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The performance of applications executing on processors
with instruction level parallelism is often limited by
control and data dependences. Performance bottlenecks
caused by dependences can frequently be eliminated
through transformations which reduce the height of
critical paths through the program. While height
reduction techniques are not always helpful, their utility
can be demonstrated in an increasingly broad range of
important situations.

This report focuses on the height reduction of control
recurrences within loops with data dependent exits.
Loops with data dependent exits are transformed so as to
alleviate performance bottlenecks resulting from control
dependences. A compilation approach to effect these
transformations is described. The techniques presented in
this report used in combination with prior work on
reducing the height of data dependences provide a
comprehensive approach to accelerating loops with
conditional exits.

In many cases, loops with conditional exits provide a
degree of parallelism traditionally associated with
vectorization. Multiple iterations of a loop can be retired
in a single cycle on a processor with adequate instruction
level parallelism with no cost in code redundancy. In
more difficult cases, height reduction requires redundant
computation or may not be feasible.
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1 Introduction

Control and data dependences are often a limiting factor in the performance of applications
executing on processors with instruction level parallelism (ILP). Performance bottlenecks caused
by dependences can frequently be eliminated through transformations which reduce the height of
critical paths through the program. This report studies performance limitations imposed by
control dependences present in a program and describes a collection of techniques which re
organize control dependences to reduce the height of critical paths. The objective is to retire
sequences of dependent branches as quickly as possible, thus maximizing exploitable
parallelism. Although the techniques are applicable to both loop and "scalar" code, this report
focuses on control recurrences in loops with conditional exits.

The concept of control dependence has been defined in prior work [1]. Control dependences
identify the relationship between each branch and the operations which depend upon its
resolution. Control dependences correctly identify minimal conditions under which an operation
may execute without speculation. Branches are a significant bottleneck in limiting ILP
performance. A number of experimental measurements for ILP performance have been obtained
[2-5]. In all cases, these measurements have not considered program transformations which
alleviate bottlenecks caused by either data or control dependences.

Most of the prior work on height reduction relates to data height reduction, i.e., height reduction
of critical paths caused by data dependences. Early work in this area introduced techniques such
as tree height reduction of arithmetic expressions [6]. More recent work demonstrated
techniques, called symmetric and blocked back-substitution, for cyclic height reduction of
arithmetic expressions in software pipelined loops [7]. A broad understanding of the utility of
these techniques on ILP processors is not yet available.

There has been some prior work in alleviating the effects of control dependences. The use of
speculative execution is one such technique. Speculative execution identifies operations whose
side effects are reversible and moves these operations above branches on which they depend [8
12]. Speculative execution can significantly accelerate program performance but does not
address the problem of parallel execution of branches and other non-speculative operations with
problematic control dependences.

The ability to retire multiple branches in a single cycle can alleviate bottlenecks caused by chains
of control dependences. The Multiflow Trace machine [13] is an example of a processor with
such capability. While processors like the Trace can issue multiple branches per cycle, it is
difficult to correctly guard non-speculative operations in between these branches. In general, it
may be difficult to build hardware which retires multiple branches per cycle and executes
operations between these branches under the correct branch condition. This problem is
complicated by the need for a fast cycle time and short branch latency.

Predicated execution (see [14-17]) offers alternative approaches for removing performance
bottlenecks due to control dependences. Predicated execution uses a boolean value to guard the
execution of an operation. Predicated execution can be used to convert control dependences
arising from a branch into data dependences between the computation of a predicate and
conditionally executed operations which are guarded by this predicate. Control dependences,
when converted to data dependences, are amenable to height reduction techniques such as
symmetric and blocked back-substitution [7]. Predicate expressions as originally derived from
programs may be too sequential in their construction. A set of properly defined machine
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operations, e.g., as in the PlayDoh architecture [18], can be used to parallelize the computation of
these predicate expressions.

This report uses predicated execution to describe control height reduction. Similar control height
reduction techniques can also be used to parallelize programs for architectures with no support
for predicated execution. We use predicated execution as a means to describe control height
reduction partly because it allows us to view both control and data dependences in an uniform
manner. The conversion of control dependence to data dependece through use of predicates
allows techniques, originally developed for the height reduction of data expressions, to be used
for the height reduction of mixed data and control expressions.

The rest of the report is organized as follows. Section 2 introduces some of the basic concepts
and notations that are used in this report. Section 3 illustrates the concept of control height
reduction using an example. Section 4 identifies a class of loops, called loops with separable
stores, that are amenable to control height reduction and describes the transformation process in
detail. Section 5 illustrates the application of control height reduction to a class of conditional
recurrences, called write-overwrite recurrences, that arise due to conditional assignments in a
loop body. Section 6 describes the architectural support provided in the PlayDoh architecture for
efficient evaluation of predicate expressions. Section 7 contains concluding remarks.

2 Overview of basic concepts and notations

This section describes some of the basic concepts and notations that are used throughout this
report.

2.1 Predicated execution

Predicated execution has been implemented in the Cydra 5 computer and has been described in a
number of papers [14-17]. Predicated execution refers to the conditional execution of an
operation based on a boolean-valued operand, called a predicate. The operation executes if the
predicate input is true and is nullified if it is false. Compare operations are used to calculate a
boolean value which is subsequently used as a predicate. Predicated execution supports if
conversion which can eliminate program branches in conditional expressions. Predicated
execution may also be used to generalize the rules of code motion across conditional branches.

We denote a predicated operation as follows: "r = op(a, b) if p''. Here, p names the predicate
operand which potentially nullifies the operation. Constants "T" and "F" are used to represent
true and false boolean constants. The constant "T" may be used as the predicate operand for an
operation. For example, "r = op(a, b) if T" executes unconditionally. Operations with no
predicate specified also execute unconditionally and use the constant "T" for predicate. Thus, "r
=op(a, b)" is the same operation as "r =op(a, b) ifT". Predicates are complemented through the
boolean complement operation "-".

At times we extend the notation to include predicated execution of a compound function. When
we write "r = F(a, b, c) ifp", we mean that all operations inside F execute using the predicate p or
predicates derived from it (the function may contain embedded if-converted code).

2.2 Use of Expanded Virtual Registers and Dynamic Single Assignment form

Special notation is used to describe the flow of values between loop iterations. We use the
concept of the expanded virtual register (EVR) as described by Rau [19]. Each EVR is a
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linearly ordered set of virtual registers. An EVR t is referenced using the notation t[i] where i
identifies the dynamic instance for the corresponding assignment. A special remap operation is
defined on EVRs. Each time a remap(t) is executed for the EVR t, all values in the linearly
ordered set are referenced through a new name. A value t[i] prior to the execution of a remap(t)
is referenced as t[i+ 1] after the remap(t). A reference to the value t is defined to be exactly the
same as a reference to t[O]. A value originally referenced as t, is referenced after the execution of
a single remap(t) as t[1]. EVRs allow multiple values from a sequence of assignments to a
common scalar to remain alive without terminating the lifetime of a value when the next member
of the sequence is computed. This is used to eliminate anti and output dependences resulting
from assignment to scalars within loops. EVRs can be used as an internal representation within a
compiler and do not require specialized hardware support for register renaming.

