0:0129

0:0015 0:0140 0:1326

3
75
2
64
R

G

B

3
75 :

Then, de�ning

f(r) :=

(
r1=3 if r > 0:008856

7:787r + 16:0=116:0 else,

we obtain that the perceptually uniform color space L�a�b� is given by

L� =

(
116:0 � f(Y )� 16:0 if Y > 0:008856

903:3 � Y else,

a = 500:0(f(X) � f(Y ));

b = 200:0(f(Y )� f(Z)):

Note that in contrast with common luminance-chrominance spaces used for example for
image compression (YCbCr, YUV), the relation between RGB and L�a�b� is non-linear.

The L�a�b� space is a �rst approximation to a perceptually uniform color spaces. More

accurate approximations can be obtained for example taking into account spatial frequencies
[100]. In this case, a new vector-valued image is obtained with m > 3, and the same theory
presented above can be applied.

5 Color snakes

We present now the formulation of the color snakes or color active contours.
Let fcolor = f(�+; ��) be the edge detector as de�ned in Section 4. The edge stopping

function gcolor is then de�ned such that gcolor ! 0 when f ! max(1), as in the grey-scale

case. For example, we can choose

fcolor := (�+ � ��)
1=p or fcolor :=

q
�+;

p > 0, and

gcolor :=
1

1 + f
;

or

gcolor := expf�fg:

The function (metric) gcolor de�nes the Riemannian space on which we compute the

geodesic curve. De�ning

Lcolor :=
Z L

0
gcolords; (22)
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the object detection problem in vector-valued images is associated with minimizing Lcolor.

This is in analogy to the minimization of LR given by (9) for the single-valued case. We

have therefore formulated the problem of object segmentation in vector-valued images as a

problem on �nding a geodesic curve in a Riemannian space de�ned by a metric induced from

the whole vector image. Note that two closely related Riemannian spaces are involved in

this approach. The �rst is the one induced from the line elements, that is, is obtained from

the metric measuring di�erences in the vector image. From this one, �� are obtained. The

second one is de�ned by the metric gcolor. Since gcolor is a function of ��, which are of course

functions of the metric that de�nes di�erences in the image, both Riemannian spaces are

related. Actually, their metrics are functions one of the other.

In order to minimize Lcolor, that is the color length, we compute as before the gradient

descent 
ow. As pointed out before, the equations developed in Section 3 for the geodesic

active contours are independent of the speci�c selection of the function g. Therefore, the

same equations hold here, replacing ggrey by gcolor. We then obtain from (10) the following
minimizing 
ow:

Ct = (gcolor��rgcolor � ~N ) ~N : (23)

As before, although not completely necessary, we can add a constant force minimizing
the enclosed area in order for example to speed up the convergence, obtaining

Ct = (gcolor(� + �) �rgcolor � ~N ) ~N : (24)

Embedding now the evolving curve C in the function u : IR2 ! IR we obtain the general

ow for the color snakes,

@u

@t
= gcolor(� + �)jruj+ru � rgcolor: (25)

Recapping, Equation (25) is the level-sets 
ow corresponding to the gradient descent of
Lcolor. Its solution (steady-state) is a geodesic curve in the Riemannian space de�ne by the

metric gcolor(��) of the vector-valued image. This solution gives the boundary of objects in
the scene. Note that �� can be computed on a smooth image obtained from the vector-valued
anisotropic di�usion described above.

5.1 Existence and uniqueness of the 
ow

We present now a number of theoretical results regarding the color geodesic 
ow (25). These
results are proved in [13, 14] for the 2D geodesic 
ow of single-valued images and the 3D

minimal surfaces one. Therefore, we present them here without proofs. Existence is also

proved in [43]. See the mentioned references for details.

With the notion of viscosity solutions [23], we can present the following result regarding

our color geodesic model:

Theorem 1 Let W1;1 denote the space of bounded Lipschitz functions in R2. Assume that
gcolor � 0 is such that supX2R2 jDg

1=2
color(X )j < 1 and supX2R2 jD2gcolor(X )j < 1. Let

u0 2 BUC(R2) \W1;1(R2). Then
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1. Equation (25) admits a unique viscosity solution

u 2 C([0;1)�R2) \ L1(0; T ;W 1;1(R2)) for all T <1:

Moreover, u satis�es

inf u0 � u(t;X ) � sup u0:

2. Let v 2 C([0;1) � R2) be the viscosity solution of (25) corresponding to the initial

data v0 2 C(R2) \W1;1(R2). Then

k u(t; �)� v(t; �) k1�k u0 � v0 k1 for all t � 0:

This shows that the unique solution is stable.

