
Fli;w. HEWLETT
a:~ PACKARD

Techniques for Critical Path Reduction
of Scalar Programs

Michael Schlansker, Vinod Kathail
Compiler and Architecture Research
HPL-95-112
December, 1995

critical path
reduction, control
height reduction,
data height
reduction, blocked
control substitution,
instruction level
parallelism

Scalar performance on processors with instruction
level parallelism (ILP) is often limited by control
and data dependences. This report describes a
family of compiler techniques, called critical path
reduction (CPR) techniques, which reduce the
length of critical paths through control and data
dependences. Control CPR reduces the number of
branches on the critical path and improves the
performance of branch intensive codes on
processors with inadequate branch throughput or
excessive branch latency. Data CPR reduces the
number of arithmetic operations on the critical
path. Optimization and scheduling are adapted to
support CPR.

A condensed version of this report was published in the Proceedings of the 28th Annual International
Symposium on Microarchitecture, Ann Arbor, Michigan, November 1995.
© Copyright Hewlett-Packard Company 1995

Internal Accession Date Only

1. Introduction
Critical paths through control and data dependences in

scalar programs limit performance on processors with
instruction-level parallelism (ILP). Performance limits
caused by critical paths in a program can be avoided using
transformations which reduce the height of critical paths.
Critical path reduction (CPR) represents a collection of
techniques specifically designed to reduce dependence
height in program graphs. CPR provides three main
benefits: it decreases the length of program critical paths;
it improves scheduling freedom; and it yields efficient on
trace code.

This report presents a systematic approach for obtaining
height-reduced and optimized code for branch-intensive
scalar programs with predictable control flow. Key CPR
principles are defined and used to demonstrates the benefits
of CPR technology. This work extends earlier work on
loops [1,2] to the scalar case.

This report represents a starting point in understanding
CPR for scalar programs. Further work is needed to adapt
these techniques to more general scalar requirements and to
quantify the benefits of CPR.

Data dependences limit program performance when
sequentially chained arithmetic operations are executed on
processors with substantial ILP. Data CPR uses properties
such as the associative property in order to re-organize code
and improve performance. Data CPR must be ~plied with
careful attention to both critical path height and operation
count.

Control dependences limit performance when executing
branch intensive code. Control CPR decreases the height
of critical paths due to control dependences. It also reduces
the amount of computation by moving rarely taken
branches off-trace. Control CPR uses the concept ofjully
resolved predicates to convert control dependences into data
dependences. Data CPR techniques are adapted!to expedite
the calculation of fully-resolved predicates. Programs
contain a mix of control and data dependences, and CPR
techniques are needed for both. Techniques presented in this
report unify the treatment of control and data during CPR,
optimization and scheduling.

Complex actions on programs, such as CPR or
scheduling, must be performed on modest sited regions
selected from a program (e.g., a trace [3]). This report
assumes that on-trace paths can be identified for scheduling
and optimization [4]. Discussion in this report is restricted
to single entry code sequences like superblocks and
hyperblocks [5].

This report adapts superblock scheduling to support
CPR. The scheduling approach allows an operation which
is not necessary on the on-trace path to naturally move off
trace. However, code moved off-trace is kept 'local to the
scheduling region. Operations which support off-trace exits
can fill in unused space within the on-trace schedule.
Compiler engineering is simplified because code
generation and optimization are decoupled froml scheduling.

1

Predicated execution, as supported in PlayDoh [6], is
used to reduce the coupling between the scheduling of
branches and other non-speculative operations. PlayDoh's
"wired-and" and "wired-or" compare operations were
developed in order to provide the fast computation of n
way boolean operations required by scalar CPR.

The rest of the report is organized as follows. Section 2
presents architectural assumptions upon which examples
are based. Section 3 presents the principles of control CPR
in superblocks. Section 4 presents a scheduling approach
adapted to take advantage of CPR. Section 5 discusses
other transformations that must be applied after CPR to
get the best code quality. Section 6 provides a detailed
example. Section 7 presents more general CPR techniques
for the treatment of single entry acyclic regions. Section 8
discusses CPR for architectures without predicated
execution. Section 9 discusses related work, and Section
10 contains concluding remarks.

2. Architectural assumptions
This report uses the HPL PlayDoh architecture [6] to

explain CPR concepts. PlayDoh supports predicated
execution of operations. Predication support in PlayDoh is
an enhanced version of the predication capabilities provided
by the Cydra 5 processor [7, 8]. Predicated execution uses
a boolean data operand to guard an operation. For example,
the generic operation "rl=op(r2,r3) if pl" executes if p l is
true and is nullified if p l is false. Omitting the predicate
specifier for an operation is equivalent to unconditionally
executing the operation using the constant predicate true.

PlayDoh introduces a family of compare operations
which allow parallel computation of high fan-in logical
operations. A compare operation appears as:

pl,p2=CMPP.<Dl-action>.<D2-action>(r1<cond>r2) if p3
The operation is interpreted as follows:

- pl , p2: target predicates set by the operation;
- CMPP: generic compare op-code;
- <Dl-action>, <D2-action>: actions for the two targets
- rl, r2: data operands to be compared;
- <cond>: compare condition;
- p3: predicate input

A single target compare is specified by omitting one target
operand and one target action specifier.

The allowed compare conditions exactly parallel those
provided by the HP PA-RISC architecture. These include
"=", "<", "<=", and other tests on data. The boolean result
of a comparison is called its compare result. The compare
result is used in combination with the target action to
determine the target predicate value.

The actions allowed on each target predicate are as
follows: unconditionally set (UN or DC), conditionally set
(CN or CC), wired-or (ON or OC), and wired-and (AN or
AC). The second character (N or C) indicates whether the
compare result is used in "normal mode" (N), or
"complemented mode" (C). In complemented mode, the
compare result is complemented before performing the
action on the target predicate.

Figure I defines the action performed under each of the
allowed target action specifiers. The result of an action is
specified for all four combinations of input predicate and
compare result. Each cell describes the result cotresponding
to the input combination indicate by the row, and action
indicated by the column. The cell specifies one of three
actions on the target predicate: set to 0, set to I, or leave
untouched (shown as "-").

On result On complement
pred. cmpp
input result UN CN rn AN UC CC OC AC

0 0 0 -- -- -- 0 -- -- --
0 I 0 -- -- -- 0 -- -- --
I 0 0 0 -- 0 I I I --
I I 1 1 1 -- 0 0 -- 0
Figure 1: Destination action specifi ~rs for

compare-to-predicate operatior s.

The wired-and action is used to execute high tan-in AND
operations as follows: (1) initialize the result! register to
true; (2) execute n compare operations in perallel or in
arbitrary order, each of which uses AN (or A¢) action to
conditionally set the result to false. After all compares
have executed, the conjunction is available as the result.
The "wired-or" uses a similar approach in whidh the result
is initialized to false and then conditionally set to true.

As an example, assume that data values iO,i 1,i2 and i3
are to be tested to see if all four are equal to zero, and the
boolean result is to be placed in r. The result is computed
with the following code sequence:

r=1;
r=CMPP.AN(iO=O); r=CMPP.AN(i1=O);
r=CMPP.AN(i2=0); r=CMPP.AN(i3=0);

The first assignment initializes the result tK:l true and
precedes the wired-and compares. The predicate input for
each compare is true and is omitted in the code, The wired
and compares can execute in any order or in parallel since
each conditionally clears the result if the test for equality
fails. When multiple compares execute in the same cycle,
the multiported register hardware must ensure that the
result is in fact cleared. We will sometimes denote such a
sequence for computing AND by a high-level macro
written as follows:

r = AND(iO=O, i1=O, i2=O, i3=O).
The use of wired-and compares provides two benefits: It

allows constituent compares to be re-ordered during
scheduling, and it allows the retirement of mqItiple terms
in the conjunction in a single cycle. '

PlayDoh supports multiple branches in a s ngle cycle,
but does not support dependent parallel branc es; that is,
when multiple branches take in the same exec tion cycle,
the semantics is undefined. However, compar operations
can be used to compute mutually exclus ve branch
conditions so that independent branches ex cute either
simultaneously or in an overlapped manner.

