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Abstract

The advantages of user-space protocols are well-known, but
implementations often exhibit poor performance. This paper
describes a user-space TCP implementation that outper
forms a 'normal' kernel TCP and that achieves 80% of the
performance of a 'single-copy' TCP. Throughput of 160
Mbitls has been measured. We describe some of the tech
niques we used and some of the problems we encountered.

1 Introduction

Network protocols are typically implemented in-kernel for
reasons of performance and security. However, in-kernel
implementations are often hard to debug and difficult to cus
tomise. Also, kernel protocols sometimes obstruct the
developmentof application-specific protocols, as the kernel
code is difficult to circumvent. While these problems are
well-known, attempts at providing user-level protocols have
often exhibited poor performance. Possible culprits for this
poor performance are extra context switches and system
calls. As performance is a paramount consideration user
space protocols are rarely found in 'real-world' systems.

This paper outlines some techniques to avoid these prob
lems and describes the implementation of a complete TCP
in user-space that exhibits very high performance. The work
was carried out on an experimental Gbit/s network called
Jetstream.

We start by describing the Jetstream network and the low
level interface we added to its network device driver to sup
port development of application layer protocols. The imple
mentation of TCP in user-space using these facilities is then
discussed. We describe problems and pitfalls we found pro
viding a user-space TCP in a Unix environment and point
out features of TCP that made the implementation difficult.
Finally, we present results that show our user-space imple-
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mentation outperforms the normal kernel TCP, and discuss
optimisations we plan to implement in future work. We con
clude that user-space protocol implementations can perform
well given the appropriate low-level driver facilities.

2 The Network Hardware

This work has been carried out on a Jetstream network [1].
Features of this network influenced some of the design deci
sions, so we'll briefly describe its relevant characteristics.

Jetstream is a Gbitls token-ring network using copper co
axial cable for the physical link. The host interface for a HP
Series 700 workstation consists of two cards forming a sin
gle entity (see Figure 1) - one card, Jetstream, connects to
the network and provides the MAC layer; the other, After
burner (see [2]), connects to a workstation bus and provides
1 MB of network buffer memory. Afterburner supports sin
gle-copy implementations of network protocols, allowing
application data to be copied directly into these buffers
without being copied into kernel buffers first.

FIGURE 1. Jetstream & Afterburner

The Jetstream network uses the AAL-5 [3] frame format
and provides node addressing and hardware demultiplexing
of logical data streams via the use of ATM Virtual Circuit
Identifiers (VCls). A VCI consists of 15 bits - 4 bits indicat
ing the Ring ID which identifies a particular node on the
network, 10 bits identifying the logical data stream on that
node, and 1 bit indicating whether this is a multicast or uni-



cast packet. Every packet sent on the network contains a
VCI indicating the packet's destination.

3 Low-level access to the Jetstream driver

During the development of the Jetstream device driver we
decided to provide a low-level access method to allow
applications direct control of Jetstream facilities. The key
goals of our scheme were to:

• Separate demultiplexing from protocol processing,

• Allow protocol code to be moved out of the kernel into
user-space by providing interfaces that allow user-space
protocols to execute efficiently

At the outset we decided that it was essential that certain
facilities remained kernel-resident. For example, packet
demultiplexing should remain in the kernel to avoid exces
sive context switching overhead. Also, packet buffering
should remain in the kernel to minimise data-copying over
head. Since so many facilities hinge around the manage
ment of 'pools', or sets of packet buffers, we decided to call
our access model the "Pool Model". Thus:

• A 'pool' is a set of fixed-size buffers uniquely associated
with an application data stream

• A small set of operations can be performed on pools,
such as allocating and freeing buffers, copying data in
and out of buffers

• Arbitrary combinations of pool buffers may be formed
into a packet and sent out 'on the wire'

• Applications provide the driver with sufficient informa
tion for it to place incoming packets into the appropriate
pool

• Applications associate resource limits and policies with
their pools allowing intelligent decisions to be made
about packets as soon as they are received

Some of the pool facilities are assisted by features of the
Jetstream/Afterburner hardware. For instance, associated
with each pool is a Transmit VCI (TxVCI), at least one
Receive VCI (RxVCI), and a number of Transmit (Tx) and
Receive (Rx) buffers. Tx buffers are allocated dynamically
from the Afterburner RAM up to a limit which is set on a
per-pool basis (with a system-wide upper bound). Data is
then copied into these Tx buffers and a sequence of buffers
(up to a total of -64KB) is then sent as a single Jetstream
PDU. When a packet arrives at the interface, Rx buffers are
allocated in the pool associated with the packet's destination
VCI and the packet copied into them. If the pool already has
all of its Rx buffers in use the packet is discarded.
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These Tx and Rx operations (and all other operations) are
communicated to the Jetstream device driver via ioctlO
functions. Because of the high overhead associated with
making such a system call, user-space processes can create
'scripts' consisting of a series of operations to be per
formed, then execute a whole script in a single ioctlt). This
allows us to amortize the cost of crossing the user-kernel
boundary across multiple operations. For further details of
this model see [5].