EVRs are used to convert programs into dynamic single assignment (DSA) form. In DSA form,
a value is written into a register only once. DSA form requires that for each program circuit, and
for every write to some register r within the circuit, a remap(r) is traversed before revisiting the
write to r. Anti-dependences and output dependences due to register assignment are eliminated,
but flow dependences needed to complete the computation are preserved. The combination of
EVRs and DSA form accurately describes dependences across zero, one, or more loop iterations.

2.3 Reduction operations

In the examples and the schemas presented in this report, we use certain high-level reduction
operations in order to simplify the presentation. This section describes these reduction
operations. Each reduction operation calculates a single result as a function of a variable number
of inputs. Section 6 describes their implementation in terms of low-level operations in the
PlayDoh architecture.

1. SELECT operation: result = SELECT(opl ifpl; op2 ifp2; ... ; opn ifpn). The value of
the result is calculated by evaluating the operation (or function) corresponding to a true
predicate. Ifnone of the predicates, or more than one of the predicates is true, the result of
a select is undefined. For the purposes of this report, we will assume that exactly one of
the predicates in a SELECT statement is true, always giving a well defined result.

2. Logical AND operation: result = AND(el, e2, ..., en). This operation represents a multiple
input boolean conjunction of values computed by boolean expressions e1, ..., en.

3. Logical OR operation: result = OR(el, e2, ..., en). This represents a multiple input
boolean disjunction of values computed by boolean expressions el, ..., en.

2.4 Function composition

In order to explain the height reduction schema, we need to describe components of a loop body
in a functional form. As an example, the statement S = F(S[1]) means that the state variable S is
calculated by applying the function F to the previous state variable S[1]. We use the notation
Fb(S[l]) to represent the b-fold composition of F defined inductively as: Fl=F; and Fb= F(Fb-l)
for b > 1.

3 An example to illustrate control height reduction

In this section, the concept of control height reduction is illustrated with an example. Figure 1
shows an example do-while loop in C. This loop performs the string copy operation while
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counting the characters of the string. In this example, the strings pointed to by p and q are
assumed not to overlap.

This loop exhibits several characteristics which are discussed in detail in Section 4. First the loop
contains stores to memory. We assume that stores can not be speculatively executed. Thus, the
loop contains a recurrence composed of the control dependence cycle containing the store
operation and the conditional branch. The second property of the loop is that it contains a
variable, count, which is live upon loop exit (to simplify the example, the variables p and q are
assumed to be dead at loop exit). Finally, the number of iterations of the loop can not be
calculated a priori, i.e., the loop is not a counted loop.

count = -1
do {

*q++ = *p
count++

} while (*p++)

Figure 1: String copy with count

In its original form, this loop exhibits very limited ILP. Although the load operation can be
executed speculatively, both the memory update operation and the calculation of values live at
loop exit has to be executed under the correct control dependence. Figure 2 shows control and
data flow dependences present in the loop which collectively form a number of potentially
performance limiting recurrence cycles. In this figure, thick lines represent the data flow
dependences and the thin lines represent the control flow dependences.

We can now analyze the dependences in this loop for the software-pipeline scheduling model
[20,21,9,22]. In software-pipelining, the control dependences for the increment operations for p
and q, and for the load operation can be relaxed by speculative execution. On the other hand, the
increment operation on count and the store to memory should be executed under the original
control conditions.

Four dependence cycles that can effect the schedule length for software pipelining are shown in
this figure. Three of these are data recurrences resulting from the increment operations on
variables p, q, and count. These recurrences can be reduced by using data height reduction
techniques like symmetric or blocked back-substitution [7]. The fourth recurrence in the loop is
a control recurrence. The branch at the loop exit is control dependent on the branch from the
previous iteration. This recurrence is the focus of this report. For an architecture where only one
conditional branch can be executed at a time, this recurrence limits the software pipelined
version of this loop to retire no more than one iteration within the latency of a single branch.

In the presence of architectural support for concurrent execution of multiple branches, this
example presents another problem. When predicates cannot be used, control dependences
constrain stores and assignments to live-out values to remain trapped between successive
branches. On VLIW architectures supporting multiple branches per cycle it may be difficult to
correctly guard operations trapped between concurrent branches. Control height reduction can be
adapted to properly guard concurrent operations from adjacent iterations of a loop even without
using predicated execution.

The control height reduction transformation consists of the following steps. First the loop is
unrolled b times resulting in a loop where each iteration contains b iterations of the original loop.
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We will call these iterations major iterations and minor iterations, respectively. The next step is
preparation of the unrolled loop for control height reduction. The operations which can be
executed speculatively are moved above the conditional branches and the operations which
cannot be executed speculatively (e.g. stores and calculation of live-outs) are moved below the
branches and also copied into the loop exit code. The predicates under which these operations
execute are derived from the control dependences of the unrolled loop. Finally, the branches
within the major iteration are collapsed resulting in the reduction of a chain of b control
dependent branches into a single branch. After control height reduction, the loop traverses a
single branch every b minor iterations reducing the effective latency imposed by control
dependence by a factor of b. At this step, data recurrences which contain chains of data
dependent calculations can be height reduced using existing techniques.

(count is live out)

Figure 2: Dependence cycles in the example

Figure 3 presents the result of the combined data and control height reduction on the example in
Figure 1. In this example, the degree of unroll used in this transformation is four. The original
do-while loop is converted into a while loop. The loop kernel consists of three sections,
speculative calculation of the loop exit condition, the loop branch for the loop exit which
replaces four branches corresponding to the four minor iterations, and the stores to memory
combined with the loop state update. The exit code for the loop contains the conditional stores to
memory for the last four iterations of the original loop combined with the calculation of the final
value of count. Within the loop kernel, data height reduction is applied to address calculation
expressions to facilitate parallel execution of load and store operations.