2

3. Control CPR in superblocks
This section introduces the principles of control CPR.

Critical paths are based on dependence constraints which
are defined in the context of a scheduling model. We
present CPR techniques in the context of superblock
scheduling. The use of fully-resolved predicates converts
branch dependences into data dependences. Data CPR is
then applied to expose parallelism. A fall-through branch
is introduced to provide full CPR benefits for the fall
through path. Blocked control substitution and predicate
splitting are used when redundant operation count must be
minimized for processors with limited ILP.

3.1 Branch dependences

During scheduling, branches may impose restrictions on
code-motion. The precise definition of the restrictions
depends upon the scheduling strategy and the code
generation schema. This section discusses the code-motion
restrictions imposed by branches in superblocks.

An example superblock is shown in Figure 2. The
superblock consists of three basic blocks, each of which
contains the following: some number of instructions
(denoted by <block n body», a compare operation to
calculate a branch condition, and a branch operation. All
operations are within their original basic block and are
executed using true predicate. The code uses PlayDoh
compare operations to compute conventional branch
conditions. For example, the compare operation in basic
block 0 calculates the boolean condition xO = yO and stores
the result in e1.

<block 0 body> ifT; /* Basic block 0 */
el =CMPP.UN(xO=yO) ifT;
branch El if el;
<block 1 body> if T; /* Basic block 1*/
e2 =CMPP.UN(xl=yl) ifT;
branch E2 if e2;
<block 2 body> if T; /* Basic block 2*/
e3=CMPP.UN(x2=y2) ifT;
branch E3 if e3;

E4: /* fall-through code*/
Figure 2: Example superblock

The restrictions imposed by branches are defined using a
dependence graph. Edges in the dependence graph describe
data dependences as well as scheduling constraints due to
branches. Data dependences are conventional flow, anti,
and output dependences between operations. Edges that
represent scheduling constraints due to branches will be
called branch dependences.

Figure 3(a) shows various types of edges to and from a
branch. A branch performs two actions: it consumes a
branch condition, and it transfers flow of control. As a
condition consumer, it has a flow-dependenceedge from an
operation that generates the condition, and it may have a

anti-dependence edge to an operation which over-writes the
condition. These traditional data dependence edges are
shown as solid edges between branches and other
operations. Dotted lines represent branch dependences,
Branch dependences maintain order among branches or
between branches and other operations as needed to support
the scheduling scheme. Scheduling strategies differ in their
definition of branch dependences.

Speculative execution can be used to move operations
above branches, and exceptions from speculative
operations can be ignored with proper hardware support [6,
9]. However, some operations cannot be executed
speculatively without disrupting program semantics.
Within this discussion, operations which write' values to a
live-out register or operations which write to alocation in
memory are non-speculative. Other operations can be
executed speculatively. In Figure 3(a), "live-out anti" edge
from a branch to a side-effecting operation ensures that the
live-outs and memory are not overwritten before the branch
takes.

Superblock scheduling avoids compensation code
generation in order to simplify compiler engineering. This
report also assumes that compensation code is kept local
to the current scheduling unit. If an operation calculates a
value that is live-out at a branch, then it is not allowed to
move below the branch. In other words, all live-out values
are calculated before exiting the region. Similarly, stores
are not allowed to move below a branch. The "live-out
flow" edge from a side-effecting operation to branch
ensures that these conditions are satisfied.

~-.
:~""" IIV...out
I data antl-.
I anti -.,..:::_~

I ('-tn.) (.-. overwrh) (~~ up)

Inter- da
b~nch flow llve-ouf ."".

: / lIow

~
(a) (b)

Figure 3: Branch dependence

Lastly, the "inter-branch" edge from branch to branch
ensures correct branch order. Branch conditions in
conventional superblock code don't take the effect of
previous branches into account. Consider, for example, the
second branch in Figure 2. It should branch te E2 only if
the first branch falls through and its condition e2 is true.
The value of e2 alone is not sufficient to decide whether
the second branch takes or not. Assume that the
computation for e2 is speculatively moved above the first
exit branch. Also, assume that both el and e2 are true. The
program should branch to El and not to E2 even though
the condition (e2) for the second branch is true. I

I

3

(storeD)

xo~ --.E1

,V
k:3

X1=~1~-
branch - - • E2

,- -

18
~--.~

I,
E4

Figure 4: Dependence graph for superblock

Branches can be re-ordered using the approach described
in [10]. However, the approach requires compensation code
and may not help reduce the critical path. Section 9
discusses this further.

In Figure 3(b), column marked "no FRP" summarizes
branch dependences for conventional superblock code. The
column marked "FRP" will be discussed in Section 3.2.
The relevant parts of the dependence graph for the
superblock example are shown in Figure 4. To simplify
the presentation, we focus on store operations in each
basic block. The dependence graph shows that branches are
ordered and stores are trapped between branches.

3.2 Fully-resolved predicates

Given a single entry acyclic region within a control flow
graph, a fully-resolved predicate (FRP)l can be
defined for every basic block within the region and for
every control flow edge within or exiting the region. Each
FRP is computed using a boolean-valued expression every
time flow of control traverses the region. The FRP for any
block (edge) is true only if the program trajectory on this
entry to the region traverses that block (edge); otherwise,
the FRP for that block (edge) is false.

Intuitively, the FRP for any block or edge is a
conjunction of branch conditions describing the exact
condition, relative to region entry, under which the block
executes or the edge is traversed.

The use of an FRP allows an action to be correctly
guarded using predicates and without relying on control
flow. Block FRPs are used to predicate operations.
Speculatively executed operations are guarded by predicates

1Fully-resolved predicates were called fully-qualified
predicates in [2].

other than their block FRPs (e.g., true). On the other
hand, non-speculative operations such as stores and live
out overwrites must be correctly guarded using their block
FRPs. Edge FRPs are used to predicate branches, which
are always non-speculative.

Because FRPs can guard operations without relying on
control flow, they can be used to liberalize the rules of
code motion. This will provide a basis for a deeper
understanding of the parallel execution of programs.
Optimizations developed for data can be used to simplify
expressions involving both control and datal and these
expressions can be transformed to decrease critical path
height using data height-reduction techniques] FRPs also
enable new optimizations for on-trace code sequences; e.g.,
the motion of branches off-trace to decrease on-jrace branch
count. ,

The remainder of this section discusses ;tps in the
context of superblocks which consist of a line sequence
of basic blocks. For superblocks, FRPs are, defined as
follows: The FRP for the entry block is defined to be true.
The FRP for any current block (except the entry) is the
conjunction of the FRP for the preceding block and the
fall-through condition for the branch which teaches the
current block. The FRP for each exit edge is the
conjunction of the FRP for the block in which the branch
resides and the branch condition under which the branch is
taken. Note that the FRP for each block takes into account
the entire sequence of branch conditions needled to reach
that block from region entry.