4 Implementing TCP

We had already implemented a number of protocol libraries
that made use of pools and these operation scripts, in partic
ular an RPC library and a simple reliable byte-stream proto
col library. Both of these exhibited performance at least as
good as their kernel counterparts. The byte-stream protocol
however, was too simple for 'real-world' use. For example,
when closing a connection it blocked the process until all
data had been acknowledged. Furthermore it functioned
properly only when the process called on it regularly - the
process could not be suspended. To show that our tech
niques had more general validity we decided to attempt the
implementation of a user-space TCP.

4.1 Problems implementing TCP in user-space

There were three main problems in implementing TCP in
user-space. The first problem was the difficulty of imple
menting TCP per se. Our interest was in making TCP work
in user-space, not in developing TCP from scratch. The sec
ond problem was the asynchronous nature of protocol
processing in TCP. Packets arrive and timers expire at arbi
trary moments. How could user-space TCP handle these
events without interfering with the application program? If
asynchronous events are mapped to application level asyn
chronous processing (i.e. signal handlers), how could the
application program's use of signals and timers be hon
oured? The third, and probably the most difficult problem
was that TCP connections live longer than processes. For
example, data passed to sendO is delivered and the connec
tion is closed even after the application has terminated.
Also, the connection must survive even if the application
has been suspended.

4.2 Design Goals

Our primary goals were to provide an implementation of
TCP that was as complete and robust as possible and that
achieved the highest performance possible. In a kernel TCP,
the main way to increase throughput is by reducing data
touching. In a user-space TCP other techniques are also nec
essary such as minimising the number of system calls and
context switches. While the pool model allows us to reduce



the system call overhead, reducing context-switching is
more difficult.

4.3 Design Overview

The first major decision taken in the design process was to
base our implementation on an existing TCPIIP implemen
tation rather than starting from scratch. The main factor
motivating this decision was the difficulty associated with
implementing a complex network protocol such as TCP. It
was felt that it would be much easier to modify an existing
protocol stack implementation, a decision heavily influ
enced by the availability of a HP-UX kernel (HP-UX 9.01, a
derivative of 4.3BSD [6]) modified to take advantage of the
extra features provided by the Jetstream network interface.
This 'single-copy' kernel would be used as the starting
point for our implementation and modified to operate in
user-space. An additional benefit gained from this decision
was that any differences in performance between our user
space implementation and the kernel implementation would
be due mainly to the move to user-space, rather than any
differences in the protocol code itself.

Once this decision had been made, we then had to consider
the implications of moving a kernel implementation to user
space. TCP is a reliable, byte-stream transport protocol, i.e.
it guarantees delivery of an ordered sequence of bytes over
a network which may be unreliable and/or packet-oriented.
The basic mechanism used to guarantee delivery is one of
positive acknowledgement and timed retransmission of
unacknowledged data. Performing this asynchronous TCP
retransmit processing posed the first problem for our TCP
implementation. We would need to use alarm timers and
provide a handler for the alarm signal, but without prevent
ing the application from also using alarms and signals. If the
application was using alarms and signals then we would
need to silently take control of alarm handling. If the appli
cation was not using these facilities we would need to put
wrappers around system calls in order to restart them when
they were interrupted.

The next problem we encountered was due to the semantics
of the sendO system call. Once TCP has indicated to an
application that data has been sent, it must ensure that data
has been received by the receiver, even if the sending appli
cation terminates. In a kernel implementation, the protocol
state data is stored in the kernel's data area so the kernel can
continue to process the data even after the application has
finished. We would need to provide some scheme whereby
an application terminating would not cause all the protocol
state and unacknowledged data to be lost. Furthermore we
would have to accomplish this while still allowing the appli
cation to terminate.

