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Abstract

Occam filters are a class of filters for additive random noise, based on the idea that when a
lossy data compression algorithm is applied to a noisy signal with the allowed loss set equal
to the noise strength, the loss and the noise tend to cancel rather than add. In this paper, we
apply non-linear Occam filters to broad-band signals. Using the chirp signal as a specific ex-
ample, we find that the Occam filter outperforms the Wiener filter consistently.
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1. Introduction
Efficient filtering of signals corrupted with additive noise is central in many signal processing
applications. Traditional spectral filtering techniques, such as Wiener filtering, often require
some prior knowledge of the noise and signal characteristics. Here we consider a new class
of filters that do not require such prior information but do not compromise on performance.

Consider a noisy signal, corrupted with additive random noise of known strength. The
strength may be measured as, say, the amplitude or the power of the noise. Compress the
noisy signal with a lossy data compression algorithm, with the loss allowed of the algorithm
set equal to the strength of the noise. Will the loss and the noise add or will they cancel? It
has been established[1], [2] that the loss tends to cancel the noise, with the extent of the can-
cellation depending on the compression achieved and how often the signal is sampled. This
leads to the following technique, which is the essence of an Occam filter.Compress the noisy
signal with a lossy compression algorithm, with the allowed loss set equal to the noise
strength. The decompressed signal is the filtered signal.The technique is rather general, for
instance, threshold filters using wav elet decompositions[3], [4], [5] can be viewed as special
cases.

We consider the problem of filtering additive random noise from broad-band signals. Using
compression algorithms that operate in terms of the piecewise linear functions, we construct
Occam filters for the problem. We then compare the performance of the Occam filters with
the Wiener filter, on a chirp signal corrupted with random noise. We find that the non-linear
Occam filters offer better noise rejection than the Wiener filter.

2. Results
2.1 Preliminaries

Without loss of generality, we consider functionsf on the unit interval. A sequence ofn
samples of f is a uniform sampling of f on the unit interval, i.e.,
fn = { f (0), f (1/n), f (2/n), . . .}. Let ν be the random variable representing the noise. We
use f̂n to denote the sequencefn corrupted with noise. A metric is a measure of the distance
between two sequences. For two sequencesfn andgn, the power metric is defined as

|| fn, gn||2 =
1

n

n−1

i=0
Σ ( f (i /n) − g(i /n))2 .

The power of a sequencefn is its distance from the zero sequence,|| fn, 0||2. The amplitude
metric is defined as

|| fn, gn||∞ =
n−1

i=0
max f (i /n) − g(i /n) .

The amplitude of a sequencefn is its distance from the zero sequence,|| fn, 0||∞.

With respect to a metric|| ⋅ ||, a lossy compressionalgorithmC is a program that takes as input
a sequencefn and a loss toleranceε ≥ 0, and produces as output a binary strings represent-
ing a sequencegn such that|| fn, gn|| ≤ ε . C is said to obey the metric|| ⋅ ||. A decompression
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algorithmD takes as input a binary string and produces as output a sample sequence. In par-
ticular, the decompression algorithmD corresponding toC would outputgn on inputs. We
useC( fn, ε ) to denote the strings obtained by runningC on input fn andε , and we useD(s)
to denote the sequencegn obtained by runningD on strings.

Using the above notation, we can state our filtering technique in the form of an algorithm. In
the following, the strength of the noise is measured in the same metric as that obeyed by the
compression algorithm.

Filtering Algorithm
input f̂n

begin
Let ||ν || be the strength of the noise.
RunC( f̂n, ||ν ||);
Decompress to obtain the filtered sequencegn;

end

The filtering algorithm above requires the strength of the noise||ν || to be known. In this sec-
tion we present a heuristic for estimating||ν ||. A more detailed discussion of this heuristic can
be found in[2].

Calibration Algorithm
input f̂n

begin
RunC( f̂n, ε ) for various values of
ε , and plot output size versus log(ε );
Let ε * be the knee point of this plot, i.e the point
at which its second derivative attains a maximum;
Outputε * as an estimate for the strength of the
noise;

end

2.2 The piecewise linear representation

In this section we select a compression algorithm that operates in terms of the piecewise lin-
ear functions and obeys theL∞ or amplitude metric. Using this compression algorithm we
build an Occam filter and examine its properties.

The compression algorithm does the following. Given a sequencefn and a toleranceε , the
algorithm constructs a piecewise linear functiong such that|| gn, fn||∞ ≤ ε , andg consists of
the fewest number of pieces over all such piecewise linear functions. The output of the com-
pression algorithm is the sequence of break points of the piecewise linear functiong.
Decompression is achieved by linear interpolation of the break points.

It happens that the compression scheme described above can be implemented optimally as an
algorithm requiring time linear in the number of input points, using visibility techniques.
Details can be found in the literature[6]. Also, a simplified form of the optimum algorithm
that is amenable to hardware implementation is described in[7]. The simplified algorithm is
not guaranteed to output a minimum number of pieces, but in practice we find that is within a
factor of 1.5 of the minimum.

3



We use both the optimum and the simplified algorithms mentioned above toconstruct Occam
filters as per the Calibration and Filtering Algorithm we gav e earlier. We refer to the filter
obtained from the optimum algorithm as Occam-O and to the simplified version as Occam-S.

