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Abstract

The resolving power of a Wiley-McLaren time-of-flight mass spectrometer can be severely lim-
ited by the longitudinal velocity spread of ions originating from the same position along the flight
path. This effect is normally minimized by using an electrostatic mirror to reflect the incident ions
from their original direction back toward the spectrometer detector, in which case higher velocity
ions have a greater delay time in the mirror due to their further penetration into the mirror poten-
tial, and spatial focusing occurs at the plane of the detector. In this paper, an analytic expression is
obtained for the ideal one-dimensional mirror potential that yields perfect spatial focusing along
the flight path. The mathematical techniques used are those commonly employed in the solution
of calculus of variations problems.

I. Introduction

The linear time-of-flight (TOF) mass spectrometer described by Wiley and McLaren [1] consists
of an extraction region containing the initial distribution of ions to be separated, acceleration and
field-free drift regions, and a detector. Ion packets are launched out of the extraction region by a
suddenly applied voltage gradient. The accelerated packet of ions travels through the field-free
drift region, and at a certain position along the flight path called the space-focus plane, the packet
has a minimum spatial extent (or temporal spread). This spatial focusing occurs due to the fact
that ions which were originally further away from the exit grid of the extraction region gain more
energy during the extraction process than those initially close to the exit. Thus, as the packet of
ions travels through the drift region, the trailing ions eventually will overtake the lower energy
leading edge, producing a pulse of minimum width at the space-focus plane.

To achieve minimum isomass pulse width, the detector would normally be placed at the space-
focus plane. However, the mass resolving power of the spectrometer is also affected by the time
separations between different mass peaks, which is increased by lengthening the drift distance to
the detector. Thus, it would seem advantageous to increase the distance to the detector and adjust
the voltages applied to the extraction and acceleration regions to place the space-focus plane at
the new detector position. Unfortunately, it is found that the minimum achievable width of the ion
packet at the space-focus plane increases as its separation from the extraction region is increased,
due to the ions’ nonzero initial velocity distribution along the direction of the drift path. These
conflicting requirements of increased drift length for improved mass temporal separation, and
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decreased distance to the space-focus plane for improved isomass pulse width, limit the achiev-
able mass resolving power of a linear TOF mass spectrometer.

With the development and implementation of the “mass-reflectron” [2-4], the above limitation on
the TOF mass resolving power was effectively minimized. The operation of the mass-reflectron is
schematically illustrated in Figure 1. It is different from the linear TOF mass spectrometer in that
it has an electrostatic ion reflector, or mirror, in the drift region, which essentially reverses the
direction of the ions and deflects them onto the detector. The operational advantage of this instru-
ment over the linear spectrometer is that it allows the packet compression at the space-focus plane
to be positioned near the ion extraction and acceleration regions, and also recreated with good
fidelity at the end of the drift region where the detector is located. The physical mechanism by
which this is possible is the following. The distribution of the ions at the space-focus plane con-
sists of a minimum spatial extent packet, with a range of velocities (energies) corresponding to the
range of initial starting positions in the extraction region, as described above (ignoring the initial
velocity distribution for the moment). As this ion packet travels beyond the space-focus plane, the
spatial extent grows as the faster ions pull ahead of their slower counterparts. As the packet
strikes the ion mirror, the ions of higher energy penetrate more deeply than those of lower energy,
causing them an increased time delay in the mirror structure. For a properly formulated electro-
static field distribution in the mirror, the space-focused packet can be recreated with good fidelity
at the position of the detector by having the time delay in the mirror precisely compensate for the
distribution of flight times outside of the mirror.

A great deal of excellent work has been done incorporating ion mirrors into TOF mass spectrom-
eters, allowing mass resolving powers greatly in excess of that achievable with the original linear
geometry [5-7]. It is recognized that in real instruments, determination of the mirror geometry and
potentials is problematic due to the difficulty of precisely creating a specified potential distribu-
tion in a region of space, as well as the intrinsic three-dimensional nature of the ion packet propa-
gation [8]. However, in many instances, when modeling the performance and optimization of
TOF mass spectrometers, a simplified one-dimensional model of the ion mirror is employed and
yields useful results.