Consideration of these problems led us to a design analo
gous to the partitioned design of the kernel. In 4.3BSD the
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kernel is partitioned into two halves - top and bottom. The
top half consists of the system call interface used by appli
cations, and the bottom half handles interrupts (including
clock interrupts, i.e. events triggered by timers are handled
by the bottom halt). Both halves have access to the same
data but do not communicate directly. A top-half function
can block, e.g. while waiting for a resource to become avail
able, suspending the process until either a bottom-half func
tion or another process in a top-half function wakes it up. A
process executing in the top half of the kernel cannot be pre
empted by another process but can be interrupted (causing a
bottom-half function to be called). Because this bottom-half
function may wish to access the same data as the top-half
process, some form of concurrency control is needed. To
accomplish this (on a uniprocessor) the kernel provides a
mechanism whereby a function executing in a critical
region of code can disable interrupts.

Our implementation closely follows this approach by using
two processes, analogous to the two halves of the kernel.
The application process (known as the user process hereaf
ter) behaves like the top half, with the necessary system
calls (e.g. socket, bind, accept) provided by a library of
user-space functions. A second process (known as the child
process hereafter) handles the bottom-half events e.g.
receiving incoming data and processing timer-related
events. Note that if our operating-system environment pro
vided multiple threads per address-space, it would be possi
ble to dedicate a thread in each user process to perform the
bottom-half functions. However, we would still need at least
one other process to handle reliably delivering data on ter
mination.

Since both processes require access to protocol state, it must
be stored in shared memory and protected by some form of
concurrency control. In user-space this concurrency control
is complicated by the fact that the bottom half (child proc
ess) can now be pre-empted by the top half (user process).
While there is no way to prevent this possibility under nor
mal HP-UX scheduling we can arrange that the top half
yields if it detects that the bottom half has been pre-empted.
Storing state in shared memory and having a separate child
process allows us to handle reliable delivery in the face of
application termination, and allows us to hide all asynchro
nous activities from the user's program. While this
approach satisfies our robustness goal it impacts perform
ance as the system must continually context-switch between
the user and child processes. We discuss this problem later.

4.4 Design Specifics

We now discuss in more detail the specific design choices
we made regarding the partitioning of TCP functionality
between the processes and describe the mechanisms we
implemented for concurrency control, inter-process com
munication etc. We also describe some of the difficulties we



encountered in trying to move kernel code into user-space
with the minimum of changes.

4.4.1 Daemon Child

We decided to implement the child process as a child of a
system-wide daemon rather than as a child of the user proc
ess. The main reason for this was to protect the child proc
ess from the user; if the child process was spawned by the
daemon then it would not be able to be killed accidentally
(or maliciously) by the user. This approach also allows us to
give the child process special privileges (such as the ability
to run at real-time priority). While our implementation uses
a child process for every application using user-space TCP,
it would also be possible to use the system-wide daemon
itself for all bottom-half processing. In a non-prototype
implementation the latter scheme might be preferable as it
would consume fewer system resources, although it would
introduce a single point of failure. In our implementation
this system-wide daemon is also responsible for establish
ing TCP connections, so hereafter we refer to it as the con
nection server (see 4.4.7).

Creation of the child process occurs by the following mech
anism. When an application uses the sockeu) function for
the first time a message is passed to the connection server
using our message passing scheme (described below). The
connection server then forks the child process, which pro
ceeds to create and initialise the shared state data. Once all
the shared data has been initialised the child process sends a
message back to the user process indicating its successful
creation and passing back the identifier of the shared mem
ory segment, which the user process then attaches to its own
address space.

The main role of the child process is analogous to that of an
interrupt service routine, i.e, to handle asynchronous events
which occur. In a TCPIIP protocol stack these events fall
into two categories - packet arrivals and timer ticks (see
below). Timer ticks are indicated to the process by the rais
ing of a signal, so they are inherently handled asynchro
nously. Unfortunately, for packet arrivals, the Jetstream
device driver does not support the asynchronous I/O mecha
nism, so it is not possible to arrange for a signal to be raised
when a packet is received. Instead, the child process must
use the selecti) system call to wait for a packet to arrive on
one of its pools. This leads to a very simple structure for the
main loop of the child process:

• Wait on a selecu) system call for a packet to arrive.

• If a signal is raised then the selecu) call will be inter
rupted and the signal can be handled.

