(HEWLETT
B PACKARD

An Architecture for Non-Linear Noise Filtering
Via Piecewise Linear Compression

Konstantinos Konstantinides
Computer Peripherals Laboratory
Balas K. Natarajan

Computer Systems Laboratory
HPL-94-87

September, 1994

VLSI, signal processing We present an architecture for non-linear noise filtering
using a compression algorithm based on piecewise linear
approximation. In contrast to spectral filters, the proposed
technique does not require a priori knowledge of the noise
and signal characteristics and the processing requirements
are independent of its noise rejection properties. The
architecture includes two multiplier-accumulator units, an
adder, registers, and a short look-up table. The proposed
implementation allows an output sample to be generated
every four cycles on average.

Internal Accession Date Only

© Copyright Hewlett-Packard Company 1994

1. Introduction

Efficient filtering of signals corrupted with additive noise is central in signal processing.
Traditional spectral filtering techniques [are effective in many cases, but often require
some prior knowledge of the noise and signal characteristics. Furthermore, the
processing requirements of spectral filters strongly depend on their noise rejection
properties.

Recently, Natarajan [2 suggested a technique for reducing random additive noise from
signals using data compression. The technique exploits the well known property that
random noise is hard to compress, and does not require any prior knowledge of the
signal or noise characteristics. In principle any compression technique can be applied
for noise reduction. Piecewise linear compression has been shown to be particularly
effective for this type of filtering Bl. In this paper we use a simplified version of an
optimal piecewise linear approximation algorithm. The algorithm is better suited for
hardware implementation without compromising on performance, and the complexity of
the algorithm is independent of its noise rejection properties.

In Section 2 we review the principles of compression based filtering and we present a
filtering technique based on piecewise linear approximation. The single-chip
architecture is presented in Section 3. It includes two multiply-accumulate units, a
register file, an adder, and a short look-up ROM table. The proposed implementation
allows an output sample to be generated every four cycles on average.

2. Compression-Based Filtering

Consider the received data sequence x(n) = s(n) + w(n), where s (n) is an unknown
signal and w(n) is a random variable denoting noise of strength b in a predetermined
metric. In a recent paper, Natarajan) presented general theorems on learning
functions in the presence of noise, which translate directly into theorems on noise
filtering via data compression. The essence of these theorems is the following: Let D
be a lossy data compression algorithm that operates on {x (n)} and a given tolerance e,
and guarantees that its output {g(n)} represents the input samples within e in the above
mentioned metric. Then, if € equals the noise strength b, the noise and the signal loss
cancel, with the extent of cancellation depending on the sampling rate and the
effectiveness of the data compression routine.

This result leads to the following filtering technique: Compress the noisy signal with a
a lossy data compression algorithm and set the allowed loss to be equal to the strength
of the noise. The decompressed signal is the filtered output. This technique is rather
general. Threshold filters using wavelet decompositions [and filters based on
orthonormal bases and the minimum description length principle [l can be viewed as
special cases.

Since the strength of the noise b is usually unknown, the following simple algorithm
estimates an approximate value in a calibration step and then filters the data.

input S = {x(n)}
Begin
Calibration phase

Let S be a representative sample of S.

Compress §1 with D for various values of the loss tolerance e.
Plot compressed size as a function of e.

Let € be the knee-point of the plot.

Filtering phase

Compress S with D using € = € to get {g(n)}.
Decompress {g(n)} to obtain {y (n)}, the filtered signal.

End

If s denotes the compressed size of the input signal, the knee-point is defined as the
point at which the second derivative d2s/dlog (¢)? is maximum.

While any lossy compression scheme could be used, in this paper we apply the above
filtering technique using as D a compression algorithm based on the piecewise linear
approximation (PLA) of waveforms with respect to the L., metric. The essence of the
PLA problem is that given a piecewise linear function x:[a,b]-R with N sample points
and tolerance € € R, to construct a piecewise linear function g such that for all
t € [ab], |x(t)-g(t)| = e and g consists of the fewest number of segments over all
such functions.

There are many algorithms for the piecewise linear approximation of waveforms ['l,
Imai and Iri B8] have developed an optimal algorithm that runs in time linear on the
number of samples. However, its arithmetic complexity resists efficient design of a
custom VLSI implementation. Most recently !, we presented a simplified version of
that algorithm. The number of operations on the modified algorithm is substantially
smaller than those of the optimal algorithm, and for uniformly sampled data, the
modified algorithm is particularly attractive for a single-chip hardware implementation.
The modified algorithm is not optimal, but in practice, we find that the average number
of segments constructed by the modified algorithm is roughly 1.5 of the optimum
number, and that in filtering applications it only performs slightly worse than the
optimal one B,