In the next Theorem, we recall results on the independence of the generalized evolution
with respect to the embedding function u0. Let �0 be the initial active contour, oriented

such that it contains the object. In this case the initial condition u0 is selected to be the
signed distance function, such that it is negative in the interior of �0 and positive in the
exterior. Then, we have

Theorem 2 (Theorem 7.1, [17]) Let u0 2 W 1;1(R2) \ BUC(R2). Let u(t; x) be the so-

lution of the proposed geodesic evolution equation as in previous theorem. Let �(t) := fX :
u(t;X ) = 0g and D(t) := fX : u(t;X ) < 0g. Then, (�(t);D(t)) are uniquely determined by
(�(0);D(0)).

Further properties of the level-sets 
ow can be proved based on the results in [28, 92].
See [13].

To conclude this section, let us mention that, in the case of a smooth ideal edge �̂, one
can prove that the generalized motion �(t) converges to �̂ as t!1, making the proposed
approach consistent:

Theorem 3 Let �̂ = fX 2 R2 : gcolor(X ) = 0g be a simple Jordan curve of class C2 and
Dg(X ) = 0 in �̂. Furthermore, assume u0 2 W 1;1(R2) \ BUC(R2) is of class C2 and such

that the set fX 2 R2 : u0(X ) � 0g contains �̂ and its interior. Let u(t;X ) be the solution

of (25) and �(t) = fX 2 R2 : u(t;X ) = 0g. Then, if �, the constant component of the
velocity, is su�ciently large, �(t)! �̂ as t!1 in the Hausdor� distance.

This theorem is proved in [14] for the minimal surfaces based model for 3D object seg-
mentation. In this theorem, we assumed � to be su�ciently large. A similar result can

be proved for the basic geodesic model, that is for � = 0, assuming the maximal distance
between �̂ and the initial curve �(0) is given and bounded (to avoid local minima).
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5.2 Experimental results

We now present some examples of our vector snakes model. The numerical implementation

is based on the algorithm for surface evolution via level-sets developed by Osher and Sethian

[69, 88, 89] and recently used by many authors for di�erent problems in computer vision

and image processing. The algorithm allows the evolving curve to change topology without

monitoring the deformation. Using new results in [1], the algorithm can be made to converge

very fast. See the mentioned references for details on the numerics.

In our examples, the initialization is in general given by a curve surrounding all the

possible objects in the scene. In the case of outward 
ows, a curve is initialized inside each

object. Multiple initializations are performed in [57, 58, 95]. In [95], inner and outer active

contours are simultaneously used. Although multiple initializations help in many cases, they

may lead to false contours in noisy images. Therefore, multiple initializations should in

general be controlled (by rough detections of points inside the objects for example) or they

should be followed by a validation step.
Figure 2 presents an example of the geodesic active contours from [13]. The �gure on

the left is the original image, and the one on the right presents the evolving curves (green)
and the detected boundaries (red). The initial curves are the two small circles in the tools.
Both interior and exterior boundaries are detected without any special tracking procedure.

0 50 100 150 200 250
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100

150

200

250

50 100 150 200 250
0

50

100

150

200
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Figure 2: Example of the geodesic active contours. From the two small circles, both interior

and exterior boundaries are detected without any special tracking procedure. (This is a color

�gure.)

In Figure 3 4 we present the �rst example of the color snakes. The algorithm is applied
to a color medical image (cryosections). Although the colors in medical data are in general
pseudo-colors, they are associated to physical quantities, contain information and are corre-

lated. Of course, in this case, the perceptual L�a�b� space has no meaning, and computations

can be done on RGB space.
Another example is given in Figure 4 for a color image. The top row shows the three

4All the examples in this paper are presented without parameter optimization, showing the robustness of

the framework here proposed. Results can be improved by selecting the appropriate parameters according

to the image-type.
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Figure 3: Example of the color geodesic active contours. The initial curve is a square
surrounding both objects. The green curve is the result of the proposed algorithm. Both
thighs are detected without any special topology handling procedures. (This is a color �gure.)

planes corresponding to the RGB colors. The segmented hats obtained with the color snakes
is given in the last raw.