• Otherwise the select/) call blocks until a packet arrives
on one of our pools, from where the packet can be proc
essed and passed up the protocol stack.
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4.4.2 Shared Memory

As stated earlier all the protocol state data in our implemen
tation is stored in shared memory. Unfortunately, in the HP
UX kernel TCP code, not all state data is allocated dynami
cally from the heap. For example, some kernel variables are
in statically allocated memory. In order to make this data
available to both processes it must be located in shared
memory. To allow us to use as much of the kernel code as
possible directly, we used a simple form of aliasing to map
the kernel static variables onto variables in shared memory.

Another complication is that the shared protocol state con
tains process-specific information such as function
addresses. As our child process is forked from the connec
tion server and not from the user process, these addresses
are different. Basically, all pointers to objects which are not
in shared memory need to be different in each process. Thus
every such pointer must be replaced by a pair of pointers,
and a conditionally-compiled alias used to select between
them.

Finally, since all of our protocol state has to be in shared
memory, we were unable to use the normal malloc library as
this allocates memory from the per-process heap. Thus we
were forced to develop a shared memory allocator from
scratch that faithfully emulated all the 'features' of the ker
nel allocator, such as returning specially aligned mbufs etc.

4.4.3 Concurrency Control

It is necessary to provide some form of control over access
to the protocol state data in shared memory. The ideal
approach is to use a fine-grained locking mechanism where
each data structure has its own lock, and a process only
locks data structures it is modifying. Although this allows
for a high degree of concurrency between processes it is
complex to implement.

We decided to use a very coarse-grained method of access
control, where a process has exclusive access to the whole
of shared memory while executing any of the protocol stack
functions. This was the approach taken by the existing HP
UX kernel implementation, and so, again, required the min
imum amount of change. A process must acquire a shared
memory lock before executing any protocol stack functions,
and must not release the lock until it has finished executing
those functions (unless the process is about to block). Fur
thermore, a process cannot pre-emptively take the lock from
the other process.

HP-UX provides entities called semaphores which are ide
ally suited to coarse-grained access control. However, our
desire to minimise the number of system calls led us away
from this straightforward approach to try and find a mutual
exclusion mechanism which could be implemented using



variables in shared memory. The solution we initially
decided to use was a version of Peterson's algorithm which
we modified to yield rather than busywait (see A.l),
although performance testing later led us to change this to a
home-grown algorithm (see A.2).

4.4.4 Inter-process Communication

A mechanism must be provided for the user and child proc
ess to communicate with each other. We decided to use
some form of message passing scheme, and considered sev
eral alternatives - UNIX domain sockets, pipes/named
pipes (FIFOs), and shared memory in conjunction with
some form of signalling mechanism e.g. signals or sema
phores. It is important to consider the nature of the commu
nication between the processes.

Whereas the user process can request a particular service
from the child process at any time, the child process only
ever sends a message to the user process when the user
process is expecting one, either as a 'wakeup' message or as
a reply to a request from the user process. Because the child
process has to use selectt) to wait for packet arrival, we
need our !PC mechanism to co-exist with this selecu) mech
anism. We also intended to optimise the child process for
the case where it was only receiving data on a single Jet
stream pool by using a blocking RX operation rather than
the selecu), This effectively narrowed down our possibili
ties to those that raised a signal, as a signal can interrupt
these operations whereas a semaphore wakeup cannot. We
finally decided to use UNIX domain datagram sockets with
the asynchronous 110 option to raise a signal when a mes
sage arrived at the child. The other factor motivating this
decision was the fact that message passing maps directly
onto a datagram-based protocol more naturally than a byte
stream protocol.

4.4.5 Binding of Addresses to Sockets

Our intention was for our user-space protocol stack to co
exist with a kernel protocol stack. One area where this pre
sented a problem was in the binding of TCPIIP addresses
(port + interface IP address pairs) to sockets. We had to
make sure that there was no address binding conflict
between the user-space and kernel protocol stacks, i.e. that
two distinct sockets, one using a kernel protocol stack and
one using a user-space stack did not both bind to the same
address. To make sure this condition is always true we cre
ate a dummy kernel socket, bind the address to it, and if the
bind succeeds also bind the address to the user-space socket.
In this way we keep the system-wide TCP address space
consistent.
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4.4.6 Timers

The kernel provides network protocol stacks with a facility
to request that the kernel calls a specified function after a
certain time. The TCPIIP protocol stack uses this facility to
implement two periodic timers to handle all time-dependent
events. Our user-space implementation emulates this facil
ity using the system real interval timer (note that we can not
use select timeouts because in certain cases we optimise out
the selecn) and just do a blocking receive). The child proc
ess keeps a list of all the timeouts requested, then sets the
real interval timer to raise a signal when the shortest time
out expires. When the time-out expires, its length is sub
tracted from all other timeouts, it is removed from the timer
list and the time-out function is called. For periodic timers
the time-out function's actions always include re-installing
itself in the list of timers.