In Figure 5, an FRP is computed for every basic block
and for every exit branch. FRPs for basic. blocks are
labeled fl , £1, £3, and exit FRPs are labeled el, e2, e3.
Each block computes FRPs for its on-trace successor
block and its exit branch using a single unconditional
compare operation; for example, the compare in block I
calculates two results as follows:

£1 = (xley Ijxf'l and e2 =(! (xley l jjxfl.
Note that the FRP for the fall-through exit (£3) is not used
because the superblock has no code after the last branch.

fO =true; /* FRP for block 0 is true */
<block 0 body> if fO;
fl,el =CMPP.UC.UN(xO=yO) iffO;
branch EI ifel;
<block I body> if fl ;
f2,e2 =CMPP.UC.UN(xl=yl) iffl;
branch E2 if e2;
<block 2 body> if f2;
f3,e3 =CMPP.UC.UN(x2=y2) iff2;

branch E3 if e3;

E4: /* fall-through code*/
Figure 5: Superblock code with f RPs

When FRPs are used within superblocks, ! orne of the
branch dependencesas presented in Figure 3 Cal be relaxed.
In Figure 3(b), the column marked "FRP" det nes branch

4

dependences for code using fully-resolved predicates. The
dependence graph for the superblock code with FRPs is
shown in Figure 6. Each two target unconditional compare
operation is shown as a pair of and gates which use the
condition in both true (for exit FRP), and complement (for
fall-through FRP) forms. Again, for this figure,
speculative execution is not considered as indicated by
showing only stores within the basic blocks.

Figure 6: Dependence graph for superblock
with FRPs

Data flow edges and live-out flow edges to a branch are
enforced just as when predicates were not fully-resolved.
FRPs eliminate data anti-dependences and live-out anti
dependences, because the use of FRPs ensures that when a
branch takes, subsequent anti-dependent operations do not
execute even when moved above the branch. Stores and
assignments to live-outs are allowed to move above
branches upon which they were anti-dependent in
conventionalcode.

On each entry into a superblock, only a single exit
branch is taken. In this case, the use of FRPs instead of
conventional branch conditions ensures that branches are
mutually exclusive. Thus, inter-branch edges can be
eliminated, and branches can move across other branches
without compensation code. Consider, for example, the
exit to label E3. If the FRP for the branch to E3 is true,
code at E3 may begin execution irrespective of previous
branches. Exit branches guarded by FRPs may be
scheduled simultaneously on PlayDoh because only one
will take.

3.3 Fully parallel computation of FRPs
The use of FRPs allows the parallel execution of

branches, but the computation of the FRPs themselves
remains sequential. The FRP for each basic block is one
AND operation removed from the previous FRP in the
sequence (see Figure 6). The FRP computation can be
performed in parallel by expressing an FRP as a multi
input AND of constituent branch conditions.

Figure 7 shows the code for computing all FRPs in
parallel. FRPs corresponding to all interior basic blocks

and exits are computed separately using a singleIwide AND
macro operation. We call this the fully parallel form of the
code. Each compare condition (e.g. xieyi in Figure 5) is
now abbreviated as ci to simplify the presentation. The
dependence graph for FRP computation in superblocks
with full CPR is shown in Figure 8.

fO=true;
<block 0 body> if fO;
fl=!cO;
el=cO;
branch EI if el;
<block 1 body> if fl;
f2=AND(!cO,!cl);
e2=AND(!cO,cl);
branch E2 if e2;
<block 2 body> if f2;
e3=AND(!cO,!c1,c2);
branch E3 if e3;
Figure 7 Code for FRPs with full-¢PR

The implementation of the wide AND operation varies
from one processor architecture to another. In conventional
architectures, a height-reduced tree of two input AND
operations may be used. In PlayDoh, wired-and compares
are used to reduce the height of an FRP computation, Each
AND macro operation is expanded into an initialization
operation and subsequent wired-and compare operations as
described earlier. Note that two-target compares allow
block and exit predicates to be computed together, thus
reducing the number of compares. For example), f2 and e2
can be computed together using two target compares.

The fully parallel form computes all FRPs ttr applying
CPR separately to all paths using redundant computation.

This requires 0(n2) operations. For processors with
limited amounts of ILP, this is prohibitively expensive.

et cO eo

e3 82 81
C'1co co T

~ ~ cb81ore2 81ore1 .10reO, " ""82 82 81 82 81 80

Figure 8: Superblock graph with full CPR

3.4 Blocked control substitution to compute FRPs
This report uses an approach, called blocked control

substitution, which reduces the amount of redundant
computation. Blocked control substitution accelerates
some on-trace FRPs while intervening FRPs are computed
sequentially. The technique is an adaptation of the blocked
back-substitution technique used for height-reduction of
control recurrences in while loops [2].

1* FRP computation for block n-I *1

1* FRP computation for block n *1
1* sequential FRPs for block n*1
fl .ei=CMPP.UC.UN(cO);
f2,e2=CMPP.UC.UN(CI);

ek=CMPP.UN(Ck_});

1* lookahead FRP for block n *1
/* uses "wired-and style" multiple assignment */
/* fie = AND(fi, ICj, !ci+l, ...,ICj+k-}) *1

fi+k=fi; 1* initialize result *1

fi+k=CMPP.AN(Cj); /* AND minterms *1
fi+k=CMPP.AN(Cj+ I);

1* FRP computation for block 0+1 *1

Blocked control substitution

5

Blocked control substitution is shown in Pigure 9. After
formation of a previous block, a heuristic is used to form a
subsequent block by selecting a lookahead distance k. An
expedited FRP, fi+k, is evaluated directly from the
previous expedited FRP, f], in a single wide AND
operation. Intermediate FRPs are evaluated sequentially.
The wide AND operation can be implemented [n a number
of ways; however, its implementation should minimize
the path length from fi to fi+k. It can be implemented
using two input AND operations by associating the tree of
operations so that a single AND separates fi+kifrom fi. On
PlayDoh, wired-and compares are used to acco~modate the
late arrival of conditions and to simplify the' interaction
between code generation and scheduling. Play oh code to
compute FRPs for blocked control substituti is shown
in the right hand side of Figure 9.

Blocked control substitution uses contr 1 CPR to
expose parallelism and allows the degree of p . allelism to
be adjusted using the lookahead distance. When program
traces are predictable, longer lookahead can be used to
increase the parallelism.

Blocked control substitution expedites an entire sequence
of FRPs when using multiple stages of blocking, While
non-lookahead FRPs are computed sequentially within
each block, they benefit from CPR across previous blocks.

Sequential FRP evaluation uses n operations: to traverse

n branches. Fully parallel evaluation requires O(n 2)

operations. Blocked control substitution requires 2n
operations or a factor of two in operation count over
sequential evaluation. To expedite a superblock of length
n, n-l operations compute the sequential FRBs, ?nd n+1
operations compute the lookahead FRP. When: using both
predicate splitting (see Section 3.6) and on-tra~e/off-trace

optimization, only the lookahead FRP is computed on
trace and FRP evaluation is irredundant.

3.5 On-trace CPR using fall-through branch
Consider the superblock in Figure 5. Each execution of

the superblock either takes an exit branch or falls throu~h

to the subsequent code (i. e., the code at E4). Up to this
point, the treatment of fall-through path has differed fr?m
that of the other exits. The code at label [E4 begins
executing only after all the exit branches fall-through. In
Figure 6, this is shown by branch dependence edges from
all exit branches to the code at label E4.

To examine the fall-through path in m re detail,
consider the code shown in Figure lO(a). Th code is a
version of the superblock in Figure 5 in w ich block
bodies have been replaced by assignments to 11, 12,13 and
14. Assume that 11, 12, 13 and 14 are li e-out on
superblock exits El, E2, E3 and E4, respectivel . Much of
the live-out computation can be done speculati ely, and it
may take a varying amount of time to compute each live
out. If predicates are fully-resolved, each branch can be
scheduled as early as corresponding live-outs arelavailable.