In Figure 5 we present an outward 
ow for the color snakes. The initial contours are

given by two circles in the dark background. These circles expand to detect the four objects,
without tracking the topology of the evolving curve.

Figure 6 presents an example of the vector snakes for texture analysis. This shows an
example of vector-valued data obtained from a single image. The original image is �ltered
with Gabor �lters tuned to frequency and orientation as proposed in [52] for texture seg-

mentation (see also [6, 107]). From this set of frequency/orientation decomposed images,
gcolor is computed according to the formulas in Section 4, and the vector-valued snakes 
ow
is applied. 5 Four frequencies and four orientations are used, obtaining sixteen images. The
results of this decomposition are shown in the 2nd to 5th raw (the original texture is shown

in the �rst raw). The last raw shows the result of the vector snakes detecting one of the four

textures boundaries. The original contour was a small circle inside it.

6 Color self-snakes

We extend now the formulation of the color geodesic snakes presented above to segmenta-

tion/simpli�cation of vector-valued images. Related PDE/variational methods for grey-level
image segmentation, as well as details on the approach described below for single-valued

images, are given in [12].

5Further techniques for mixed color/texture segmentation based on the approach of vector-valued edges

are being investigated by B. Rogo� and Y. Rubner as part of their PhD Thesis at Stanford University.
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Figure 4: Example of the color snakes in a color image. The top row shows the three color
planes RGB. The bottom row shows the result of the color snakes. (This is a color �gure.)

Figure 5: Outward 
ow of the color snakes. The initial curves are two circles on the dark

background. These curves evolve outward to detect the four objects without any special

topology tracking procedure. (This is a color �gure.)

19



2
0

4
0

6
0

8
0

1
0
0

1
2
0

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

Figure 6: Example of the vector snakes for a texture image. The original texture is decom-
posed into frequency/orientation components via Gabor �lters and this collection of images

is used to compute the metric gcolor for the snakes 
ow. The di�erent components are

shown, followed (last raw) by the result of the vector snakes, segmenting one of the texture

boundaries (red contour). (This is a color �gure.)

20



Observe the level-sets 
ow corresponding to the single-valued geodesic active contours,

given by equation (11):

@u

@t
= jrujdiv

 
ggrey(I)

ru

jruj

!

= ggrey(I)jrujdiv

 
ru

jruj

!
+rggrey(I) � ru:

Two functions (maps from IR2 to IR) are involved in this 
ow, the image I and the

auxiliary level-sets one, u. Assume now u � I, that is, the auxiliary level-sets function is

the image itself. The equation above becomes

@I

@t
= jrIjdiv

 
ggrey(I)

rI

jrIj

!
(26)

= ggrey(I)jrIjdiv

 
rI

jrIj

!
+rggrey(I) � rI:

A number of interpretations can be given to the equation above. First of all, based on
the analysis of the geodesic active contours, the 
ow (26) indicates that each level-set of the

image I moves according to the geodesic 
ow (10), being smoothly attracted by the term
rggrey to areas of high gradient. This gives the name of self-snakes to the 
ow; see [12].

Furthermore, (26) can be re-written as

@I

@t
= Fdiffusion + Fshock; (27)

where

Fdiffusion := ggrey(I)jrIjdiv

 
rI

jrIj

!
;

Fshock := rggrey(I) � rI:

The term Fdiffusion is as in the anisotropic di�usion 
ow proposed in [3],

It = ggrey(I)jrIjdiv

 
rI

jrIj

!
= ggreyI��;

where � is perpendicular torI and ggrey(I) is for example selected as in the snakes, according

to (4). The idea is to smooth parallel to the edges (rI) via I�� and \stop" the di�usion at
high edges because of ggrey. We then have that the �rst part of (27) (or (26)), that is

It = Fdiffusion;

is exactly the anisotropic di�usion given in [3]. This di�usion process is based on extending
ideas originally presented by Perona & Malik [74]. Direct relation of (26) with the Perona-

Malik 
ow will be given below as well (see also [2, 4, 106] and comments below).
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Let us explain the second term in (27). This is straightforward from the geometric

interpretation in Figure 1. The term rggrey � rI \pushes" towards valleys of high gradients,

acting as the shock-�lter introduced in [70] for de-blurring. Therefore, the 
ow

It = Fshock;

is a shock-�lter. We then obtain that the self-snakes given by (26) corresponds to a combina-

tion of anisotropic di�usion and shock �ltering, further supporting its possible segmentation

properties (for another combination of anisotropic di�usion and shock �ltering see [4]). We

have also obtained a variational-type interpretation to this �lter, since the 
ow (26) may be

associated to an energy analogue to LR, where C is represented as level-sets of I and the

integral is computed over the whole image. As we see next, variational interpretations to

similar 
ows were previously reported [2, 38, 76, 106].