4.4.7 Connection Server

We required a mechanism for assigning VCls to TCP con
nections at connection time in a manner that did not require
changes to application programs. We decided to use a 'TCP
connection server'. This is a trusted process which runs on
every network node that uses user-space TCP. It listens on a
well-known VCI for connection set-up requests, and in our
implementation it is the same process which forks the dae
mon children. When one application (the connector) wishes
to connect to another application (the listener) at a TCP port
on a remote node it goes through the following sequence of
actions:

• The connector obtains an RxVCI for its pool from the
Jetstream device driver. This is the VCI that will be used
to receive Jetstream packets sent from the remote node.

• The connector sends a normal TCP SYN segment to the
connection server on the remote node via the well
known TCP VCI.

• The Jetstream driver on the connecting node automati
cally inserts the connector's RxVCI in an unused AAL-5
trailer field of the SYN packet, then sends it to the
remote node.

• When the connection server receives this SYN segment
it extracts the RxVCI from the AAL-5 trailer then
checks to see if there is a process listening on the port
number specified in the TCP header (as in normal TCP
connection establishment).

• If not, the segment is forwarded to kernel TCP so that
the kernel can either pass the segment on to a process
listening using kernel TCP, or in the absence of any ker
nellisteners send a RESET segment.



• If, however, the connection server finds that a process is
listening on the correct port, it passes the SYN segment
and the connector RxVCI on to the listener process.

• The listener receives the SYN, sets its TxVCI to be the
RxVCI passed with the SYN packet, obtains a RxVCI
for itself from the Jetstream driver, then sends the
SYN+ACK reply back to the connector.

• The Jetstream driver on the listening node automatically
inserts the listener's RxVCI in the AAL-5 trailer field.

• The connector receives the SYN+ACK and sets its
TxVCI from the RxVCI passed in the SYN+ACK
packet.

In this way, the two processes have now established a direct
link without the user application being aware of VCls in any
form.

4.4.8 Kernel to User-space Communication

In order for our user-space protocol stack to communicate
with a kernel protocol stack and vice-versa we use the facil
ities provided by the connection server. For convenience
hereafter we refer to a process using the user-space protocol
stack as a user-space process, and a process using the kernel
protocol stack as a kernel process.

The kernel protocol stack normally has two VCls associated
with its pool - the IP VCI and the IP_DIVERT VCI. An
externally visible kernel variable determines which VCI the
kernel uses to send data (normally the IP VCI), while the
kernel normally receives data on either VCI. Thus, all ker
nel TCP connections are multiplexed onto this single fixed
VCI, so if a kernel process is to talk to a user-space process
it needs the help of the connection server.

The connection server uses the IP_DIVERT VCI as the
well-known TCP VCI, so on startup it must unbind the VCI
from the kernel's pool and bind it to its own pool. Any Jet
stream packets subsequently sent to the IP_DIVERT VCI
on this host will then be received by the connection server
rather than the kernel, allowing the connection server to
decide whether to give the packet to a user-space receiver or
divert it back to the kernel. Any process using the user
space protocol stack can ask the server to give it all packets
on a particular connection by passing a special message to
the server.

Although this scheme does permit heterogeneous communi
cation there is a high overhead associated with using the
connection server as an intermediary. This could be avoided
either by making the kernel aware of VCls at the link layer,
or alternatively by making the Jetstream driver perform full
TCP demultiplexing rather than simple VCI demultiplexing.
Note that this need not compromise our goal of removing
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protocol code from kernel space as the protocol demulti
plexing can be achieved using some generic filter specifica
tions as in [7],[8] or [9].

4.5 Performance Optimisations

4.5.1 Buffer Caching

In the single-copy kernel, Jetstream buffers are allocated
and freed individually, i.e. if 16k of buffer space is needed
the allocate function is called 4 times (assuming 4k buffers)
rather than just once. A naive user-space implementation
simply maps the kernel functions to allocate and free buffers
onto scripts which are executed to perform the same task.
Because each script that is executed requires a system call
to be made, this approach causes a large proportion of time
to be spent in this system call overhead.

