
FI.3 HEWLETT
a:~ PACKARD

Software Reuse: Objects and
Frameworks are not Enough

Martin Griss
Software Technology Laboratory
HPL-95-03
January, 1995

reuse, objects,
systematic process

Software reuse is a widely desired and often
touted benefit of employing object technology
(OT), yet too many object-oriented (00) reuse
efforts fail because of too narrow a focus on
technology. This column will explore the lessons
of systematic software reuse from several
perspectives, such as process, organization,
management, methods, technology, architecture,
tools, patterns, frameworks and practical
experience. One lesson is that while OT is in fact
neither necessary nor sufficient for effective
systematic reuse, it is a most promising enabling
technology. My goal is to illuminate how to more
effectively use OT to support systematic 00
reuse.

To be published in Object Magazine, February 1995
© Copyright Hewlett-Packard Company 1995

Internal Accession Date Only



SOFTWARE REUSE: OBJECTS AND FRAMEWORKS ARE
NOT ENOUGH

Martin L. Griss
Hewlett-Packard Laboratories
Palo Alto, California

1 Introduction

One of the most frequently stated reasons for selecting O'I' is to enhance
component and design reuse. Other popular reasons are to improve time to
market, flexibility, maintainability and costs, benefits usually attributed
directly to reuse itself. While O'I' is believed to be very important to achieving
the long sought-after goal of widespread reuse, many organizations naively
equate reuse with objects. They adopt O'I', expecting it to automatically
ensure reuse. And they are quite often disappointed that they do not actually
achieve enough reuse to justify the O'I' adoption expense. Without an explicit
agenda of reuse that includes reuse-supportive organizations, processes,
guidelines and mindset, reuse will not be successful. Pittman calls this
absence of an explicit reuse agenda by O'I' adopters the "hidden agenda" of
00 reuse [Pittman93]. Many O'I' prophets reinforce this myth by only
discussing techniques such as inheritance and frameworks, and more
recently, patterns, without highlighting the importance of systematic reuse
planning.

There exist many successful examples of non-Oa reuse projects. These
include the BaseWorkX software bus-based operation support systems at
AT&T (in C), scientific and spacecraft software at NASA (in Fortran),
instrument and printer firmware at HP (in C), and financial and insurance
software (in COBOL). Several of these are described in more detail in
"Software reuse: From library to factory" [Griss93]. More recently,
experiences with Visual Basic [Ude1l94], and large-scale 00 reuse at Verilog
SA, Brooklyn Union Gas and Ascent Logic have been reported. In almost all
cases, a simple architecture, a separate component group, a stable
application domain, standards and organizational support are the keys to
success. Correct handling of these (largely non-technical) issues is almost
always more critical to successful reuse than the choice of specific language
or design method, yet too many O'I' experts choose to ignore these factors.

2 Systematic Reuse: Non-Technical Factors Dominate

1



By systematic reuse, I mean an institutionalized organizational approach to
product development in which software assets are intentionally created or
acquired to be reusable. These assets are then consistently used and
maintained to obtain high levels of reuse, thereby optimizing the
organization's ability to produce quality software products rapidly and
effectively.

Over the last ten years, software reuse researchers and practitioners have
learned that success with systematic reuse requires that careful attention be
paid to both technical and non-technical issues. Furthermore, the non
technical issues are more pervasive and complex than at first realized
[Frakes94]. Without a systematic and joint focus on people, process and
product issues, a project will not succeed at managing the scope and
magnitude of the changes and investment needed to achieve reuse. Simply
creating and announcing a reusable class library will not work. Without a
"reuse mindset," organizational support, and methodical processes directed at
the design and construction of appropriate reusable assets, the reuse
investment will not be worthwhile. For this reason, research and practice in
the reuse community have developed assessments, guidelines, processes,
models, methods and prescriptions that promise more cost-effective reuse.