Let's now make a direct connection between the self-snakes and Perona-Malik 
ow. Per-

ona and Malik [74] proposed the 
ow

@I

@t
= div (cgrey(I)rI) ; (28)

where cgrey is again an edge-stopping function as before. First of all note that the gradient
descent of the energy (see for example [2, 38, 106])Z Z

h(jrIj)dxdy

is given by

@I

@t
= div

 
h0(I)

rI

jrIj

!
: (29)

Therefore, the Perona-Malik 
ow is minimizing this energy when cgrey = h0(jrIj)
jrIj

. This

property is extensively used in [106] to further analyze the 
ow. The total-variation approach
[79] for example, is obtained for h � jrIj (this case is well-posed, see below). The 
ow (28)
may be ill-posed, for example when cgrey = f(I) as originally proposed by Perona and Malik;
see [3, 15, 65, 76, 106]. A way to solve this problem is to compute cgrey on a regularized

version Î of I [15]. Note that this is exactly what is done in the geodesic snakes and in the
self-snakes presented above. (Other modi�cations to make the equation well-posed can be
found in [65, 76, 104], as well as in [53, 79, 106].) Now comparing (28) with (26), we note

that if ggrey = h0, the di�erence between the two 
ows is given by the gradient term jrIj.

Although this term can be \compensated" via the selection of ggrey, it is important to note

it when comparing the self-snakes to Perona-Malik 
ow. The term jrIj a�ects both the

di�usion part and the shock one.
The decomposition of the Perona-Malik 
ow in anisotropic di�usion and shock �ltering

parts was previously reported in [2, 106]. The authors in those papers show that the 
ow
(29) is composed by a di�usion along the edges (Fdiffusion), which is the component in [3],

and one perpendicular to the edges, giving a shock �lter. Important and interesting analysis

of the perpendicular component is given in [2, 106] as well (see also [4]). From the analysis
performed in these works we learn that the self-snakes may be ill-posed depending on the
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selection of the function ggrey . Here we also showed the relation of those 
ows with the

geodesic snakes and self-snakes. We refer the interested reader to the mentioned references

for much deeper analysis of the Perona-Malik equation and its modi�cations.

Recapping, we have extended the geodesic active contours to a segmentation 
ow denoted

as self-snakes, and brie
y described its relations with previously reported image processing

algorithms based on PDE's (see also [2, 4, 76, 79, 106]). The segmented image 6 is obtained

as the steady state of the 
ow. See also [12] for details on the single valued self-snakes and

its relation with other closely related approaches as the one in [90].

Let's now return to the segmentation of vector-valued images via color self-snakes. Being

as before � : IR2 ! IRm, we obtain a number of possible 
ows. The �rst one is based

on combining the metric in the color snakes level-sets model (25) with the single-valued

self-snakes (26), obtaining a system of coupled partial di�erential equations of the form

(i = 1; :::;m)

@�i

@t
= jr�ijdiv

 
gcolor(�)

r�i

jr�ij

!
(30)

= gcolor(�)jr�ijdiv

 
r�i

jr�ij

!
+rgcolor(�) � r�i

= gcolor(�)jr�ij��i +rgcolor(�) � r�i:

In this case, the color interaction is given by gcolor, a�ecting the di�usion stopping term gcolor
as well as the shock-type one rgcolor(�) � r�i. A di�erent formulation can be obtained if

r�i is replaced by the direction of maximal change (cos �+; sin ��) and jr�ij by the color
gradient f(��). The color self-snakes are related to the previously commented algorithms
as well. It is of course related as well with the vector-valued extension of Perona-Malik
approach presented in [103] and the work in [82].