There are two possible solutions to this problem. The first is
to batch operations together into a single script so that only
one system call is necessary to execute a series of opera
tions. The second approach is to use a cache of Jetstream
buffers, i.e. a list of Jetstream buffers which are not cur
rently in use on the associated pool. When a buffer is
requested, one is returned from the cache if possible. If not,
a number of buffers are allocated in a single script and
added to the cache, then one returned to the caller. When a
buffer which was allocated from the cache is freed it is
returned to the cache. This approach has the advantage of
being completely invisible to the protocol stack, but needs
some kind of cache-flushing mechanism to prevent buffers
being held in the cache for longer than necessary, since this
makes them unavailable to other applications using the Jet
stream interface.

4.5.2 Real-time Child Process

In HP-UX user processes may be designated as 'real-time'
processes. A real-time process is given a priority from 0
(highest) to 127 (lowest), set by the application (or by
another application with appropriate privileges). Real-time
processes always have priority over all non-real-time proc
esses, and cannot be pre-empted except by a higher priority
(numerically lower value) real-time process or an interrupt.
This behaviour is identical to that of kernel bottom-half
functions, so it seems natural to make the child process a
real-time process.

Making the child process real-time does in itself increase
TCP performance but also introduces new problems. Nor
mally, when a packet arrives on a pool, the child process
(which is blocked on a selecu) call) is unblocked and made
runnable, but doesn't run immediately. This gives the user
process time, if it is executing protocol code, to complete its
execution and release the shared memory lock before the



child process is scheduled, runs and tries to acquire it. This
causes the processes to become synchronised and hence the
child process is normally able to acquire the lock immedi
ately.

If the child process is real-time, when a packet arrives the
child process will be unblocked from the selectt) call and
instantly made runnable. If, at this point, the user process is
already executing protocol code, the child will try to acquire
the lock, fail, and be forced to yield. This introduces two
unnecessary context switches. In our implementation this
problem is exacerbated by the way we yield. We give up the
processor by calling selectt) (with no descriptors set, purely
as a 'sleep' function) with a timeout of 1ms. Unfortunately,
the granularity of timer processing means that the child
process sleeps on average for 5ms. This is much longer than
the user process requires to finish executing its protocol
code, so the processor idles for large amounts of time.

We tried to fix this yielding problem but it soon became
clear that it was non-trivial to combine the 'no system calls
in best case' advantage of Peterson's algorithm with accept
able synchronisation. We decided instead to opt for the sim
plicity of just using semaphores in the hope that what we
gained from synchronisation would more than compensate
for the extra system calls.

Although this seemed like a good solution, further consider
ation of the properties of real-time processes showed that
the problem of combining 'no system calls' with synchroni
sation can be simplified by assuming that the user-process
never runs at a higher real-time priority than the child proc
ess. In this case we know that the child process always exe
cutes until it blocks. In the context of our user-space TCP,
this means that once the child has acquired the lock it can
not be pre-empted by the user process, i.e. it executes all of
its protocol code then releases the lock before the user proc
ess can do anything. This leads to a simple mutual exclusion
algorithm which requires no system calls in the best case
and uses semaphores for synchronisation (see A.2).

Note that this solution is not applicable in a multiprocessor
environment, nor does it address our original problem, the
two unnecessary context-switches. In our conclusion we
discuss some alternative techniques that would allow con
text-switches to be eliminated altogether in the common
case.

4.6 Limitations

One limitation inherent in any user-space implementation of
a network protocol stack is that it is very difficult to allow
multiple processes to access the same socket, either as a
child process inheriting open files across a forkt) (and possi
bly exec()) system call, or by the rights-passing mechanism
available with Unix-domain datagram sockets. While this is
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relatively easily implemented in the kernel it is extremely
difficult to implement in user-space: multiple applications
must all have access to the protocol state data in shared
memory, so concurrency control is now across multiple
applications and a single child process. Where we previ
ously had two sets of function pointers in shared memory
we must now have an arbitrary number of such pointers
(assuming we wish to handle exect) calls and rights-passing
- if not, all processes still use the same address space since
they are all descendants of a common ancestor). One point
worth noting is that even if several applications all access
the same socket, all the asynchronous processing (packet
reception, timer events) will still be handled by a single
child process, i.e. that associated with the process which
created the socket.

4.7 Security considerations

During the course of this work we have ignored the issue of
security as in our scheme each TCP conversation is associ
ated with a unique link-level channel or VCI. Thus, a mali
cious application can only affect packets travelling on its
own dedicated VCI, which limits the scope ofthe damage it
can inflict to just the peer application. In cases where our
user-space TCP communicates with a kernel TCP, the con
nection server, a trusted component, acts as an intermediary
and could ensure that all TCP packets were well-formed.
More generally if an application does have direct access to
networking then mechanisms have to be in place to check
the validity of packets transmitted. One approach (as sug
gested in [10]) is for a trusted entity to install some sort of
template in the transmit path, which packets must success
fully match before being transmitted.