3.1 Height reduction in intermediate representation

This section presents the treatment of the example loop in intermediate form. The intermediate
form uses EVR notation and predicates to represent a program. Figure 4 shows the intermediate
representation for the original do-while loop. The virtual registers vrl and vr2 contain the
address of the locations pointed by p and q; vr3 is the temporary register used to hold the data
loaded from memory; vr4 holds the running value of count and cond is the variable used to store
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the loop exit condition. The remap operation before the branch renames all the virtual registers
as described in Section 2.2.

count = -1 ;
while{*p && *(p+1) && *(p+2) && *(p+3)) {

*q = *p ;
*(q+1) *(p+1)
*(q+2) *(p+2)
*(q+3) = *(p+3)
P += 4
q += 4
count += 4

*q *p;
count += 1
if (*p) {

*(q+1) = *(p+1)
count += 1 ;
if (*p+1) {

*(q+2) = *(p+2)
count += 1 ;
if (*p+2) {

*(q+3) = *(p+3)
count += 1 ;

}

}

Figure 3: Height reduced string copy with count

vr1[l] = p
vr2[l] q
vr4[l] = -1 /* count */

loop: vr1 = vr1[l]+1
vr2 vr2[l]+1
vr3 = load vrl[l]
vr4 vr4[l] + 1
store vr2[l],vr3
cond = (vr3 != 0)
remap{vr1,vr2,vr3,vr4,cond)
if cond[l] go to loop

exit: count = vr4[l]

Figure 4: Do while loop in intermediate representation

Figure 5 presents the intermediate code after applying the control height reduction transformation
presented in Section 4. The reader is referred to Section 4 for the schema used in generating this
code. The code is presented here for illustration purposes and to provide an example to the reader
in the next section. This code corresponds to the height reduced state of the loop in Figure 4 after
the application of the transformation in Figure 17 with a loop unroll factor of four. The example
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contains two major components, the loop body and the loop exit code. The loop body contains
four minor iterations where the computation in the fourth minor iteration is back substituted so
that it is data dependent only on the fourth minor iteration from the previous major iteration. The
address calculation of four load operations that set vrlO-vr13 are also back-substituted.

vr1[1] = p ; vr2[1] = q vr4[1] = -1 ; W[l] = TRUE
loop: vr1 = vr1[1]+1 ; vr2 = vr2[1]+1

vr3 = load vr1[1] ; vr4 = vr4[1]+1
remap(vr1,vr2,vr3,vr4,vr10,vr11,vr12,vr13,W)
vr1 = vr1[1]+1 ; vr2 = vr2[1]+1
vr3 = load vr1[1] ; vr4 = vr4[1]+1
remap(vr1,vr2,vr3,vr4,vr10,vr11,vr12,vr13,W)
vr1 = vr1[1]+1 ; vr2 = vr2[1]+1
vr3 = load vr1[1] ; vr4 = vr4[1]+1
remap(vr1,vr2,vr3,vr4,vr10,vr11,vr12,vr13,W)
vr1 = vr1[4]+1+1+1+1 ; vr2 vr2[4]+1+1+1+1
vr3 = load(vr1[4]+1+1+1) vr4 = vr4[4]+1+1+1+1

vr10 = load vr1[4] ; vr11 = load (vr1[4]+1)
vr12 = load (vr1[4]+2) vr13 = load (vr1[4]+3)
W = AND(W[4], (vr10 ! = 0), (vrll ! = 0),

(vr12 != 0), (vr13 != 0) )
store vr2[3],vr3[3] if W
store vr2[2],vr3[2] if W
store vr2[1],vr3[1] if W
store vr2,vr3 if W
remap(vr1,vr2,vr3,vr4,vr10,vr11,vr12,vr13,W)
if W[l] goto loop

exit: W[4] AND(W[5], (vr3 [4] != 0) )
W[3] = AND(W[4], (vr3 [3] != 0) )
W[2] = AND(W[3], (vr3 [2] != 0) )
store vr2[4],vr3[4] if W[5]
count = vr4[4] if W[5]
store vr2[3],vr3[3] if W[4]
count = vr4[3] if W[4]
store vr2[2],vr3[2] if W[3]
count = vr4[2] if W[3]
store vr2[1],vr3[1] if W[2]
count vr4[1] if W[2]

Figure 5: Intermediate code after transformation

In this figure two notations are adopted. The symbol ";" is used as a separator for multiple
intermediate code statements that are on the same line. In our intermediate representation, load
and store operations do not perform address calculation. However, to improve the readability of
the example, address calculations whose only consumer is a single load or store operation may be
folded into the arguments of load and store operations as has been done for back substituted
addresses used in memory operations after the third remap in Figure 5. The loop in Figure 5
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contains a significant amount of redundancy. Figure 6 shows the optimized version of this loop.
In Figure 6, the remap operations have also been eliminated by renaming virtual registers.

vr1 = p
vr9 = q

vr4 = -1
W = TRUE

loop: vr2 = vr1 + 1 ; vr3 = vr1 + 2 ; vr4 = vr1 + 3
vr5 = load vr1 ; vr6 = load vr2
vr7 = load vr3 ; vr8 = load vr4
W = AND(W, (vr5 != 0) , (vr6 != 0) ,

(vr7 != 0) , (vr8 != 0) )

vr10 = vr9 + 1 ; vr11 = vr9 + 2 ; vr12 = vr9 + 3
store vr9, vr5 if W
store vr10, vr6 if W
store vr11, vr7 if W
store vr12, vr8 if W
vr1 = vr1 + 4 if W
vr9 = vr9 + 4 if W
vr4 = vr4 + 4 if W
ifW go to loop

exit: store vr9, vr5 if W
count = vr4 + 1 if W
W = AND(W, (vr5 != 0) )

store vr10, vr6 if W
count = vr4 + 2 if W
W = AND(W, (vr6 != 0) )

store vr11, vr7 if W
count = vr4 + 3 if W
W = AND(W, (vr7 != 0) )

store vr12, vr8 if W
count = vr4 + 4 if w

Figure 6: Intermediate code after optimization

For an architecture which does not support predicated execution, reverse-if-conversion [23] can
be used to obtain a branching version of this code. The branching intermediate code would
correspond to the source code shown in Figure 3.

4 Framework for parallelization of loops with conditional exits
In this section, we formalize the transformations illustrated in the last section for the
parallelization of control recurrences present in loops with conditional exits. As mentioned
earlier, loops with conditional exits are inherently recurrences because control dependence
between branches enforce the following rule: an iteration executes if the previous iteration has
executed and did not exit. The approach described in this section uses predicated execution to
convert the basic control recurrence threading through branches into a data recurrence. The
control recurrence when converted to a data recurrence is amenable to height reduction
techniques such as symmetric and blocked back-substitution described in [7]. As noted in
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Section 3, the height reduction of control recurrence supports the execution of multiple loop
iterations within a single cycle on ILP architectures where at most one branch can be processed
in a single cycle.

4.1 Loops amenable to control height reduction

This section discusses the types of loops that are amenable to control height reduction and
describes a canonical form for such loops, which will be used as the starting point for height
reduction transformations. We consider do-while (also called repeat-until) loops with a single
exit at the end of the loop. While loops can be converted to do-while loops by peeling off the
first iteration test. Loops with multiple exits can also be converted into do-while loops with a
single exit using the technique described in [9].