6

The fall-through path presents a special problem. Even
when the FRP for the fall-through path (i.e., £3) can be
quickly calculated, the fall through successor is not reached
until all exit branches fail. The fall-through path
accommodates live-out computations for all exits. This
interferes with on-trace CPR and requires that the fall
through schedule provide time to compute all live-outs.

11=... 11-...
fl ,el=CMPP.UC.UN(cO) fl,el=CMPP.UC.UN(cO)
branch El if el; branch El if el;
12=... 12=...
f2,e2=CMPP.UC.UN(cl) f2,e2=CMPP.UC.UN(cl)
branch E2 if e2; branch E2 if e2;
13=... 13=...
14=... 14=...
f3,e3=CMPP.UC.UN(c2) f3,e3=CMPP.UC.UN(c2)
branch E3 if e3; branch E3 if e3;

branch E4 if f3;
E4: /* fall-through oath*/ E4: /* fall-through oath*/

(a) code without (b) code with

fall-through branch fall-through branch

Figure 10: Introducing a fall-through branch

The introduction of a fully-resolved branch, called a
fall-through branch, allows all exits to be treated
identically. Table lO(b) shows the code after the
introduction of a fall-through branch. The FRP for the fall
through branch (£3) is a conjunction of conditio~s which
ensure that all exit branches fall-through (I. e., the
superblock exits at the bottom). The evaluation ?f ~ can
be expedited just as other FRPs were evaluated m FIgure
8. Now, if the live-out for the fall-through path can be
calculated quickly, the fall-through branch is free to move
above other branches.

3.6 Predicate splitting
Using blocked-control substitution to expedite a

lookahead predicate may not remove sequential FRP
evaluation from the critical path. Consider the program
graph of Figure 11(a). It shows the dependence graph for a
superblock after blocked control substituti?n has been
applied and the fall-through branch has been inserted. The
FRP for the fall-through branch has been expedited while
the computation of other FRPs remains sequential.
Assume that a store operation at exit E4 is guarded using
the fall-through branch and aliases with previous stores
guarded under FRPs £0, fl, and f~. The store at ~4 is
trapped below previous stores WhICh have sequentIally
computed FRP operands. The benefits of blocke~ control
substitution have been thwarted and sequentIal FRP
evaluation remains on-trace. Predicate splitting eliminates
the need for sequentially computed FRPs on the on-trace
critical path. .

Predicate splitting also decreases the number of required
on-trace FRP evaluations. The cost to compute on-trace

FRPs is reduced by evaluating only the lookahead FRP
but not intervening sequential FRPs.

Predicate splitting has been used for the acceleration of
control dependences in loops with conditional exits [2].
This report adapts the technique to scalar code, Predicate
splitting can be compared to the following control flow
transformation. A heuristic selects lookahead branches
within a superblock. After splitting, each non-speculative
operation will be positioned either before all branches or
immediately after a lookahead branch. Operations which
are not correctly positioned must be moved jU$tbelow the
next lookahead branch. As operations move down, they are
copied off-trace at each branch below which the~ move.

Predicate splitting replaces a computation guarded by
predicate p with multiple copies of the computation
guarded by predicates ql, ..., qn provided the following
conditions are satisfied:

1. q1 v ... v qn = p.
2. No more than one of q1, ... , qn evaluates to true.

After splitting, the effect of the multiple copies of the
computation under predicates q1, ..., qn is the same as the
effect of the original computation under p. This predicate
transformation simulates the motion of a computation
below a branch. The second condition can be relaxed for
certain types of computations, e.g., computations that
don't overwrite their input operands.

Figure 11(b) shows the effect of predicate splitting, As a
result of the downward motion simulated b~ predicate
splitting, each operation is split into two components: an

on-trace operation guarded with the lookahead FRP, and an
off-trace operation. The benefits of predicate splitting can
be seen by examining the code required within the on-trace
code component of Figure ll(b). The lookahead FRP
provides an expedited guard for store operations. Only the
fall-through branch is required, and only the lookahead
FRP is computed.

This report assumes that only one of the components of
a split operation may execute. Thus, off-trace operations
must be carefully guarded to avoid redundant execution.
Two ways to accomplish this are simultaneously
illustrated in Figure II(b).

In the first approach, the complement of the lookahead
FRP is used as the initial predicate for the chain of off
trace FRP conjunctions. Note that the complement of f3 is
used as the predicate input ("pin") to the sequence of
compare operations which compute off-trace FRPs. Thus,
FRPs for off-trace operations are false when the lookahead
predicate is true, and split operations can be moved back
on-trace without redundant execution. This approach will
be used to demonstrate the motion of off-trace code back
on trace during scheduling as presented in Section 4.

In the second approach, off-trace operations are dependent
on the fall-through branch to prevent them from moving
back on-trace. This is illustrated with the branch
dependence from the fall-through branch to the off-trace
code. In this case, "pin" can be set to true because the
branch dependence precludes redundant execution.

-----,
on-trace code

to

pin=l!f off-trace code
cO

E1

E2

E3

(a) code after blocked control
substitution (b) code with split predicates

Figure 11: S perblock graph with split predicates

7

i
Predicate splitting can only be applied to stores which

are separable [2] with respect to a lookahead branch (or the
corresponding lookahead FRP). Consider a store within a
superblock. The store is separable with respect to some
subsequent branch if the store can be moved! below that
branch without violating a dependence to a load which is
used to evaluate the branch condition for any branch
traversed by the store's motion. After predicate splitting,
stores use a lookahead FRP. No load operation depending
on these stores can be used to compute a condition needed
for lookahead FRP evaluation; otherwise, there is a cycle
in the computation which cannot be executed. I

Blocked control substitution (see Section 3.) requires a
heuristic to select lookahead FRPs. However lookahead
FRP selection interacts with predicate spl tting. The
selection of lookahead FRPs should not r quire that
predicates are split for operations which are n -separable
with respect to the lookahead predicate. This eads to the
following condition for selecting lookahead s: Given a
current lookahead FRP, select the next lookahead FRP so
that predicate splitting can be applied to intervening stores.

To illustrate that this is always possible, aonsider the
limiting case where every FRP is chosen as a lookahead
FRP. In this case, lookahead proceeds across only a single
branch. Each lookahead FRP is calculated as the
conjunction of a previous lookahead FRP ~nd its fall
through condition. Since all FRPs are computed, every
store is properly guarded by a lookahead FRP ~d does not
need to be split. The code degenerates to un-split and
irredundantcode.

4. Scheduling for superblock CPR.
This section describes a scheduling approach adapted to

code produced by CPR. It is similar to superblock
scheduling [5] and uses well understood Iistl scheduling
techniques.

4.1 Basic scheduling approach
The approach takes advantage of the scheduling freedom

offered by the use of FRPs and the fall-through branch.

The basic idea is this. Assuming that the fall-through
branch is the most probable, its placement in the schedule
divides the schedule into two parts. The code scheduled
above the fall-through branch is part of the on-trace path.
The code scheduled below the fall-through branch is not
needed on the on-trace path and can be moved out as an off
trace component.

The scheduling approach is illustrated in Figure 12. Part
(a) shows a superblock selected from the control flow
graph for a program. The fall-through exit E4 is assumed
to be the most probable. Part (b) shows a VLIW schedule
with columns representing three function units and rows
representing time proceeding top to bottom. The fall
through branch for E4 has been introduced and is scheduled
like any other branch.