5 Performance

In this section we present application-to-application
throughput measured over Jetstream using various TCP
configurations. As the receiver is always the bottleneck in
our demonstrations (i.e. 100% busy) we also present the
send-side CPU utilisation for the different TCPs.

The measurements reported here were collected between
two HP 90001735 workstations running HP-UX 9.01 and
using the netperf [11] utility. Both workstations were con
nected to the site Ethernet and had the usual background
processes running. In all cases TCP window scaling [12]
was used with socket buffers of 245760 bytes. The Jet
stream PDU size was 61504 bytes.

5.1 Throughput of user-space TCP

Figure 2 shows the measured throughput in Mbitls as we
increase the application message size. One configuration
uses the single-copy kernel TCP, another configuration uses



FIGURE 2. TCP throughput

One of the key issues we wished to investigate in this work
was whether with the appropriate partitioning a complex
network protocol could be moved into user-space. It is clear
that low-level demultiplexing and buffer management are
functions that really need to stay in kernel-space. Ideally,
demultiplexing should be on upper-layer protocol headers;
however, channel or VCI demultiplexing is an acceptable
compromise. The 'pool model' we describe seems to pro
vide a perfectly acceptable interface between user-space and
kernel-space functions allowing applications to exert very
fine control over their data-streams. Also, batching pool
operations into scripts is a simple and effective way of
amortizing the cost of system calls.

7 Conclusions and Future Work

During the course of developing our user-space implemen
tation it became clear that implementing a full-blown trans
port protocol like TCP was a decidedly non-trivial task. Our
goals were to provide a complete, robust implementation
that achieved high-performance. Unfortunately, some of

We have implemented a TCP in user-space which performs
at 80% of our single-copy kernel implementation. We
believe this shows that protocols can be developed and run
in user-space at acceptable performance levels, and we con
clude that user-space protocol implementations need not
perform poorly if they are able to exploit an appropriate set
of low-level interfaces.

6 Related Work

Our work has a great deal in common with previous user
space TCP implementations. Both [10] and [13] describe
schemes for the Mach [14] operating system that allow a
complete TCP to be provided using a user-linkable library
and a trusted connection server. In these implementations,
as in ours, the common TCP send/receive path is provided
by threads of control executing in the linkable library. The
key differences of our scheme are that firstly, our work
exploits some features of an underlying high-speed network
interface that allow a genuine 'single-copy' TCP to run in
user-space. Secondly, our techniques allow us to achieve
TCP throughput at least an order of magnitude greater than
previously reported results. Thirdly, our TCP implementa
tion is for a Unix-like operating system and thus achieves
high performance despite being unable to make use of desir
able features such as multiple threads per address-space.

CPU, about 82%; the implementation with neither optimisa
tion uses the most CPU, about 88%. In all cases, kernel TCP
uses substantially less CPU than our user-space versions,
about 72%, which is what we would expect. If our experi
ments were sender-limited rather than receiver-limited the
effect of the optimisations would be visible on throughput.
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Figure 2 shows the measured send-side CPU utilisation as
we increase the application message size for the same TCP.

FIGURE 3. TCP send-side CPU%

Here, the effect of our optimisations is clear. The user-space
TCP implementation with both optimisations uses the least

5.2 CPU utilisation of user-space TCP

It is very clear that reducing the number of copies from two
to one has a dramatic effect on the throughput. It is also
clear that our user-space TCP outperforms the normal ker
nel implementation and even achieves 80% of the perform
ance of our single-copy kernel implementation. The various
flavours of user-space TCP all exhibit the same perform
ance, approximately 160 MBitls. The buffer cache optimi
sation mostly benefits the TCP sender, so this is not
remarkable. However, the real-time priority optimisation
should benefit both sender and receiver, so the fact it has no
impact on throughput is curious. We conjecture that the ben
efit of reducing system-calls is being counteracted by the
additional unnecessary context-switches described in 4.5.2.

r

a normal dual-copy TCP and the other configurations are all
various versions of our user-space TCP.