The color self-snakes are tested in Figure 7 to show their behavior. In this image,

(�1;�2;�3) = (L�; a; b) and gcolor is computed based on the �rst fundamental form as dis-
cussed in Section 4. Since the goal is to present the framework for vector-valued segmenta-
tion, work is just directly performed on the color image in it L�a�b� representation. An im-
mediate extension to improve the results will be to expand the vector space to m > 3 via fre-

quency/orientation decompositions frequently used for texture segmentation [6, 52, 55, 107],

which are important for color metrics as well [100]. Using the general approach in Section
4, the metric for this decomposed space can be computed as well. Figure 8 gives a second

example. The original image is given in the �rst raw and the result of the color self-snakes
in the second one (three di�erent steps). To show the e�ect of the color shock �lter rgcolor,

the last raw presents the same three steps of the self-snakes 
ow, with the termrgcolor �r�i

removed from the equation. This is very similar to the color di�usion 
ow described in this
paper and introduced in [82]. The results of this self-snakes process can be used also as a
rough �rst estimation for browsing on image date bases.

6By \segmented image" we refer to an image which has piecewise homogeneous (simpli�ed) regions.
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Figure 7: Example of the color self-snakes. The original image is given on the left and the

steady state of the 
ow on the right. See text for details. (This is a color �gure.)

7 Discussion and concluding remarks

In this paper we presented a novel framework of active contours for object segmentation in
vector-valued images. The work is based on extending the results reported in [13] on geodesic
snakes by means of de�ning a new metric in the vector space. We showed that the solution

to the deformable contours approach for boundary detection is given by a geodesic curve in a
Riemannian space de�ned by a metric derived from the given vector image. This means that
detecting the object is equivalent to �nding a curve of minimal weighted length. The weight
is given by a de�nition of edges on vector-valued images, based on classical Riemannian
geometry as in [82]. We also presented results regarding the existence, uniqueness, stability,

and correctness of the solution obtained by our model.
Experiments for di�erent real images were presented. Classical examples of imaging

modalities were the proposed algorithm can be applied are color images and medical data.
The scheme can be applied also to multi-valued data obtained from a single-valued image.
For example, the multi-valued data can be composed from the original image at several scales,
allowing a more robust segmentation. Frequency/orientation decompositions frequently used

for texture segmentation [6, 52, 107] can de�ne the vector image as well. Another example

will be the combination of di�erent image modalities as stereo, optical 
ow, and so on, as
proposed in [95]. These modalities de�ne again a vector-image, on which the combinedmetric
can be computed using the technique reported in this work (a di�erent metric is proposed in

[95]). The sub-pixel accuracy intrinsic to the geodesic algorithm allows to perform accurate

measurements after the object is detected [80].
The vector-valued object detection was then extended to obtain combined anisotropic

di�usion and shock �ltering in vector images. The 
ow is obtained by deforming each one of
the image level sets according to the color geodesic 
ow. The relation between this algorithm

and previously reported PDE based image processing ones was described. Relations between

PDE-based algorithms were also reported in [2, 4, 106]. Here we added the geodesic snakes
and self-snakes to the connection. This relation gives a number of di�erent interpretations

to the described 
ows as well as to those closely related to it. See also [12] and mentioned
related references.

The work here described supports the importance of formulating problems as geodesic
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Figure 8: Example of the color self-snakes. First raw presents the original image, the second

one three steps of the color self-snakes, and the last one again the color self-snakes without
the shock part. (This is a color �gure.)
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computations [13, 42, 46, 47, 42, 66, 78]. The generality of the geodesic type formulation

allows to perform a number of extensions, as the one presented in this paper. Other exten-

sions include the a�ne invariant active contours introduced in [68]. This is based on de�ning

a new metric which is a�ne invariant and allows to detect edges.

The color active contours here presented assumes the di�erent image components are

aligned. If the image components (planes) are not aligned, as in motion frames for example,

we can use the 3D minimal surfaces approach [14] to simultaneously align and segment. The

basic formulation in [14] (see also [42, 91]) is given byZ
gda;

where g is now the 3D metric and da the (Euclidean) element of area. The corresponding

gradient descent 
ow for the 3D deforming surface S is then given by

St = gH ~N �rg � ~N ;

where H is the mean curvature of S. If g � 1, the classical formulation for minimal surfaces
is obtained [71]. Assuming we have a series of 2D images I(x; y; t) (t stands for the series)
on each one we have to detect an object \moving" in between frames t. Then, we can de�ne
a new g that incorporates this information and solve the problem by computing 3D spatio-

temporal minimal surfaces (Terzopoulos at al. [97] also de�ne external forces for multi-frame
images). For example, in the case of motion, g can be a function of the spatial gradient
k rXI(x; y; t) k:=k I

2
x+I2y k and the optical-
ow (a time integrating term). The smoothness

is automatically obtained as before due to the area term da. This topic is currently under
investigation.
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