The scheduling model is compatible with list scheduling
[10]. The heuristic described here applies list scheduling
separately to each exit and all operations that must precede
the exit. Exits, including the fall-through branch, are
scheduled in a priority order based on the exit probabilities.
First, the fall-through branch and the operations needed on
trace are scheduled. Then, the scheduler places the next
probable exit and the operations that must precede this
exit. At this time, the scheduler fills any unused spaces in
the schedule for the on-trace code with the as yet
unscheduled operations to support the next probable exit.
This process is repeated until all exits and associated code
have been scheduled. Note that the example schedule in
Figure 12(b) shows that the order of the branches has been
interchanged. Moreover, two branches have been scheduled
concurrently.

The code positioned below the branch to E4 but above
its target, shown between the thick lines, is not part of the
on-trace path. This is the off-trace component of the
schedule. After scheduling, the schedule is reorganized so
that the predominant path does not branch. The FRP for
the fall-through branch is negated and made to branch to
the beginning of the off-trace component as shown in
Figure 12 (c).

E4

E1

E2

lal~through

branch

e
branch

exit
branch

on-trece code

exit
branch

off-trece com anent

ext
branch.....__.L-__.L-__........ E3

(a) Flow
graph

(b) Conceptual schedule (c) Final code

Fi ure 12: Scheduling model

8

4.2 Use of multiple fall-through branches
CPR requires at least one fall-through branch for the last

lookahead FRP (corresponding to the on-trace exit). The
use of a single fall-through branch, which gets converted
to an off-trace exit after scheduling, requires that branch
conditions for all intervening branches must be available
to resolve the fall-through branch. This may unnecessarily
delay exit from the superblock when a single fall-through
branch is used in conjunction with a long sequence of
branches.

The scheduling approach described above can
accommodate multiple fall-through branches, Blocked
control substitution can be used to expedite multiple
lookahead FRPs for the on-trace path. The complement of
any lookahead FRP can serve as the predicate for a fall
through branch. In general, we can insert one fall-through
branch for each lookahead FRP.

Figure 13: Use of multiple fall-th ugh
branches

Figure 13 illustrates the use of multiple fall-through
branches. The scheduling region in Figure 13(~) contains 4
off-trace exits and two fall-through branches. 'Two of the
off-trace exits precede the first fall-through branch, and the
other two are between the first and the second fall-through
branch.

Figure 13(b) uses shading to show the allowed
placement of the code needed for each exit. All code
required for the two fall-through branches must remain on
trace (white region). Code for the first two off-trace exits
can remain on-trace or migrate into a compensation block
at the first fall-through branch. Similarly, the code for the
off-trace exits E3 and E4 can remain on-trace or migrate
into the compensation block at the second fall-through
branch. In this example, on-trace code including both fall
through branches has been scheduled first. Tbe code for
exit El was placed as the scheduler filled in empty spaces
after completing the on-trace schedule. All <lode for El
landed on trace. Then, code for exits E2, E3, and E4 were
scheduled and migrated partially off-trace. Inf,me cases,
code for all exits may fit in the on-trace sc edule, and
compensation blocks are empty and never visit .

The scheduling approach described in this s ction offers
a number of advantages. By scheduling exit in priority

5. Other CPR transformations
While control CPR has been discussed above, this

section identifies a number of other techniques which must
be applied to achieve the best possible performance.

5.1 Predicate speculation
Because of the small size of basic blocks, speculation is

essential for exploiting ILP. Traditionally, it has been
applied in the context of branching code. In the case of
predicated code, speculation is performed by substituting a
speculative guard predicate for the original guard predicate
for an operation. Typically, the speculative guard is
available earlier than the original guard, and the
transformation provides CPR. We use predicate
speculation as described in [11], which closely mirrors
speculative code motion within control flow graphs.

5.2 Data CPR
ILP compilers have used data CPR to reduce the length

of critical paths [12, 13, 5]. For example, consider the
following sequence in which c l , c2, c3 are constants:

x=w+cl; y=x+c2; z=y+c3;
It can be re-written as:

x=w+cl; y=w+(c1+c2); z=w+(c1+c2+c3).
The same number of operations execute after constants are
folded, but now they can be executed in parallel. These
techniques can be applied prior to control CPR and
subsequent optimizations.

Blocked back-substitution was used to accelerate data
recurrences in loops [1]. This report introduces a similar
technique for scalar code, called blocked data
substitution. It can be applied when a chain of
dependent associative operations computes a sequence of
terms. Consider, for example, the following code:

sl=sO+tO; s2=sl+t1; s3=s2+t2; s4=s3+t3;
s5=s4+t4; s6=s5+t5, s7=s6+t6; s8=s7+t7;

order, the on-trace path is scheduled without regard for off
trace requirements. This allows a minimal length on-trace
schedule. Operations scheduled to support lower priority
exits naturally fill in unused space within the prior
schedule of operations supporting higher priority exits.

All compensation code is kept local to the region of
scheduling. An operation naturally moves off-trace when a
fall-through branch is scheduled above it. However, it need
not move to an adjacent scheduling region. It is naturally
scheduled in an off-trace component of the current
scheduling region.

The scheduling approach requires only simple interaction
between code generation, optimization and scheduling. In
the most general case, every code motion step during
scheduling can be followed by an optimization step. This
leads to very complex scheduler/optimizer interaction. By
selecting lookahead FRPs and splitting predicates, CPR
freezes key decisions about code motion and allows
optimization to take advantage of these decisions.
Scheduling proceeds without additional optimization.

9

E4
-oII-I~E3

E1

(b) Example schedule

FT11Q.14-_"_...

FT2 W-..L.._.."..."...

E3

E1

.......L.......L... E2

.......L.......L... E4

FT1
L..II...-...

FT2

(a) Two fall-through
branches

Initially, the code executes sequentially. We could perform
full data CPR for each term in the sequence using an
independent height-reduced expression for each term. This,
however, requires O(n2) operations.

In blocked data substitution, a heuristic selects
lookahead terms in the sequence. Each lookahead term is
computed from a previous lookahead term using CPR.
Non-lookahead terms are computed sequentially. Assume
that s4 and s8 are selected as 100kaheadi'erms. The
reorganized code consists of two lookahead exp ssions:

s4=sO+«1O+t1)+(t2+t3» and s8=s4+«t4+15) (t6+ t7».
In addition, there are six conventional expressi s:

sl=sO+1O; s2=sl+t1; s3=s2+t2; ,
s5=s4+t4; s6=s5+t5; s7=s6+t6.

Lookahead expressions are associated assuming that the
lookahead input is critically late. Assume t~t L is the
latency of an add operation. The critical path from sOto s8
is reduced from 8L to 2L, and the worst case path length
from any input to s8 is reduced from 8L to 4L .

Blocked data substitution provides substantial CPR with
a maximum two fold increase in operation count, In some
cases, the lookahead terms in the sequence (e.gi s4, s8) are
the only terms that are live-out on the on-trace path. In
this case, the computation of non-Iookahead terms may be
moved off-trace leaving no redundant code on trace.

5.3 On-trace/off-trace optimization
On-trace/off-trace optimization is an optimization

framework which minimizes off-trace requirements on on
trace code. It can be viewed as an extension of blocked data
and control substitution. Conceptually, on-trace/off-trace
optimization replicates original code with two eopies: on
trace and off-trace counterparts. Optimization is performed
in multiple passes. First, CPR and optimization is applied
to the on-trace code ignoring the requirementsIof the off
trace code. Then, the off-trace code is optimized with
knowledge of the resultant on-trace code. Expressions
computed on-trace need not be recomputed off-trace.

On-trace/off-trace optimization provides a' viewpoint
which systematically provides the lowest latency and
fewest operations on trace. A number of on-trace/off-trace
optimizations are used in the example discussed in Section
6. When conventional optimizations (such as copy
elimination, dead code elimination, constant folding,
load/store elimination) are applied first on-trade and then
off-trace, improved on-trace code quality results.