2.3 A Broad-band signal

As an example of a broad-band signal, we select the function

f (x) =







0 x ≤ 0. 2

sin


1

(x − 0. 2)+ 0. 03



otherwise .

This signal has broad spectral support, and is difficult to filter with a classical spectral filter.
We now add random noise to the function. We select the noise to be a uniformly distributed
random variable in the range [-b,+b]. By selecting various values ofb, the signal-to-noise
ratio of the noise signal can be controlled. Figure 1 shows the 1000 samples of the function
f , corrupted with noise generated by a pseudo-random number generator obeying the above
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Fig. 1: A chirp signal corrupted with additive

random noise uniformly distributed in the range

[- 0.1,0.1]. SNR is 22dB.

distribution forb = 0. 1.
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2.4 The Wiener filter

The Wiener filter requires that the spectral properties of the noise-free signal and the noise be
known in advance[8]. Its transfer function is given by

H(ω ) =
S(ω )

S(ω ) + N(ω )
.

whereS(ω ) is the power spectral density of the noise-free signal andN(ω ) is the power spec-
tral density of the noise. Since we assume the noise variable to be statistically independent at
each sample point, it has uniform power spectral density andN(ω ) is a constant that depends
only on the variance of the noise distribution. We implement the Wiener filter using the dis-
crete Fourier transform.

2.5 Performance

We now compare the performance of the Occam filters and the Wiener filter, on the chirp sig-
nal described earlier. First, we hold the sampling rate fixed at 1000 samples on the unit inter-
val. We allow the noise strength to vary, selecting the amplitudeb of the noise to take on the
values 0.05, 0.1, 0.15, 0.2, ..., 0.4. Figure 2 shows a plot of the filtered sequence obtained by
applying the Occam filter Occam-O on the noisy sequence of Figure 1, with the noise
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Fig. 2: Output of Occam-O filter filter given

the input of Fig. 1. Output SNR is 31 dB.

strength being estimated using the calibration algorithm. Figure 3 shows plots of the signal-
to-noise ratio of the filtered sequencegn against the signal-to-noise ratio of the noisy input
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Fig. 3: Plot of SNR of filtered signal versus

SNR of input signal.

sequence, both quantities being the power expressed in dB. Specifically, the signal-to-noise
ratio of the filtered sequencegn is

10 log10



|| fn||2
|| fn, gn||2




.

The signal-to-noise ratio of the input sequencef̂n is

10 log10



|| fn||2
|| fn, f̂n||2




.

From Figure 3, we observe that the Occam filter based on the optimum compression algo-
rithm, Occam-O, performs best, followed by the Occam filter based on the simplified com-
pression algorithm, Occam-S, followed by the Wiener filter. At the selected sampling rate,
the Occam filter Occam-O consistently performs 5dB better than the Wiener filter over the
input noise levels that we studied.

Next, fixing the noise strength atb = 0. 1, we vary the sampling rate over 500, 1000, 1500, ...,
4000 samples on the unit interval. Figure 4 shows plots of the signal-to-noise ratio (power
dB) of the filtered signal against the sampling rate. From Figure 4, we observe that the
Occam filter based on the optimum compression algorithm, Occam-O, performs best, fol-
lowed by the Occam filter based on the simplified compression algorithm, Occam-S, fol-
lowed by the Wiener filter. The Occam filter Occam-O performs between 5 and 7dB better
than the Wiener filter over the range of sampling rates studied.
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Fig. 4: Plot of SNR of filtered signal versus

sampling rate, at input SNR of 22 dB.

3. Conclusion
We constructed two Occam filters based on compression algorithms that operate in the piece-
wise linear representations. We compared the performance of the Occam filters against that
of a Wiener filter on a chirp signal corrupted with random noise. We found that the Occam
filters consistently outperformed the Wiener. This is significant since unlike the Occam, the
Wiener filter requires a priori information on the spectral properties of the noise and signal.

References

1. Natarajan, B.K., (1993). Filtering random noise via data compression, Proc. IEEE Data Compression
Conference, Snowbird, Utah, pp.60-69.

2. Natarajan, B.K., (1994). A general technique for filtering random noise, Hewlett-Packard Laboratories
Tech. Report HPL-94-55, June 1994.

3. DeVore, R.A., and Lucier, B. J., (1992) Fast wav elet techniques for near-optimal image processing, IEEE
Military Comm. Conf., IEEE Comm. Society, 1992.

4. Donoho, D. L., Johnstone, I.M., Kerkyacharian, G., and Picard, D., (1993). Wa velet Shrinkage: Asymp-
topia?, Tech. Rep 419, Dept. of Statistics, Stanford University, Stanford, CA.

5. Saito, N., (1994). Simultaneous noise suppression and signal compression using a library of orthonormal
bases and the minimum description length principle, Wav elets in Geophysics, to appear.

7



6. Imai, H., and Iri, M., (1986). An optimal algorithm for approximating a piecewise linear function. J. of
Information Processing, Vol. 9, No. 3, pp. 159-162.

7. Konstantinides, K., and Natarajan, B.K., (1994). An architecture for lossy compression of wav eforms us-
ing piecewise linear approximation, IEEE Transactions on Signal Processing, to appear.

8. Tretter, S.A., (1976)Introduction to discrete-time signal processing,John Wiley and Sons, New York,
NY.

8