Figure 7 shows a do-while loop in a stylized form. We assume that conditional computations
inside the loop body have been if-converted to predicated code. The loop state vector X
represents all loop variant register state elements within the loop body. Functions FI, F2, etc. are
applied to X in order to compute new values for some or all of the elements of the state vector X.
These computations are interspersed with stores to memory. Functions AI, A2, etc., compute
memory addresses for stores. Similarly, functions VI, V2, etc., compute the values to be stored
in the memory. The function E calculates a boolean value (cond) to determine whether to
continue the loop or not.

x = LI{IN); /* Initialize the state vector X */
Loop: X = Fl (X); /* Compute elements of X */

Store (Al (X) , Vl{X)) i /* Perform a store to memory */
X = F2 (X) i

Store (A2 (X) , V2 (X) ) i

cond = E{X) /* E(X) computes the branch condition */
if cond go to Loop

Exit: OUT = LO{X) i /* Extract live-outs from X */

Figure 7: Original do-while loop in pseudo assembly code

Values that are live into the loop or live out of the loop must be carefully treated. IN and OUT
represent scalar values which were live into or live out of the original source loop. In the stylized
code shown in Figure 7, the functionLl copies the live-in values from IN to the appropriate
variables within the initial variant state. The function La selects the live-out values from the
final variant, which are then copied to OUT.

We define a class of loops, called loops with separable stores, that are amenable to control
height reduction. Such a loop has the property that load operations used to resolve the loop-back
branch, do not alias with store operations in previous iterations of the loop. Thus, the addresses
of loads used to compute the condition E(X) in Figure 7 are guaranteed not to be the same as any
of the store addresses AI(X), A2(X), ... in previous iterations. Separability can be defined over a
finite number of previous iterations. The application of b-fold control back-substitution requires
that stores move across all loads used to compute E(X) in the next b-l iterations.

Another way to view this property can be seen within the dependence graph of the loop, i.e., the
graph that makes all control and data dependences explicit. The dependence graph of a loop with
separable stores has the property that no recurrence cycle involving the branch has a store to
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memory. The control height reduction technique described in this report relies on the ability to
delay stores by moving them across one or more iterations. The separable store property
guarantees that such code motions are permitted. Analysis techniques, such as vector dependence
analysis, may be used. to prove that a loop is separable before control height reduction is
performed. The loop may also have performance limiting load store dependences within the
body. Techniques such as load and store elimination [19] may be used to eliminate these
recurrences.

To illustrate the problem in accelerating loops that don't have the separable store property,
consider the dependence graph shown in Figure 8. Although the branch in an iteration is control
dependent upon branches in previous iterations, the performance of the loop is limited by the
recurrence cycle passing through all four operations. To accelerate this recurrence, it is necessary
to move the load from an iteration to a previous iteration, or similarly, to delay the store by
moving it across one or more iterations. Control and memory dependences in the figure prohibit
such code motions.

Control
dependence

Control
dependence

Figure 8: Precedence graph for a loop without separable store property

Implicit in the above discussion are certain assumptions about the target architecture. The first
assumption is that the architecture permits all operations other than branches and stores to be
issued speculatively. The second assumption is that the architecture provides no support to
schedule a load before potentially aliasing stores that precede the load in the original program. If
the target architecture permits speculative stores or if the architecture provides data speculative
loads (e.g., as in the PlayDoh architecture [18]), then the technique described in this report can be
applied to loops without the separable store property; however, that is beyond the scope of this
report.

Given a separable loop, the state vector X can be decomposed into two parts S and T such that
the following holds. The state vector S contains all elements of X whose computation doesn't
involve load operations that alias with the stores in the loop. The state vector T contains all other
elements of X. The separable store property guarantees that both the computation of S and the
computation of branch condition (cond) use only elements of S and don't use any elements of T.
The computation of T may use elements of both S and T. Further, the computation may contain
loads that alias with stores, in which case the load-store ordering implied in the source program
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must be preserved. Similarly, stores may alias with each other and, if they do, they must be
executed in their source order to preserve correct memory state.

With these definitions, a loop with separable stores can be put into a canonical form in which
operations are separated into two groups. The first group contains operations that calculate the
state vector S and the branch condition (cond). The second group contains operations related to
the computation of T and all store operations. To separate the operations inside the loop into the
two groups, it may be necessary to introduce new temporaries in the calculation of S in order to
preserve certain intermediate values that are used in the calculation of the state vector T and the
arguments to store operations. This can be done either by static renaming or by making use of
EVRs.

Figure 9(a) shows the dependence graph of the canonical form of a loop with separable stores,
and Figure 9(b) shows the functional representation used in later sections to explain height
reduction. In Figure 9(b), T =V_T(S, T) represents all computation related to T as well as the
effect of all stores to memory.

Dependences on S S, T = LI(IN)

t Loop: T = U_T(S, T)
S = F(S)

.... Computation cond = E(S)
ofS if cond go to Loop

~
exit: OUT = LO(S, T)It ,

~ ~...... Computation Computation
of T and Stores)

,
ofcond

t I

Dependences

..... onT
,. Branch

I

Control dependences
(a) (b)

Figure 9: The canonical form for loops with separable stores. (a) dependence graph (b) textual form

The dependence graph in Figure 9(a) contains four types of recurrences.

1. Data recurrences that involve the state vector S. If necessary, data height reduction
techniques such as symmetric and blocked back-substitution [7] can be applied to reduce
the height of these recurrences.

2. Data recurrences that involve the state vector T. Data and control height reduction
techniques are not applicable to these recurrences without special architectural support
(e.g., speculative stores, data speculative loads). In many important cases such as the
example in Section 3, these recurrences don't exist.

3. Recurrences induced by control dependences between the branch and the computation of
S. Results from S are in tum used to compute the branch condition. These recurrences can
be eliminated by making these computations speculative.
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4. The basic control recurrence induced by the control dependence from the branch in an
iteration to the branch in the next iteration. That is, the branch is executed only if the
branch in the previous iteration was executed and didn't exit the loop. The height
reduction of this control recurrence is the focus of this report.

4.2 Converting to Dynamic Single Assignment form

To eliminate unnecessary anti- and output-dependences that arise because of repeated
assignments to elements of state vectors Sand T in each iteration of the loop, we convert the
loop (see Figure 9(b)) into dynamic single assignment form. Figure 10 shows the result. The
elements of S and T and the virtual register cond are now EVRs, which are remapped just before
the branch.