In the following sections, the exact analytic form of the idealized one-dimensional mirror poten-
tial is derived. Previous representations of this potential have been approximate and only piece-
wise continuous. The relatively simple form for this potential should prove useful in modeling
TOF systems, as well as providing a tool in the analysis and design of the more complicated three-
dimensional ion mirrors.

II. Integral equation and solution for mirror potential

II.1 Integral Equation derivation

The idealized one-dimensional problem to be solved is schematically illustrated in Figure 2a. The
goal is to find an analytic expression for a “perfect mirror” electrostatic potential such that all ions
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(of different velocities, above some threshold) which originate from a plane of perfect spatial
focus are brought to a second plane of perfect spatial focus. This requirement is equivalent to
specifying that all ions have the same flight-time between the first and second space-focus planes
regardless of their initial velocities.

Defining the mirror focal length as , which is the total path length in the field-free

regions between the space-focus planes, the total flight time of an ion can be written as

(1)

where the first term is the time-of-flight in the field-free region,  is the time delay in the

electrostatic mirror, and  is the initial ion velocity. To compute the time delay in the mirror, the

equation of conservation of energy of the ion in the mirror potential

(2)

can be used to solve for ,

(3)

where  is the ion charge,  is the mirror potential, the factor of 2 in the flight time is to

account for the elapsed time entering and exiting the mirror, and  is that coordinate for which

the mirror potential is equal to the ion incident kinetic energy. This allows Equation (1) to be writ-
ten in the form of an integral equation for the mirror potential

(4)

where is chosen such that  is independent of the initial ion velocity, .

The solution of this sort of equation under the associated conditions can normally be determined
using standard calculus of variations techniques. This involves Laplace transforming the integral
equation, using the convolution theorem of Laplace transforms to simplify the integrand, and
doing an inverse Laplace transform back to physical variables, which finally leaves an integrable
differential equation for the mirror potential. However, the variable to be transformed in this case

is the ion initial kinetic energy , which means that the integral equation must be well-
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defined in the limit of zero initial velocity to complete the Laplace transform. Clearly the term
representing the time-of-flight in the field-free region, given by , is singular at this point.

This singularity simply originates from the physical fact that an ion with an initial velocity
approaching zero has a time-of-flight through the field-free drift region approaching infinity. To
resolve this problem, the initial velocity distribution of the ions must be shifted from the velocity
distribution of the ions as they enter the mirror potential. This can be easily achieved by placing a
short region of uniform retarding electrostatic potential in front of the mirror structure. In this
way, only ions with energy above a specified discrimination level reach the mirror. Ions with the
minimum energy required to just reach the mirror potential have a finite flight time through the
field-free region, and zero velocity as they reach the mirror.

Figure 2b illustrates the mirror structure modified to include the velocity discrimination region (of
uniform potential gradient) immediately before the ideal mirror potential region. The integral
Equation (4) is modified by the addition of a term reflecting the time-of-flight of an ion through
the velocity discrimination region. The uniform potential gradient in this region (generated by a
pair of parallel grids held at fixed potential difference) causes a uniform deceleration of the ions,
allowing a simple analytic determination of the additional flight time

(5)

where  is the potential drop across the discrimination region, and  is the region length. Fur-

thermore, the expression for the time-delay in the mirror, , is modified to reflect the

decreased kinetic energy of the ions entering the mirror potential. Incorporating these changes
yields a new expression for the integral equation describing the ideal mirror potential

.(6)

II.2 Reduction to canonical form

The time-of-flight  in Equation (6) is required to be independent of the initial velocity of the ion.
Therefore, its invariant value can be determined from the equation by evaluating the right-hand

side for a convenient choice of velocity. For the choice  the ion has just enough

initial kinetic energy to completely penetrate the velocity discrimination region and arrive at the
entrance of the mirror with zero residual velocity. There is no penetration of the mirror fields,
which determines the upper limit of the integral in Equation (6) to be zero, and  is simply deter-
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mined by the first two terms on the right hand side

. (7)

Rewriting all variables in dimensionless form, given by

(8)

where , and substituting Equation (7) into the integral Equation (6) yields the sim-

plified expression

. (9)

Note that Equation (9) has the expected properties of being clearly satisfied in the limit ,

(i.e. as the incident energy approaches the discrimination energy from above), and the expression
is independent of the mass, as it must for the mirror to perform properly for all species of ion in
the beam.