While attending and participating in numerous conferences and workshops
over the last year, I became concerned with the lack of dialogue between the
OT and the reuse communities. Unfortunately, it appears that very little of
the understanding about systematic reuse seems to have impacted the OT
community. Many OT practitioners and researchers seem to be painfully
engaged in adopting new methods and adapting basic software engineering
techniques to OT, while others are already inventing new methods, without
ensuring that they will really improve the software process. When I attended
the July 194 San Francisco Object World and the October 194 OOPSLA, I was
struck at how many times reuse was mentioned as a major benefit of O'I', yet
how little was being said about what it takes to achieve effective reuse. Little
was said about the importance or cost of domain engineering and
organization design. Most of the publishers showcased OT books, totally
excluding reuse. Well-known reuse books and collections were not visible.
These include those by Tracz, Biggerstaff and Perlis, Hooper and Chester
[Hooper91], and Schaefer. Many of these books and other reuse references are
discussed in an introductory paper on success factors for systematic reuse by
Frakes and Isoda [Frakes94].

Eric Aranow and I developed and presented an 00 reuse tutorial at Object
World, and were gratified by the attendance, but were only able to reach 100
people. I also attended the November 194 Third International Conference on
Software Reuse, to lead a panel on 00 reuse. While it was a much smaller

2



conference than OOPSLA, I was disappointed to see how few attendees
viewed themselves as OT experts, and how few had also attended OOPSLA.

It is my goal in this series of columns to bring to your attention these issues,
relevant reuse learning and experience, and information about reuse events
and activities. In my related research and reuse community activities, I am
working with other reuse and OT workers to help integrate these
communities. From time to time, I will invite some of these people to co
author columns with me.

3 Systematic Reuse Needs A Systematic Approach

Mounting a large reuse program, perhaps with corporate-wide impact,
requires a systematic approach. It is a significant effort to change culture,
organization, processes and infrastructure. These changes are not
evolutionary and have greater complexity than those associated with
incremental and ongoing changes for Continuous Process Improvement (CPl).
The scope of these changes is effectively a Business Process Reengineering
(BPR) of the software development process and organization. Reuse IS a
business issue: We have to change the way we view software at a
fundamental level. It is now a corporate asset that needs to be invested in,
improved, and leveraged effectively and consistently.

Often, sweeping changes in the software development organization are
needed to institute large-scale, systematic reuse. These include business,
process, management and organizational changes to:

o fund product family design and construction that are optimized to
business goals like improved time to market, decreased development
cost, or inter-product compatibility;

o create, maintain and manage reusable assets and repository over the
long term;

o separate asset creators from asset users who build applications;

o introduce new management roles and responsibilities, funding
models,

and development processes;

o create and deliver training, technology and tools.

3



While some of these changes can be introduced incrementally (see a future
discussion on reuse adoption and maturity), the magnitude of the changes
and the issues encountered are quite similar to those encountered when
doing BPR. Many of the systematic methods used to design and implement
BPR changes must also be applied to engineering reuse-based software
organizations. Certainly the underlying ideas of organizational modeling,
systematic change management, and socio-technical systems design are
useful to implement a business' reuse program. This observation prompted
my research group at HP Laboratories to define and pilot a BPR-inspired
reuse organization design and reuse adoption process as part of our Flexible
Software Factory research, and to employ some BPR-like techniques within
our reuse program in HP's Corporate Engineering software initiative
[Griss931. As an example, we used the Software Engineering Institute (SEI)
change management training course as an essential part of a workshop for
reuse team leaders and champions.

Like many BPR efforts (50-70% of which fail due to lack of attention to the
"soft factors"), most reuse adoption programs fail because too simplistic a
solution is taken. Jacobson [Jacobson94] summarizes key factors and
impediments facing BPR efforts, while Frakes and Isoda [Frakes941 discuss
analogous barriers to large scale reuse. In both cases prescriptions focus on
management support, incremental adoption, explicit process change,
attention to soft factors, and pilot projects.

The process of becoming more systematic about reuse introduction has
several levels of increasing rigor. These are related to the incremental
adoption of reuse and corresponding expectations. Figure 1 illustrates the
following steps towards achieving systematic reuse:

1. Reuse is desired, but nothing is done to make it happen. Ad hoc reuse is
encouraged, object technology may be introduced, but no formal reuse
program is visible.

2. An attempt is made to formally introduce reuse. A code or class library
may be set up and publicized, but little attention is paid to handling
the "soft factors" or to managing the organization through its adoption
of reuse.