Store elimination provides an important example of on
trace/off-trace optimization. Using predicate splitting, on
trace stores are moved to a lookahead FRP where they
execute under a common predicate. If they overwrite a
common location, redundant stores are removed, and only a
final store remains on trace. The Multiflow compiler
achieved a similar effect for live-out assignments. It moved

10

them downward and into compensation blocks leaving a
single assignment on trace [12].

6. Example of Superblock CPR
This section provides an example to demonstrate CPR

concepts introduced in this report. The example C++
source program is shown in Figure 14. The main program
shown in Part (a) invokes sum2 twice to add the top three
stack elements. The sum2 function shown in Part (b) pops
the top two stack elements, adds them, and pushes the
result back on the stack. Part (c) shows the relevant code
for push and pop subroutines. The variables ep and fp are
the low and high bounds for the stack. Assume that any
branch to "full" or "empty" within push or pop is rare.

The scope over which analysis, optimization and
scheduling are performed must be large enough to reveal
significant ILP. Inlining is used to enlarge the scope.
Figure 14(d) shows the code for sum2 after inlining push
and pop and applying certain optimizations. For example,
loads from p for the second call to pop and the call to push
have been eliminated. Also, the sequential chain of
assignments to p has been parallelized by renaming and
substitution. Original code is sometimes shown in
comments /*0 ... */ to help explain the inlined code.
Extra copies have been left in the code to simplify
presentation; assume that these will be eliminated.

Figure 15 shows the code after applying control CPR
and on-trace optimizations. Stores and operations that
write live-outs are non-speculative and guarded using
FRPs. Other operations can be executed speculatively. For
example, loads and other speculative operations frequently
execute with true (omitted) predicate.

The sequence of optimization steps and the actual
placement of operations in the final schedule are not
shown. To simplify presentation, the code is split into
two parts, one for each call to sum2. Each part shows the
on-trace code as well as the related compensation code
generated by the scheduler. We assume that the heuristic
for blocked control substitution and fall-through branch
insertion picks FRPs that correspond to completing the
first and second invocations of sum2.

Consider the optimized on-trace code for the first call to
sum2. The lookahead FRP, f3, is expedited, and its
complement is used as the off-trace branch condition.
Predicate splitting followed by redundant store elimination
results in a single on-trace store to stack pointer p; the
other two stores move off-trace. Careful optimization of
the computation of f3 eliminates the pO <= ep test, since
it is subsumed by the p1<=ep test. Also, note that three
branches in the original code have been replaced by a
single branch to off-trace code.

pg

i
void mairuj] void stack::sum2(){ int stack::popO{ pO=load(p);

stack q; x =popO; int r; cO=cmpp.un(pO<=ep);
y = popt); if(p<= ep) goto empty; branch empty if cO;

1* initialize stack *1 push(x+y); r=*p; xO=load(pO);
... return; } p-=l; pl=sub(pO,I); 1*0 pO=sub(pO,I)*1

I*add top 3 elem.*1 return r; store(p, p l);
q.sumzr); empty: cl=cmpp. un(p I<=ep);
q.sumzt); ... } branch empty if cl;

... } stack::push(int a){ yO=load(pl);
if(p>= fp) goto full; p2=sub(pO, 2); 1*0 pO=sub(pO,I)*1
p+=I; store(p, p2);
*p=a; vO=add(xO,yO);
return; c2=cmpp.un(p2>=fp);

full: branch full if c2;
... } p3=pI; 1*0 pO=add(pO,I)*1

I*ep & fp are empty and store(p, p3);
full pointer limits*1 store(03, vu):

(a) main program (b) sum2 (c) pop and push (d) inlined sum2

F11 ure 14: Stack exam Ie

fO=true; 1* entry predicate for first sum2 is true*1
pO=load(p);
pI=sub(pO, 1);
p2=sub(pO, 2);
p3 = pl ;
xO=load(pO);
yO=load(pI);
vO=add(xO, yO);
1* compute lookahead FRP *1
f3=£O;

1*0 f3=cmpp.an(pO<=ep); *1
f3=cmpp.an(pl<=ep);
f3=cmpp.an(p2>= fp);
1* f3 guarded code *1
store(p2,vO) if f3;
store(p,p3) if f3;
branch OTI if lf3;
I*continue on-trace with second sum2 inrvocation*1

fO% = f3; 1* entry predicate for second sum2 is f3*1
pO% = pl ; 1*0 pO%=load(p); *1
pl % = p2; 1*0 pl %=sub(pO%,I); *1
p2% = sub(pO, 3); 1*0 p2%=sub(pO%,2); *1
p3% = p2; 1*0 p3%=pI % *1
xO% = vO; 1*0 xO%=load(pO%); *1
yO%=load(pl %);
vO%=add(xO%,yO%);
1* compute lookahead FRBe *1
f3%=FO%;

1*0 f3%=cmpp.an(pO<= ep); *1
f3%=cmpp.an(pl %<=ep);
f3%=cmpp.an(p2%>= fp);
1* f3% guarded code *1
store(p2%,vO%) if f3%;
store(p,p3%) if f3%;
branch OTI if !f3%;
I*continue on-trace with next superblock*1

OTl: 1* first compensation area *1
otp=If3; 1* complement lookahead pred >HI
fl,el =cmpp.uc.un(pO<=ep) if otp;
f2,e2 =cmpp.uc.un(p1<=ep) if fl;
store(p,pl) if fl;
store(p,p2) if f2;
branch empty if el;
branch empty if e2;
branch full if f2;

OT2: 1* second compensation area *1
otp% = !f3%; I*complement lookahead pred *1
fl %,el % =cmpp.uc.un(pO%<= ep) if otp%;
f2%,e2% =cmpp.uc.un(p1<= ep) if fl %;
store(p,p I%) if fl %;
store(p,p2%) if f2%;
branch empty if el %;
branch empty if e2%;
branch full if f2%;

(a) First sum2 invocation (b) Second sum2 invocation

Figure 1$: CPR optimized stack example

The code for the second call to sum2 is similar to that
for the first call; see Figure 15(b). We hate renamed
operands with trailing % to distinguish them from the
corresponding ones in the first invoel tion. All
optimizations applied to the code for first cal also apply
to the code for the second call. In addition, th re are new
optimization opportunities. For example, the ointer pO%
is equal to the previously calculated pl and the value xO%,
which was read from memory, is the same as e value vO
calculated in the first call.

CPR has exposed substantial parallelism not available
in the original code. The second invocation of sum2
overlaps almost entirely with the first invocation in spite
of the presence of three branches in the original code. A
single wired-and (also a single branch) separates the
completion of the second invocation from the completion
of the first. The use of wired-and is not necessary; properly
associated two input AND operations give the same result.
Additional control parallelism can be exposed using larger
lookahead distance and fewer fall-through branches along
the critical path.

11

In this example, control and data CP~ provide
substantial benefit to on-trace code. Contrdl CPR has
reduced six on-trace branches to two. Much 0$the branch
resolution and branch target formation is performed only
off-trace as needed. ON-trace/off-trace optimization
simplifies the evaluation of on-trace compare conditions
needed for the on-trace FRP. Multiple stores to pare
replaced with a single on-trace store. Data height through
arithmetic sequences is reduced; for example, the final
value of the pointer p is evaluated in a single subtract,

7. Control CPR for general single entry
acyclic regions

This section generalizes the CPR techniques to single
entry regions with acyclic flow of control, called Single
Entry Acyclic Regions or SEAR for short. The
overall approach is as follows: compute FRPs for blocks
and exits in a SEAR, use these FRPs to if-convert the
SEAR so that the region is a block of predicated code with
no internal control flow, and use blocked control
substitution to expedite computation of certain FRPs.
This section describes the computation of iFRPs in a
SEAR and extends blocked control substitution to SEARs.