For uniformly sampled data, a description of the compression/filtering algorithm is
given in Fig. 1. The essence of this algorithm is to construct a tunnel of radius e
around the original data and to find, starting from the start of the tunnel, the fewest
line segments that span the tunnel (see Fig. 2).

input: S={x (n)}, €, compression/filter flag.
Begin
LetxT(n) =x(n) + e, x"(n) = x(n) - €
x=x(1),T=1p=n=1y(0)=x(1);
while S is not empty do
T=T+1,n=n+1;
ap =x*(n)-x, a4 =x"(n) - x;
T=T+1,n=n+1,
while x* (n)=a,T + x, andx~(n)=<a, T + x,

do
if x* (n)<a,T + x,
thena, = (x* (n)x,)/T;
ifx~(n)>aT + x
then q; = (x~(n)-x;)/T;
T=T+1,n=n+1,
end
ifx* (n)<qT + x, thena, = a;;
else a;, = ay;

if compression then
gn-1) = ay(T-1) + xg;

elseif filtering then
fork=p+1tok=n-1do

y(k) = y(k-1) + ag;
X =x(T-1), T=0,p=n=n-Ly(n) = x;
end
End

Fig. 1: Algorithm for piecewise linear compression and filtering,

Starting from x; = x(1), the algorithm tries to draw tangents to increasingly longer
prefixes of the upper and lower envelopes. Specifically, initially the upper and lower
envelopes are truncated to the first two points. The algorithm then draws a tangent to
each of the envelopes (with slopes a;, and a;) from the point x;. It then seeks to extend
each envelope to the next point, and update their tangents to include them. This is
carried on iteratively until no tangent exists when the next point is included. The
algorithm then outputs the longest tangent as its first line segment, and cuts off the
portion of the envelopes examined so far. The entire process is then repeated on the
remaining portion of the tunnel to obtain the second line segment, and so on.
Decompression is performed by simple linear interpolation.

2.1 Example
Consider N =1000 samples of the waveform given by x(n) = s(n) + w(n), n = 1, 2,

N S
= N, where s (n) = sin | —— 0

] , and w(n) is uniformly distributed noise in the

x(n)” =x(n) e

v

Fig. 2: Piecewise linear filtering.

interval [-0.1, 0.1]. Fig. 3 is a plot of the compressed size of the data for various values
of e using the compression algorithm of Fig. 1. The second derivative of the plot is also
shown. From Fig. 3, the knee-point is selected as € = 0.11 to be the value of € at
which the second derivative plot attains a maximum. Fig. 4 shows the frequency
spectrums of the noise-free signal and the filtered signal {y (n)} using ¢ = 0.11. For
comparison, it also shows the spectrum of the output signal from a 6-th order low-pass
Butterworth filter with cut-off frequency f, = 0.2. From Fig. 4, the output spectrum of
the compression filter matches much better than the Butterworth filter the original
spectrum. As expected, the Butterworth filter removes all the high-frequency
components of the original signal.

3. Architecture

From Fig. 1, the main computations can be summarized as follows:
a) Tunnel Generation

xTm)=x(n)+ e x(n)=x(@n)-¢ (1a)

b) Tangent Generation
d*(n) =x*(n)-x% ,d(n) =x"(n)-x

ay = d+(n)/T , @ =d ()T (1b)

¢) Loop Termination Tests

Number of output

samples (x 1000)

100 -

A Second

090 |~

0.80

//

1 \ Dcrivatige

0.70 |k

A

0.60 freoey

oo []
L

il
\

l
{

0.40 \
0.30 ,
Ace-point at € ¥ 0.11
0.20 \ooesdersosessaspernsassnesroselbunsansnnse
"/
Ngroosoghensarncsccrcascccccpescocceses
N
0.00 :
0.0 0.1 0.2

Fig. 3: Filtered output versus €, and its second derivative.

Si(n) = d+(n) -aiT , So(n) = d=(n) - a,T

d) Tangent Update Tests

Ss(n)=d (n)-a,T, S4(n) = d=(n)-aT

e) Output Generation (Interpolation)
y(k) = y(k-1) + a5

6

(1c)

(1d)

(1e)

From Fig. 1, if $1(n) < 0 or S(n) > 0 then the main while-loop terminates and the
algorithm starts the output data generation. Similarly, if S3(n) < 0 or S4(n) > 0, then
new slopes (a, and a;) are computed using (1b).

From (1), the filtering algorithm requires nine unique additions and at most two
multiplications and two divisions per sample point. In fact, the two divisions can easily
be replaced by a table look-up and two multiplications. There are many ways to
implement the above operations in hardware. A traditional programmable digital
signal processor (DSP) would not be very efficient since the algorithm does not have a

Noise free sighal

£0.00 Butterworth—+7 |\ (\ﬁAlter 3
) with f, = 0.2 VA
-65.00

2
-70.00 5/
0.0 0.2 04

Fig. 4: Frequency spectrum of the noise-free signal, the output of the compression-based filter, and
the output of a 6-th order Low-pass Butterworth filter.

continuous stream of multiply-accumulate operations for which traditional DSPs are so
efficient.