S[1], T[1] = LI(IN)
Loop: T = U_T(S[1], T[1])

S = F(S[1])
cond = E(S)
rernap(S, T, cond)
if cond[1] go to Loop

exit: OUT = LO(S[1], T[1])

Figure 10: Dynamic single assignment form of the loop

4.3 Introducing the fully qualified predicate

As mentioned in Section 4.1, a branch in an iteration of a loop with conditional exits is control
dependent upon the branch in the previous iteration. In this section, we introduce the notion of a
fully qualified predicate and use it to convert this basic control recurrence into a data recurrence.

The fully qualified predicate associated with a branch takes into account not only the branch
condition for the branch but also the branch conditions for all previous branches upon which the
branch is control dependent. To calculate the sequence of fully qualified predicates W, we
introduce a statement which performs a logical AND between W[l] from a previous iteration and
the branch condition to calculate W for a current iteration (see Figure ll(a». The predicate W is
initialized to true before the loop.

All operations in an iteration that can't be executed speculatively (e.g., stores) are also control
dependent upon the branch in the previous iteration. Thus, to facilitate code motion across
branches, we re-express the loop as a sequence of iterations whose operations are predicated with
W[l], i.e., the fully qualified predicate for the branch in the previous iteration. Note that the
computation of W itself is not predicated, since the entire sequence of W must have well-defined
values in order to properly guard the rest of the computation.

The branch condition for the branch at the end of the loop has been modified to W[l], which is
the fully qualified predicate calculated in the current iteration (note the intervening remap
operation). Thus like any other operation, the branch is predicated on the fully qualified predicate
for the branch in the previous iteration except that the predication of a branch is expressed by
modifying the branch condition. Each branch is no longer dependent on the branch from the
previous iteration. Instead, the AND operation which calculates the branch condition is
dependent upon the AND operation from the previous iteration. This permits branches to be
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moved across each other and permits multiple branches to be scheduled in the same cycle on
architectures that provide such a capability (e.g., PlayDoh). However, we don't rely on such
architectural capability in this report.

S [1] , T[l] = LI(IN) S [1] , T [1] = LI(IN)
W[l] = TRUE W[l] = TRUE

Loop: T = U_T(S[l], T [1] ) if W[l] Loop: T = U_T(S[l], T [1] ) if W[l]
S = F(S[l]} if W[l] S = F(S[l]}
cond = E(S) if W[l] W = AND{W[l], E{S) )
W = AND(W[l], cond} remap(S, T, W}
remap(S, T, W, cond} if W[l] go to Loop
if W[l] go to Loop exit: OUT = LO(S[l], T[l] }

exit: OUT = LO(S[l], T [1] )
(a) (b)

Figure 11: (a) Loop with all operations guarded using fully qualified predicates (b) Loop with speculative
computation of S and E(S), i.e. , condo

As pointed out in Section 4.1, recurrences induced by control dependences between a branch and
the computation of S and the branch condition may be the limiting factor in performance. Thus,
we make the computation of S and cond speculative by changing their guarding predicate to
TRUE. This allows their computation to be freely moved to previous iterations. The computation
abbreviated by V_T, however, must be correctly guarded. Specifically, all stores must be
executed under the correct control conditions. Figure l1(b) shows the code after this
transformation. We have also eliminated explicit assignment to cond to simplify the presentation
in later sections.

In the most optimistic scenario when there are no data recurrences other than the one that
expresses W in terms of W[1], the loop execution takes n cycles for each iteration where n is the
latency of the AND operation.

We can now decompose the problem of accelerating the loop into two disjoint problems. The
first problem is to accelerate the control recurrence. The control recurrence when converted to a
data recurrence (threading through W) is amenable to height reduction techniques such as
symmetric and blocked back-substitution described in [7]. Both these techniques replace the loop
body with an equivalent loop having substantially reduced critical path and may introduce
redundant computation to achieve the height reduction. We discuss these techniques in the
subsequent sections.

The second problem relates to actually exiting the loop. The loop shown in Figure 11 has the
property that if the loop were to run for a finite number of additional iterations after the loop
terminates, the semantics of the program will still be preserved-all operations in the body would
execute using predicate FALSE and would have no effect on the program state. Thus, the branch
out of loop need not be executed precisely on time. If the branch out of loop is delayed, a correct
result is ensured through the action of the predicates. This permits a loop to be unrolled an
arbitrary amount with only one branch at the end of the loop. This is particularly important when
executing multiple loop iterations in a single cycle. In such cases, it may be difficult to exit
between adjacent iterations of the original loop.

4.4 Symmetric back-substitution of loops with conditional exits
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As mentioned earlier, we need to height reduce the data recurrence which threads through the
variable W in order to accelerate the control recurrence. A symmetric height reduction as
described in [7] would calculate the predicate W for every iteration using an identical expression
appearing in a non-unrolled loop body. We could use symmetric height reduction in order to
reduce the height of this recurrence and accelerate the loop. We will not discuss this technique in
this report because it introduces more redundant computation than blocked back-substitution
discussed in the next section.

4.5 Blocked back-substitution of loops with conditional exits

Blocked back-substitution begins by unrolling a loop (e.g., b iterations). The last of the b
unrolled iterations is height-reduced through substitution and expression optimization. It has
been shown that this asymmetric form of the code is particularly efficient for the evaluation of
recurrences (see [7]).

The starting point to explain the transformation process is the loop shown in Figure 11(b). To
describe how live-outs are computed correctly, we temporarily move the assignment to OUT into
the body ofthe loop and properly guard the assignment (see Figure 12). Note that the assignment
is moved across a remap, and thus, S[1] and T[1] has been adjusted to Sand T, respectively. The
motion of the live-out computation inside the loop introduces scheduling constraints that were
not present in the original loop. Since the loop repeatedly assigns to the same set of variables,
i.e., OUT, in each iteration, the order of the assignments must be preserved to get the correct
live-out values. This ordering constraint appears as an output-dependence from the assignment in
one iteration to the assignment in the next iteration. In the subsequent discussion, we ignore this
output-dependence, since the purpose of moving the assignment inside the loop is to explain the
transformation process. In the final transformed code, the computation of live-outs will be done
outside the loop.

S[l], T[l] = LI(IN)
W[l] = TRUE

Loop: T = U_T(S[l], T[l])
S = F(S[l])
W = AND(W[l], E(S))
OUT = LO(S, T)
rernap(S, T, w)

if W[l] go to Loop
exit:

if W[l]

if W[l]

Figure 12: Loop with the computation of live-outs

4.5.1 Unrolling and back-substitution

The first step is to unroll the loop a number of times. The degree of loop unroll depends upon the
amount of parallelism in the target machine. The ideal unroll factor is one that exposes as much
parallelism as is available on the target machine. Figure 13 shows the loop unrolled b times.