II.3 Integral equation solution

As stated previously, the initial step in obtaining the solution of the integral equation involves per-
forming a Laplace transform. To this end, define the independent variable

(10)

and the variable of integration
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The integral equation then takes the form

(13)

where

(14)

is merely the Jacobian factor of the variable transform.

Equation (13) is precisely the same integral equation encountered in a previous work which
details the derivation of the form of ideal extraction fields [9], except for the field-free drift dis-

tance  being replaced by the similar quantity . The generation of the same integral equation
for the two problems is not surprising in that both calculations are concerned with deriving a
“potential ramp” that either creates or re-creates a space-focus using ions of disparate velocities.
The factor of 2 occurs due to the fact that in this calculation the mirror fields are traversed twice
during a single ion trajectory.

Using our previous results detailed in [9], the solution to the integral equation can be written
down directly as

. (15)

From this expression, the variables  and  can be separated and integrated directly

(16)

yielding

. (17)

This is the desired result of an analytic closed form expression for the ideal one-dimensional mir-
ror potential which recreates a space-focus plane with perfect fidelity.
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III. Discussion and solution verification

The mirror potential of Equation (17) has a simple form in the limit of small  and , given by

. (18)

It is clearly seen to join smoothly to the linear deceleration potential, and for moderate x-positions

greater than d, it varies roughly as .

To verify that Equation (17) is the correct analytic expression for the ideal one-dimensional mir-
ror potential, a numerical simulation is performed. For parameter choices of ,

, and , the mirror potential is determined by incrementing  from

the starting value of zero, computing  using Equation (17), again incrementing , computing ,
and iterating until the potential is known over the entire length of the mirror region. The potential
computed in this manner is plotted in Figure 3.

Next, for the parameters as specified above, ion trajectories are numerically calculated from the
first space-focus plane, through the velocity discrimination region, then in and out of the mirror
region, back through the velocity discrimination fields, and on to the second space-focus plane.
This is done for a range of initial ion energies from 251 eV to 2000 eV, and the results are plotted
in Figure 4. The desired properties are strikingly confirmed as it is observed that the time delay in
the mirror exactly compensates for the different field-free drift times of the ions of different initial
velocities, yielding a total flight time independent of initial velocity. This is precisely the behavior
required of an ideal ion mirror, which recreates an image of an initial space-focus plane with per-
fect fidelity.

IV. Conclusions

It has been demonstrated that an analytic closed-form solution exists for the potential distribution
of an ideal one-dimensional electrostatic ion mirror. The functional form is very similar to that
previously derived for the ideal non-linear extraction fields [9], as one would expect from physi-
cal analogies. This result can be useful in designing and analyzing realistic three-dimensional ion
mirrors, and the potential performance characteristics of TOF instruments employing these
devices.
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Figure Captions

Fig. 1. Schematic illustration of a TOF mass spectrometer incorporating an electrostatic ion mir-
ror to recreate the space-focus at the position of the detector.

Fig. 2a. Idealized representation of the one-dimensional ion mirror. The arrows represent the ini-
tial velocities of the individual ions.

Fig. 2b. The one-dimensional ion mirror modified to include a velocity discrimination region of
uniform potential gradient in front of the non-linear mirror fields.

Fig. 3. The ideal one-dimensional non-linear mirror fields computed from Equation (17) for
, , and .

Fig. 4. Computed ion flight times for the portions of the trajectories inside and outside the non-lin-
ear mirror fields, as well as the total flight times. The ions have energies ranging from 251 eV to
2000 eV, the mass is 100 u, and the other parameters are the same as in Figure 3.

L 40 cm= d 0.5 cm= ∆φ 250 volts=
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