8



these goals are mutually incompatible. To provide a com
plete, robust implementation we were forced to adopt a
multi-process architecture; as a consequence of this choice
our TCP was constantly context-switching, which lowered
performance. Also, the multi-process nature of the imple
mentation meant we seemed to spend as much time worry
ing about concurrency control as about our real goals.

In future work, we hope to investigate techniques for pro
viding a complete TCP implementation in a single-process
without compromising robustness. One possible approach is
to exploit the fact that most application programs use sock
ets in 'blocking mode', sleeping on the socket till there is
more data to receive or space available for sending. If a
packet arrives during this 'sleep' we could perform receive
processing in the context of the application process, which
would eliminate context-switches in the common case. With
these improvements even better performance should be
achievable.
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A Appendices

A.I Peterson's algorithm

Peterson's algorithm for mutual exclusion between two
processes is as follows (also see [15]):

Lock()
{

wantAccess [ME] =TRUE;
nextAccess=YOU;
while (wantAccess[YOU] && nextAccess==YOU)

/* Add yield code here */

}

Release ()

wantAccess[ME1=O;



A.2 Edwards' Algorithm

This algorithm for mutual exclusion exploits the fact that
the child process runs at real-time priority and so cannot be
pre-empted by the user process:

Lock()
{

#ifdef CHILD_PROCESS
if (disable_child) (

/* If user process has disabled us
* then we block and wait for him to
* wake us up
*/

child_blocking=TRUE;
WaitOnSemaphoreForWakeup();

}

#else
/* We know child must be blocked at the
* moment (thus not holding lock) as it
* runs as a real-time priority so can
* not be pre-empted
*/

disable_child=TRUE;
#endif
}

Release()
{

#ifdef CHILD_PROCESS
if (wakeup_user-process) (

WakeupSleepingUserProcess();
}

#else
disable_child=FALSE;
if (child_blocking) {

child_blocking=FALSE;
SignalWaitSemaphore() ;

}

#endif
}

A.3 Control Messages

Our message passing scheme uses a total of 16 different
messages passed between the 3 processes used in the imple
mentation (user, child, and connection server). These mes
sages are described below.

• Listen (child to server) - sent as a result of the child
receiving a 'Listen_Child' message, it notifies the con
nection server which child process is listening on which
TCP port (and also when a user closes a listening
socket). This association between ports and child proc
esses allows the server to send a 'Syn' message to the
correct child process.

• Forward (child to server) - serves a similar purpose but
tells the server to forward any packets arriving on a
specified connection (identified by both end-points) to a
specified VCI i.e. to the appropriate child process.
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• Divert (child to server) - response to a 'Syn' message
once a pool has been created to divert the SYN packet
into. If, for some reason, the connection is not com
pleted and a new socket is not created this pool will be
closed at the appropriate time.

• Syn (server to child) - sent by server on receipt of a
packet with the SYN flag set and a destination port
which is being listened to by a child process.

• Spawn (user to server) - initial message sent from user
process to connection server telling server to spawn a
child process. Once the child has been forked and initial
ised, it (the child) sends an 'InitReply' back to the user
process.

• New_Socket (user to child) - sent to the child when a
socket is created, its purpose is to allow the child proc
ess to complete the initialisation of the new socket data
structure e.g. set the values of its function pointers, cre
ate a pool for the socket. The child sends back a
'General_Reply' indicating success or failure.

• Bind (user to child) - when a user process binds a socket
to an address it sends the parameters of the call to the
child process requesting the child to attempt the bind on
the kernel bind-point (see 4.4.5). The child replies with a
'Bind_Reply' indicating the result.

• Listen_Child (user to child) - simply passes the param
eters of the listen call from user process to child, causing
the child process to send a 'Listen' to the connection
server.

• Connect (user to child) - notifies the child process that
the initial SYN has been sent and causes user process to
block until it receives a 'ConnectReply' indicating suc
cess or failure of connection attempt.

• SeCTx_Bufs/SeCRx_Bufs (user to child) - because the
limit on number of buffers associated with a pool can
only be changed by the process which originally opened
a pool, the user process must hand these requests (from a
setsockopu) call) off to the child process since the child
always creates the pools associated with sockets.

• SetReuse Addr (user to child) - this socket option
must be applied to the kernel bind-point, so it is passed
to the child process as the process which opened the
bind-point.

• Init Reply (child to user) - sent from child process to
user process once child has completed initialisation, it
contains the shared memory identifier to allow the user
process to access shared memory.

• Bind_Reply/ConnecCReply/General_Reply (child to
user) - these messages simply pass the results of a
request sent to the child back to the user process.