The second step is to reduce the height of the control recurrence (i.e., recurrence threading
through W) using back-substitution and expression optimization. Although control height
reduction is the focus of this report, a combined approach that addresses both control and data
recurrences is usually necessary to expose parallelism. To reinforce this fact, the schema
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presented in this section shows height reduction of not only the control recurrence but also data
recurrences threading through the state vector S.

S[l], T[l] = LI{INI
W[l] = TRUE

Loop: /* First minor iteration */
T = U_T{S[l], T[l]l if W[l]
S = F(S[l])
W = AND(W[l], E(S»
OUT = LO(S, T) if W[l]
remap(S, T, W)
if -W[l] go to exit

/* bth minor iteration */

T = U_T{S[l], T[l]1
S = F{S[l])
W = AND{W[l], E{S»
OUT = LO(S, T)
remap (S, T, W)
if W[l] go to Loop

exit:

if W[l]

if W[l]

Figure 13: b-way unrolled loop

The height reduction is accomplished by expressing the evaluation of both W and S in the last
minor iteration directly in terms of variables W[b] and S[b]. Variables W[b] and S[b]. are
produced in the bth previous iteration, i.e., the values in the last minor iteration of the previous
major iteration (see Figure 14). Furthermore, the expressions calculating functions F, ..., Fb are
simplified and height-reduced to enhance speedup. In the example illustrated in Figure 3, the
evaluation of the Fb function has been simplified. This can be seen where the constant 4 is added
to variables p, q, and count. Constants have been folded to allow every four iterations to traverse
only a single irredundant summation on the recurrence path.

The third step removes the branches in the first b - 1 iterations. Note that all stores as well as the
computation of live-outs are properly guarded using fully qualified predicates. Thus, the
intermediate branches in the unrolled loop can be pushed to the bottom of the loop without
affecting the semantics after which they can be eliminated, since their effect is subsumed by the
loop-back branch. Thus, the back-substituted loop executes only a single branch every major
iteration. Control dependences among b minor iterations are enforced using predicates. As
mentioned in Section 4.3, the use of predicates permits execution of superfluous minor iteration
within the last major iteration without changing the semantics. The stores and assignments to
OUT in these extra minor iterations are simply nullified, and the final live-out values and the
final memory state are correctly determined independent of the loop trip count. Figure 14 shows
the code after back-substitution and elimination of branches.

Bounds on the interval between loop iterations can be derived due to resource limitations
(ResMII) and recurrence path length limitations (RecMII) as described in [22]. One can calculate
ResMII and RecMII bounds for the loop before and after the block back-substitution
transformation. Ignoring data dependences, the control recurrence in the original loop implies
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that each iteration takes n cycles where n is the latency of the AND operation. After back
substitution W is calculated in terms of W[b] again in n cycles, but the height reduced recurrence
spans b iterations of the original loop providing a b-fold height reduction.

S[l], T[l] = LI(IN)
W[l] = TRUE

Loop: /* First minor iteration */
T = U_T(S[l], T[l]} if W[l]
S = F(S[l]}
W = AND(W[l], E(S}}
OUT = LO(S, T) if W[l]
remap(S, T, W)

/* Form for back-substituted last minor iteration */
T = U_T(S[l], T[l]) if W[l]
S = Fb (S [b] )
W = AND (W[b], E (F (S [b] ) ), ... , E (Fb (S [b] ) ) )
OUT = LO(S, T) if W[l]
remap(S, T, W)
if W[l] go to Loop

exit:

Figure 14: Loop after back-substitution of Sand Wand removal of intermediate branches

Several additional points should be noted. The first point relates to the implementation of AND
reduction. As long as the path from W[b] to W involves only a single boolean operation, exactly
how the AND reduction is implemented doesn't affect the achievable IT (initiation interval) for
the loop. When using unconditional boolean operations to evaluate W, the associative property
can be used to reorganize the evaluation of W so that only a single operation is on the critical
path. A concurrent implementation of AND can improve the performance of short trip count
loops, by reducing the schedule length of a single iteration and hence the epilog stage count (see
[24]) of the software-pipelined loop. Section 6 describes micro-architecture support for
calculating AND reductions very efficiently.

Second, the performance of the back-substituted loop, in general, depends on the form of the
function F. When Fb can be quickly and efficiently evaluated, speedups are substantial. In many
cases, Fb can be evaluated at a cost similar to that of evaluating F and an unlimited amount of
parallelism can be exposed with no penalty for redundant operations. This is true, for example,
when an address strides by a loop invariant quantity (as shown in the example of Section 3). The
b-fold address update corresponds to adding a loop invariant.

4.5.2 Removal of partial block code from loop body

The loop shown in Figure 14 contains excessive code which is required to treat the last major
iteration in the loop, which may be executed only partially. In this section, we describe how this
code can be removed from the loop body.

To gain an intuitive understanding of the transformation described in this section, consider the
following two cases. First, consider the execution of a major iteration that does not exit the loop.
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Since all minor iterations execute, it is not necessary to guard the computation in each minor
iteration by a distinct predicate. Instead, the computations inside each minor iteration can be
guarded by the predicate that captures the fact that the major iteration doesn't exit. This will
allow the computation of b-l predicates to be eliminated from the loop body. Also, the
computation of live-out in this major iteration is unnecessary, since it is only the live-out
computation in the last major iteration that is visible outside the loop.

Consider the last major iteration. The loop body must specify an exit condition which falls
through after identifying a last major iteration. After the branch condition for the last major
iteration is computed, all remaining computation from the last major iteration can be moved
outside the loop. The transformations described in this section simplify the loop body by
performing the conditional execution of minor iterations within the last major iteration outside of
the loop.

The first step is to move the execution of U_T as well as the evaluation of the live-out function
LO to the last minor iteration. Figure 15 shows the code after this step.

S[l], T[l] = LI(IN)
W[l] = TRUE

Loop: /* First minor iteration */
S=F(S[l])
W = AND(W[l], E(S»
remap (S, T, W)

/* Back-substituted last minor iteration */

S = Fb(S [b)

W = AND(W[b], E(F(S[b]», ... , E(Fb(S[b]»)
/* Computation of T, OUT and stores */

T[b-l] = U_T(S[b], T[b]) if W[b]
OUT = LO(S[b-l], T[b-l]) if W[b]

exit:

T = U_T(S[l], T[l])
OUT = LO(S, T)

remap(S, T, W)
if W[l] go to Loop

if W[l]
if W[l]

Figure 15: Code with the computation of T, OUT and all stores moved at the end of the loop

The next step is to apply a transformation, which we call predicate splitting. This transformation
replaces a computation guarded by predicate p by multiple copies of the computation guarded by
predicates q1, ..., qn such that p =q1 v ...v qn. That is , the effect of the multiple copies of the
computation under q1, ..., qn is the same as the effect of the original computation under p. This
transformation in predicate domain is analogous to moving a computation below a branch or
above a merge (join) in the control-flow domain.