7.1 Computing FRPs in a SEAR
FRPs for a SEAR can be computed sequentially using

its control flow graph. Program branches correspond to
predicate ANDs and program merges cortespond to
predicate ORs. However, this does not take advantage of
additional parallelism that can be exposed using! the control

dependence graph. The concept of control dependence was
defined in [14]. More recent work defines efficient
algorithms for computing control dependences [15]. If
conversion of SESE regions using the control dependence
graph is described in [16]. If-conversion was extended to
support hyperblock scheduling in [11]; but the approach
ignores exits and does not compute fully-resolved
predicates.

To illustrate the computation of FRPs for basic blocks
and exits within a SEAR, consider the example in Figure
16 (a). Nodes corresponding to basic blocks internal to the
control flow graph are numbered 1-8 with entry node
numbered 1. We assume that an entry predicate is set to
true on entry to the region. A pseudo node is introduced for
each region exit; these are denoted by 9, 10, 11. Every
branch has an uppercase letter corresponding to the branch
condition which determines its direction of flow. By
convention, branches go left on true and right on false
condition.

The control dependence graph for a program defines two
key concepts required to efficiently compute FRPs. First is
the concept of control equivalence: two nodes x and y are
control equivalent when a control flow path through the
program visits x if and only if it also visits y. Second is
the notion that a basic block in the control flow graph is
control dependent on an edge in the control flow graph: a
basic block x in the control flow graph is control
dependent on the edge from basic block y to basic block z
if x does not post-dominate y but x does post-dominate z
[15].

PO --I
1 = entry predicate ISESf Rl I
2=IA

~--3=IA

4=2+3=1 Pl
5 =4B::;: 1B ISEsf R2 I
6=5C

~--7=5C

8 = 6+70 P2
9=4B=l: IB -.,

-p

1O=7D
P3

11 = 8
P4

ISESf R41

<$>---
P5 --'

(a) Example SEAR (b) Eil<ample SEAR (c) CPR of a complex SEAR

control flow graph FRPs

Figure 1 : Computing FRPs for a SEAR

12

The code to compute predicates for the example SEAR
is shown in Figure 16 (b). Within each expression, a
numeral represents the FRP corresponding to the
identically numbered basic block. An upper case character
corresponds to a branch condition which may be
complemented. One or more expressions is provided to
compute each FRP. The first expression (after the first =),
is calculated directly from control flow. Fer example
4=2+3 indicates that the OR of the FRPs for blocks 2 & 3
correctly computes the FRP for block 4. A second
expression (after the second =) is provided lwhen FRP
computation using control dependence differs from FRP
computation using control flow. For example 4=2+3=1
indicates that control dependence directly uses the FRP for
block 1 as the FRP for block 4.

The expression for each FRP in the example is derived
using the following procedure. To compute tl· FRP for a
given node, a set of edges upon which the no e is control
dependent is identified. Each edge in the set p ovides one

term in the FRP expression. An edge term is calculated
using the FRP for the edge's origin node ANDed with the
branch condition which traverses the edge. The FRP
expression for a node is the OR of all terms for edges on
which the node is control dependent. When nodes are
control equivalent, multiple nodes have identical FRP
expressions; for example, see nodes 4 and 1.

7.2 Blocked control substitution for a SEAR
The procedure described in Section 7.1 naturally

parallelizes a sequence of if-then-else expressions but does
not provide CPR across a sequence of exit branches. This
is addressed using the following observation: if all exit
branches in a SEAR dominate the fall-through exit, CPR
for the fall-through FRP can be performed exactly as for
superblocks. Note that in Figure 16 (a), the branch within
node 4 dominates the fall-through branch while the branch
within node 7 doesn't.

- .E4

- ~E1

off-trace
I st~re Icode

C1~_~E2

I st~re I

c2~_~E'
,

cO

to
off-trace

code
-------1

I

store

store

E5 I

I

6

on-trace
code

to
off-trace

code

never
occurs--

to
lon-trace

E5 , code

'"",'" I

-: I store I
cO '

~-.E1
I st~re I

01~_.E2

I st~re I

"'~-.E'
I st~re I

\ c3

C3C2CiCii\~ -.E.
\ ,

(a) FRP for fall-through branch (b) Motion of other branches off trace

Figure 17: B nch motion across fall-through branch

13

Original branches Interchanged branches

Figure 18: Interchanging branches

E1E2E1E3

E1

E3 E2

performance limitations due to control dependences on ILP
processors. The use of speculative execution is one such
technique [3, 10, 18-21, 9]. Speculative execution
identifies operations whose side effects can be reversed and
moves them above branches upon which they depend.

Branches also limit performance when processors have
inadequate branch throughput or excessive branch latency.
Compiler techniques have been developed which move
branches across other branches [10, 21]. However,
interchanging branches alone does not alter the number of
on-trace branches as shown in Figure 18. Performance
limitations due to control dependences persist even after
interchange. Each time branches are interchanged, code is
reorganized requiring complex interaction between
schedulingand code generation.

Architectural features have been used to reduce the
dependence height of consecutive branches. The ability to
retire multiple dependent branches in a single cycle reduces
the height of critical paths through control dependences
[22, 23, 10]. The Multiflow Trace machine used a
hardware priority encoder mechanism to enforce sequential
dependence among concurrently issued branches. The
simplest form of multi-way branches cannot guard
operations trapped between branches, but more
sophisticated branch architectures have been developed to
guard intervening operations [19,24,21].

Prioritized multi-way branch alone may fail to eliminate
bottlenecks due to control dependences for several reasons.
It is unlikely that multi-way branch hardware is as fast as
2-way branch hardware. Many processor architectures
require that all branch latencies be uniform. In this case,
the 2-way branch latency is matched to the multi-way
branch latency. Thus, simple 2-way branches are penalized
by the support for multi-way branches.

Multi-way branch achieves minimum latency at the
expense of branch scheduling freedom. Minimizing the
critical path may force the traversal of multiple branches in
a single cycle. Peak branch issue requirements may be
difficult to satisfy in hardware, especially if branches can
not be issued on all function units.

Predicated execution [25, 7, 8, 20, 16, 11, 26, 6]
provides another approach to parallelize programs limited

14

9. Related work
There is a substantial body of work on compiler

techniques and architectural features to alleviate problems
caused by program dependences. Compiler techniques have
been developed to reduce critical paths through data
dependences. Tree height-reduction has been used to
parallelize networks of arithmetic operations [17].
Techniques such as renaming, substitution, and expression
simplification have all been used to break data dependence
chains [12, 13, 5]. More recent work introduced blocked
back substitution for CPR of data recurrences ill loops [1].

Control dependences [14] identify the relationship
between a branch and the operations which depend upon its
resolution. Control dependences correctly iden~fY minimal
conditions under which an operation execu es without
speculation. Techniques have been developed to alleviate

8. Application to architectures with no
predicates

Although this report uses predicated execution, control
CPR also applies to conventional architectures without
predicated execution. Figure 17 shows an approach which
again uses a fall-through branch. In Figure 17 (a), four
non-fully-resolved branches are shown above a fully
resolved fall-through branch. All off-trace exits are tested
first and, if the fall-through branch is reached, it always
takes and follows the path to E5. In Figure l7 (b), off
trace branches are moved below the fall-through branch
leaving only the fall-through branch on-trace. Like
predicate splitting, stores trapped between branches in
Figure 17 (a) are replicated and their on-trace components
are guarded by the fall-through branch. Logical operations
(ANDs) necessary for control CPR can execute within a
conventionalALU.