Fig. 5 shows a block diagram of a hardware implementation of the algorithm that
provides a good balance between hardware complexity and efficiency of
implementation. It includes a controller, a small set of registers for local storage of
temporary data, a time counter, two multipliers, three adders, and a ROM look-up
table. The size of the ROM table depends on the maximum value of 7. Since T can
never be larger than the length of the maximum segment that spans a part of the data
tunnel for a given e, it also represents the maximum compression ratio achieved for the
tolerance e. In most applications, the average maximum compression ratio is less than
20to 1.

Let a5 and a; denote the values of the slopes of the upper and lower tangents used in
a particular stage of the algorithm. Let P, = a;, T and P; = a; T. Table 1 shows the
pipeline flow of operations for equations (1b-1d) using the proposed architecture.
From Table 1, the main while loop of the algorithm can be evaluated in three clock
cycles per input sample. The updated slopes, @, and 4, are computed for each sample
point, regardless of whether they are needed or not. The slopes a; and aj, are replaced
with their updated values only if either test S3 or S, fails. For example, from Table 1,

7

Register File

il aT T_count
ay (]

N T
x (n) - Xs

x~(n)-x MPY-2 ROM
ACC-2
Xs

CONTROL ACC-1 x(n)

y@®)
Fig. 5: Block diagram of the compression based filter architecture.
Table 1
Pipelined Data Flow in Filtering Algorithm
Clock
Inputs t t+1 t+2 t+3
ACC-1 |[x*()-x |[dT(m)-P, | dt(n)-P; | xT(n+1)-x
ACC-2 x'"(rl) X | d7(n)-Pp | d™(n)-Py | xT(m+1)-x
MPY-1 a, T dt(n) T a T
MPY-2 a, T d—(n) T ap, T
Outputs T=T+1
ACC-1 Sl(n-l) d"'(n) S3(n) Sl(n)
ACC-2 S,(n-1) d—(n) S4(n) Sa(n)
MPY-1 P, ay
MPY-2 P, a

if at time ¢ +2 S3(n) < 0 then at t +3 a, = a,. If the evaluation of S, or S, flags a
loop termination, then the computed values in the pipeline are discarded and one of the
adders is used to evaluate in a pipelined mode the output data samples using

y@=y@i-)+ta ,i=12..,T-1 2
where y (0) = x,, a, = a; if $1 < 0and a, = a;, otherwise.

4.

Compression based filtering can be applied in a variety of signal processing problems.
It is particularly effective in filtering broad-band signals and when there is no prior
knowledge of either the signal or noise characteristics. We presented an architecture
for noise filtering using a fast and efficient algorithm for piecewise linear
approximation. In pipelined mode, the design requires three cycles per input sample
for the compression phase of the algorithm and one cycle per sample for the

Conclusions

decompression phase.

1.
2.

7.

References

S. A. Tretter, "Introduction to discrete-time signal processing," Wiley, 1976.

B. K. Natarajan, "Filtering random noise via data compression,” Proc. IEEE
Data Compression Conf., Snowbird, Utah, 1993, pp. 60-69.

. B. K. Natarajan and K. Konstantinides, "Comparing Occam and Wiener filters

on broad-band signals,” to appear in Proc. of 1994 Asilomar Conference on
Signals, Systems, and Computers, Nov. 1994.

. B. K. Natarajan, "Occam’s razor for functions,” Proc. ACM Conf. on Comp.

Learning Theory, Santa Cruz, CA, Jul. 1993.

.D. L. Donoho, I.M. Johnstone, G. Kerkyacharian, and D. Picard, "Wavelet

Shrinkage: Asymptopia?,” Tech. Rep. 419, Dept. of Statistics, Stanford
University, Stanford, CA, 1993.

. N. Saito, "Simultaneous noise suppression and signal compression using a library

of orthonormal bases and the minimum description length principle”, Wavelets
in Geophysics, to appear in 1994.

G. Papakonstantinou, P. Tsanakas, and G. Manis, "Parallel approaches to
piecewise linear approximation,” Signal Processing, Vol. 37, pp. 415-423, Elsevier
Science B. V., 1994,

. H. Imai and M. Iri, "An optimal algorithm for approximating a piecewise linear

function,” Journal of Information Processing, Vol. 9, No. 3, pp. 159-161, 1986.

. K. Konstantinides and B. K. Natarajan, "An architecture for lossy compression,”

VLSI Signal Processing V, K. Yao et al. Editors, IEEE, 1992, pp. 237-246.