17



To see how the predicate splitting transformation can be applied to simplify the loop, consider
one of the statements of the form T [i-I] =U_T(S[i], T[i]) if W[i] (l ~ i ~ b). We can replace
this statement by the following two statements:

T[i-1] = U_T(S[i], T[i])
T[i-1] = U_T(S[i], T[i])

if W AW[i]
if -w AW[i]

The assignments to T have all been collected into the last minor iteration. Here, W is the newly
computed predicate in the last minor iteration. Since W is the conjunction of the predicates for all
the previous iterations, W evaluates to true implies that each ofW[b], ..., W[1] must also be true.
Thus, the predicate expression guarding the first statement can be simplified to W, which simply
states that the current major iteration doesn't exit the loop. In the predicate expression guarding
the second statement, - W states that the current major iteration is the last one. The other part of
the conjunction, i.e., W[i], describes if (b-i)th minor iteration corresponds to an executed
iteration in the original loop or not. Since the second statement executes only in the last major
iteration, it can be moved out of the loop. We apply the predicate splitting transformation to the
evaluation of U_Ts and to the computation of the live-outs (LO). After the live-out computation
for the last major iteration is moved out of the loop, the live-out computation remaining inside
the loop is unnecessary and can be removed. Figure 16 shows the simplified code.

S[l], T[l] = LI(IN)
W[l] = TRUE

Loop: /* First minor iteration */
S=F(S[l])
W = AND(W[l], E(S))
remap(S, T, W)

/* Back-substituted last minor iteration */

S = Fb(S [b])

W = AND(W[b], E(F(S[b])), ... , E(Fb(S[b])))
/* Computation of T and stores */

T[b-1] = U_T(S[b], T[b]) if W

T = U_T(S[l], T[l])

remap (S, T, W)
if W[l] go to Loop

ifw

exit: /* Handle live-outs and U_Ts in the last major iteration */
T[b] = U_T(S[b+1], T[b+1]) if W[b+1]
OUT = LO(S[b], T[b]) if W[b+1]

T[l] = U_T(S[2], T[2]) if W[2]
OUT = LO(S[l], T[l]) if W[2]

Figure 16: Removal of partial block code from loop body

The loop in Figure 16 can be further simplified. First, only every bth member of the sequence of
values for W are used within the body of the loop. We call this the sequence of block guards or
major iteration guards. Each newly computed block guard W is true if the previous block guard
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is true and none of the intervening minor-iterations required a loop exit. The other b-I members
of the sequences are used only after loop exit and can be evaluated out of loop.

Second, only a subset of the state vector sequence S is needed within the body of the loop. Some
components of these state vectors are needed in the computation of T and in the arguments to
stores. Computation of these components must remain inside the loop. However, some of the
components may be needed only in the computation of live-outs, and their computation can be
moved out of the loop. To accomplish this, we simply replicate the computation of the state
vector S in the first (b - I) minor iterations in the exit code, and rely on traditional optimizations
to simplify the code both within the loop and within the exit code. Figure 17 shows the code after
these transformations.

S[l], T[l] = LI(INl
W[l] = TRUE

Loop: /* First minor iteration */
S=F(S[l]l
remap (S, T, Wl

/* Back-substituted last minor iteration */

S = Fb(S [b] l

W = AND (W [b], E (F (S [b] l l, ... , E (Fb (S [b] l l l
/* Computation of T and stores */

T[b-1] = U_T(S[b], T[b]l if W

T = U_T(S[l], T[l]l

remap(S, T, Wl
if W[l] go to Loop

ifw

exit: /* Computation of Wand replicated computation of S */
S[b] F(S[b+1]l
W[b] AND(W[b+1], E(S[b]ll

s[2] F(S[3]l
W[2] AND (W[3], E(S[2]l

/* Handle live-outs and U_Ts in the
T[b] = U_T(S[b+1], T[b+1]l
OUT = LO(S[b], T[b]l

T[2] = U_T(S[3], T[3] l
OUT = LO(S[2], T[2]l
T[l] = U_T(S[2], T[2] l
OUT = LO(S[l], T[l]l

last major iteration */
if W[b+1]
if W[b+1]

if W[3]
if W[3]
if W[2]
if W[2]

Figure 17: Moving intermediate computations of W out of the loop and preparing for traditional optimizations

Note that the final code shown in Figure 17 needs to be simplified through traditional
optimizations such as common sub-expression, dead code elimination, constant folding, etc., in
order to remove unnecessary and redundant code. These optimizations must, however, be
extended to operate correctly in the presence of remap and predication.
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To summarize this section, we have used predicated execution to convert control dependences
into data dependences and applied blocked back-substitution to reduce the height of the control
recurrence (as well as data recurrences). The resultant code is optimized to produce the height
reduced and simplified result.

The blocked back-substitution method for control height reduction can reveal unlimited
parallelism in loops with conditional exits. However, this parallelism may come at the expense of
some redundancy. The amount of redundancy depends upon the exact nature of the loop body. In
many important cases such as the example in Section 3, the height reduced code is essentially
irredundant. With proper attention to optimization, the back-substituted code with b-way unroll
contains b times as many operations as in the original code, yet the recurrence height is divided
by b. In fact, blocked back-substitution may reduce the number of operations executed per
iteration in some cases. The reason is that some of the code to compute live-out values has been
moved out of the loop. The example presented in Section 3 illustrates such a case. In general, the
special treatment of the final major iteration, i.e., moving some of the code out of the loop, may
lead to some performance penalty on loops with very short trip count.

strate t e elgJ t re uction 0 suc recurrences.
m = 1 m = 1
do 24 k = 2, n xm = X(l}

if (X(k) .LT. X(m}} m = k do 24 k = 2, n
24 continue t = X(k}

if(t .LT. xm} {

m = k
xm = t

}

24 continue
(a) (b)

5 Height reduction of conditional recurrences

The blocked back-substitution technique for height reduction is applicable not only in the case of
the basic control recurrence in a loop with conditional exits but also to a more general class of
recurrences induced by control dependences. In this section, we apply the technique to a class of
conditional recurrences, which we call write-overwrite recurrences. We will use the "first
minimum" loop taken from the Livermore FORTRAN Kernels (loop 24) [25] as an example to
illu h h . h d . f h

Figure 18: (a) Original code for "write-overwrite" recurrence (b) Code after load elimination

m[l] = 1
k[l] = 2
xm[l] = load X(l}
do i = 1, n - 1

t = load X(k[l]}
P = (t < xm[l])
m = SELECT ( k[l] if Pi m[l] if -P }
xm = SELECT ( t if Pi xm[l] if -P }
k = k[l] + 1i
remap(m,xm,p,t,k}

endo

Figure 19: Low level if-converted code
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Figure 18(a) shows the original code for the loop. The purpose of the loop is to identify the index
of the smallest element of an array X. The loop contains a recurrence because of the conditional
assignment to m in an iteration and the use of m in computing the branch condition in the next
iteration. The recurrence is an example of a write-overwrite recurrence, so called because it
involves a conditional assignment. We can height reduce such a recurrence by unrolling the loop
and re-associating the conditional assignment to m.