Consider the abstraction of a SEAR shown ih Figure 16
(c). The SEAR is broken into subgraphs separated by
branches which dominate the fall-through exit. These
branches decompose the SEAR into a sequence of two
subgraph types: single entry single exit (SESE) subgraphs
(e.g., Rl, R2, R4), and more general SEAR subgraphs
(e.g., R3). Blocked control substitution, as in the
superblock case, can be used to expedite FRPs across
sequences of exit dominating branches spanning SESE
regions. But, lookahead cannot be used across SEAR
subgraphs because they have exit branches which do not
dominate the fall-through path.

For example, P2 can be expedited, by relwriting its
expression in terms of PO and the conditions for the first
two exit dominating branches. Branches internal to the
intervening SESE regions are ignored. Similajrly, P5 can
be expedited in terms of P3 and intervening branch
conditions. The exit predicate for SEAR R3 labeled P3 has
already been computed in terms of P2 and branch
conditions internal to R3. Since P3's computation depends
on branches internal to R3, this approach does not expedite
the computation of P3.

by control dependences. For example, a sequence of
multiple if-then-else expressions can be parallelized with
if-conversion. Control CPR for loops with exits has been
demonstrated in prior work [2], and the generalization of
these techniques to control CPR in scalar codes is
addressed in this report.

10. Concluding remarks
CPR is a collection of techniques which i*crease the

amount of parallelism in scalar programs. Aslprocessors
provide more ILP, CPR techniques will become
increasingly important. Compile time tranlormations
which better tolerate data and control dependen es allow us
to exploit hardware implementations with deep r pipelines,
wider issue, and simpler support for branches.

This report describes transformations w ch reduce
critical path lengths in scalar programs. Ful y-resolved
predicates are introduced to eliminate branch d pendences.
The introduction of FRPs assists in uni ying CPR
techniques for both control and data dependen es. Critical
paths which jointly traverse data and control dependences
are height-reduced. The application of control CPR allows
branches to move off-trace. Scheduling and optimization
models suitable for use with CPR are also descdbed,

This report illustrates the use of CPR in the context of
both superblocks and more general single entry acyclic
regions. Control CPR is illustrated for architectures with
and without predicated execution.

While the use of CPR transformations to enhance
parallelism has been demonstrated, heuristics for the
application of CPR are not yet well understood, and the
benefits of CPR have yet to be quantified. The utility of
CPR depends upon many factors including the nature of
the application code and nature of the instruction set
architecture.

11. Bibliography
1. M. Schlansker and V. Kathail. Acceleration of first

and higher order recurrences on processors with
instruction level parallelism. In Sixth I,*ernational
Workshop on Languages and Compilers for Parallel
Computing, U. Banerjee, et al., Editor, Springer
Verlag, 1993,406-429.

2. M. Schlansker, V. Kathail, and S. A~ik. Height
reduction of control recurrences for ILP iprocessors.
Proceedings of the 27th Annual International
Symposium on Microarchitecture (Sa~ Jose CA,
1994),40-51. .

3. J. A. Fisher. Trace scheduling: A techniq for global
microcode compaction. IEEE Trans ctions on
Computers C-30, 7 (1981), 478-490.

4. J. A. Fisher and S. M. Freudenberger. Predicting
conditional jump directions from previo s runs of a
program. Proceedings of the Fifth In ernational
Conference on Architectural Supportfor Piogramming

15

Languages and Operating Systems (Boston, Mass.,
1992), 85-95.

5. W. W. Hwu, et al. The superblock: an effective
technique for VLIW and superscalar compilation. The
Journal ofSupercomputing 7, 1/2 (1993), 229-248.

6. V. Kathail, M. S. Schlansker, and B. R. Rau. HPL
PlayDoh architecture specification: Version 1.0.
Technical Report HPL-93-80, Hewlett-Packard
Laboratories, Palo Alto CA, 1993.

7. J. C. Dehnert, P. Y.-T. Hsu, and J. P. Bratt.
Overlapped loop support in the Cydra 5. Proceedings
ofthe Third International Conference on Architectural
Support for Programming Languages and Operating
Systems (Boston MA, 1989),26-38.

8. B. R. Rau, et al. The Cydra 5 departmental
supercomputer: design philosophies, decisions and
trade-offs. Computer 22, 1 (1989), 12-35.

9. S. A. Mahlke, et al. Sentinel scheduling: A model for
compiler-controlled speculative execution. A CM
Transactions on Computer Systems 11, 4 (1993),
376-408.

to. J. R. Ellis. Bulldog: A Compiler for VLIW
Architectures. (The MIT Press, Cambridge,
Massachussetts, 1985).

11. S. A. Mahlke, et al. Effective compiler support for
predicated execution using the hyperblock.
Proceedings of the 25th Annual International
Symposium on Microarchitecture (1992), 45-54.

12. G. Lowney, et al. The Multiflow Trace Scheduling
Compiler. The Journal of Supecomputing 7, 1/2
(1993),51-142.

13. J. C. Dehnert and R. A. Towle. Compiling for the
Cydra 5. The Journal of Supercomputing 7, 1/2
(1993), 181-228.

14. J. Ferrante, K. Ottenstein, and J. Warren. The
program dependence graph and its use in optimization.
ACM Transactions on Programming Language
Systems 9,3 (1987), 319-349.

15. K. Pingali and G. Bilardi. APT: A Data Structure for
Optimal Control Dependence Computation.
Proceedings of the Programming Languages Design
and Implemenation (La Jolla Ca., 1995).

16. J. C. H. Park and M. S. Schlansker. On predicated
execution. Technical Report HPL-91-58, Hewlett
Packard Laboratories, Palo Alto CA, 1991.

17. D. J. Kuck. The structure of Computers and
Computations. (Wiley, New York, 1978).

18. A. Nicolau. Percolation scheduling: a parallel
compilation technique. Technical Report TR 85-678,
Department of Computer Science, Cornell, 1985.

19. K. Ebcioglu and A. Nicolau. A global resource
constrained parallelization technique. Proceedings of
the 3rd International Conference on Supercomputing
(Crete, Greece, 1989), 154-163.

20. P. Tirumalai, M. Lee, and M. S. S~hlansker.
Parallelization of loops with exits onl pipelined
architectures. Proceedings of the Superc0rf,tputing '90
(1990), 200-212. i

21. S.-M. Moon and K. Ebcioglu. An efficie ' resource
constrained global scheduling tee nique for
superscalar and VLIW processors. Procee ings of the
25th Annual International Symp sium on
Microarchitecture (portland, Oregon, 1992)

22. J. A. Fisher. 2N-way jump microinstructio hardware
and an effective instruction bindin method.
Proceedings of the 13th Annual Wo kshop on
Microprogramming (Colorado Springs, Colorado,
1980),64-75. ,

23. J. A. Fisher. Very long instruction word ~hitectures
and the ELI-512. Proceedings of the Te th Annual
International Symposium on Computer A chitecture
(Stockholm, Sweden, 1983), 140-150. :

24. K. Ebcioglu and R. Groves. Some glOb~l compiler
optimization and architectural features fo improving
performance of superscalars. Techni al Report
RC16145, IBM T.J. Watson Resear h Center,
Yorktown Heights, NY, 1990. '

25. P. Y. T. Hsu and E. S. Davidson. Highlyl'concurrent
scalar processing. Proceedings of the Thirteenth
Annual International Symposium on IComputer
Architecture (1986), 386-395. i

26. B. R. Rau, M. S. Schlansker, and P. Pf'Tirumalai.
Code generation schemas for modulo sch duled DO
loops and WHILE-loops. Technical Repo HPL-92
47, Hewlett-Packard Laboratories, Pal Alto CA,
1992. !

16