3. The importance of managing organization change is recognized. A reuse
management team is given authority and encouragement to use
incentives, begin training, make organizational changes and introduce
new processes to support reuse.

4



4. Significant effort is devoted to use of systematic change management.
Organizational change is planned and instituted. Some form of
systematic reuse adoption process may be followed.

5. Full-scale BPR of the software development process and associated
product development process is undertaken.

Fullocale
BPR of
SN Organization

experience, effort

Technical Issues

BUMPS IN THE ROAD TO SYSTEMAnC REUSE I
Process,
Organizational
and Busi ess Issuesdegree

of change

Non-Technicallssues

Figure 1.

4 Systematic 00 Reuse: Changing OT

To obtain a systematic 00 reuse process, we need to augment today's OT
methods with a reuse-oriented process and guidelines to produce an effective
00 reuse method. Several aspects of OT may have to be modified, or used
very carefully (e.g., inheritance can be harmful, and is not always best for
robust reuse [Lorenz93D. Most of today's OONOOD methods seem to be
reuse-neutral or even reuse-hostile. Starting from an appropriate method,
modifications and additions will be needed to better support domain
engineering, product family design, and object model factoring and
clustering. Specific process steps will be needed to support component and

5



framework creation, including explicit design and implementation guidelines,
and access to catalogs of patterns, designs and mechanisms. Processes for
application and system construction must include explicit access to an object
repository during design and implementation, with specific reuse-oriented
guidelines.

While several popular methods may be used as a starting point, my current
favorite and base for my own experimentation is Objectory [Jacobson94]. I
find Objectory's pervasive use-case driven design and traceability, object
model factoring, subsystem extraction and packaging, development-case
based process customization, and recent 00 BPR approach as most
consistent with my vision of successful systematic 00 reuse. I will provide
more details in a later column. The ESPRIT-funded REBOOT (Reuse Based
on Object-Oriented Techniques) project illustrates the kind of changes and
integration needed.

Work at HP on domain-specific kits [Griss93] suggests that we need to better
understand how to use OT in combination with other technology to produce
flexible, layered, composible, modular architectures if we wish to ensure high
levels of manageable reuse. To handle the complexity inherent in
subclassable frameworks with large numbers of classes and methods, we
need to determine how and when to augment these frameworks with
software-bus architectures, problem-oriented scripting languages, and system
and component generators.

5 Conclusion

I have come to the end of my first column, and will continue my observations
in the next column. I plan to address reuse processes, incremental adoption,
reuse organizations, and reuse technologies. I will summarize recent or
upcoming reuse events, and describe practical 00 reuse experience.

I hope I have whet your appetite (or peaked your ire) sufficiently so that you
might enjoy looking at the September 1994 IEEE Software special issue on
systematic reuse [Frakes94] and my essay describing reuse experience at HP
[Griss93]. I would also like to bring to your attention the upcoming
Symposium on Software Reuse, to be held in conjunction with leSE in
Seattle, April 1995.

It is also my hope that these columns will not only bring to your attention the
best knowledge and insights of OT and reuse experts, but will also stimulate
discussion. Letters and email are welcome.

6



REFERENCES

[Frakes94] Bill Frakes and Sadahiro Isoda. Success factors of systematic
reuse. IEEE Software, 11(5):15-19, September 1994.

[Griss93] Martin L. Griss. Software reuse: From library to factory. IBM
Systems

Journal, 32(4):548-566, November 1993.

[Hooper91] James W. Hooper and Rowena Chester. Software Reuse 
Guidelines and Methods. Plenum Press, New York, 1991.

[Jacobson94] Ivar Jacobson, Maria Ericsson, and Agneta Jacobson. The
Object
Advantage - Business Process Reengineering with Object Technology.
Addison-Wesley Publishing Company, 1994.

[Lorenz93] Mark Lorenz. Facilitating reuse using 00 technology. American
Programmer, pages 44-49, August 1993.

[Pittman93] Matthew Pittman. Lessons learned in managing object-oriented
development. IEEE Software, 10(1):43-53, January 1993.

[Ude1l94] Jon Udell. Component software. BYTE, 19(5):46-55, May 1994.

7