While it may appear that two load operations are necessary per loop iteration, we can eliminate
the load from "X(m)" (see, for example, [19]). This can be done because X(m) always re-loads a
minimal X(k) which was loaded in an earlier iteration. Figure 18(b) shows the code after load
elimination. The re-written program contains a new variable xm which retains the current value
of X(m). The variable xm is updated with value X(k) every time m is updated with k.

We apply if-conversion to the loop body in order to remove the branch and express control
dependences as data dependences. This permits us to better understand the underlying recurrence
which limits its performance and to apply the blocked back-substitution technique to reduce its
height. Figure 19 shows the low level code after if-conversion and after conversion to dynamic
single assignment form. Conditional assignments to m and xm are implemented using SELECT
operation. In addition, the loop count has been normalized to start at 1.

We now consider the maximum sustainable rate if we were to software-pipeline the loop.
Ignoring resource constraints, this limit is determined by the RecMII for the loop. Careful
inspection reveals that the critical path traverses the compare operation that calculates predicate
p, which is in tum used by a register-to-register copy within the SELECT operation to compute
xm. The process repeats every loop iteration resulting in a RecMII equal to the sum of the
compare and the copy latencies.

To reduce the height of the recurrence, we unroll the loop b times and re-associate SELECT
operations. The re-association of SELECT operations relies on the transitive and anti-symmetric
properties of the less-than ( < ) operator to reorder the sequence of comparisons. The basic idea
is this. First, we find the first minimum within a block of minor iterations which form a single
major iteration. The first minor iteration within a major iteration makes no reference to the
minimum calculated in the previous major iteration. That is, the first minor iteration
unconditionally assumes that the value for that iteration is the minimum. Each of b-l subsequent
minor iteration computes the minimum taking into account the minimum computed only in
minor iterations from the current major iteration. Then, we select a minimum across all major
iterations. A final code sequence within a major iteration uses the minimum value from all
previous major iterations and the minimum value from the current major iteration to compute the
minimum value for the next major iteration. Figure 20 shows the code after height reduction. To
unroll the loop, we have "post-conditioned" the loop. The blocked loop executes an integral
multiple of b source iterations. The remaining iterations are done by a second loop after the
blocked loop. The loop bounds for the two loops, Q and R, are given by the following formulas.

R = (n -I) mod b

Q=(n-I)-R

The RecMII for the transformed loop is the sum of a compare latency and a copy latency.
However, the transformed loop advances across b minor iterations. Thus, the height of the
recurrence has been amortized across b iterations and effectively reduced b-fold. As we can see,
this recurrence can be parallelized as desired without significant redundancy in the calculation by
increasing the degree of back-substitution. This acceleration technique can be generalized to an
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important class of computations where a variable is repeatedly overwritten and the overwrite test
obeys theproperties of an ordering relation.

m[l] = 1
k[l] = 2
xm[l] = load X{l)

do i = 1, Q, b
/*special first iteration */

t load X{k[l])
p = (t < xm[l])
m = k[l]
xm = t
k = k[l]+l
remap{m,xm,p,t,k)

/*b-l conventional iterations */
t load X{k[l])
p = (t < xm[l])
m = SELECT { k[l] if Pi m[l] if -p )
xm = SELECT { t if Pi xm[l] if -p )
k = k[l]+li
remap{m,xm,p,t,k)

/* special code sequence to compute minimum for the next
major iteration */

P = (xm[b] < xm[l])
m = SELECT { m[b] if Pi m[l] if -p)
xm = SELECT { xm[b] if Pi xm[l] if -P
remap{m,xm,p,t,k)

endo

/* Remaining iterations */
do i = 1, R

t load X(k [1] )
P = (t < xm[l])
m = SELECT { k[l] if Pi m[l] if -p )
xm = SELECT { t if Pi xm[l] if -p )
k = k[l]+li
remap{m,xm,p,t,k)

enddo

Figure 20: Code after applying height reduction transformation

In previous sections, we have discussed high-level issues surrounding the transformation of an
important class of loops with control recurrences. We have identified techniques which enhance
available parallelism using control height reduction. In the following section, we describe low
level issues surrounding control height reduction. We illustrate how low-level operations such as
AND, OR, and SELECT can be accelerated using appropriate architectural primitives.
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6 Acceleration of predicate computation

The use of predicates allows us to convert control dependences into data dependences. The
PlayDoh architecture [18] provides highly specialized semantics for efficient calculation of
predicate expressions. This is discussed in the first two subsections. The rest of this section
describes parallel implementation of the reduction operations introduced in Section 2 using the
low-level operations in the PlayDoh architecture.

6.1 Semantics of simultaneous writes to a register

The PlayDoh architecture provides unusual semantics for simultaneous writes to registers. Unlike
traditional architectures, multiple operations may write into a register in a cycle provided they all
write the same value. In this case, the result stored in the register is simply the value being
written. On the other hand, if multiple operations attempt to write different values into a register
simultaneously, then the result stored in the register is undefined. In the case of writes to
predicate registers, this atypical semantics is useful for efficient evaluation of boolean reductions
discussed later in this section. Note that a predicated operation is conditionally executed and
doesn't write into its destination register(s) if the guarding predicate is false.

6.2 Compare operations to calculate predicates

The calculation of predicates is performed through a family of compare operations. PlayDoh
provides compare operations that target two predicate registers. The two results of a compare are
typically used to guard operations under taken and not taken branch conditions from a single
compare. To simplify the presentation, however, we describe compare operations as operations
with a single destination. Each compare operation computes the value of a predicate as a function
of another predicate and a compare condition. This is described, for example, using a statement
of the form:

p_out = cmpp.<comp_cond>.<D-action>.(il, i2) if p_in.

This statement computes the predicate p_out in terms of input boolean predicate p_in and input
data arguments il and i2. The compare op-code "cmpp" has two associated modifiers: the
compare condition <comp_cond> and the destination action modifier <D_action>. The compare
condition serves to enumerate classical compare conditions such as compare for equality,
inequality, less than, etc. The choice of compare conditions for PlayDoh mirrors HP PA-RISe.
We introduce compare conditions informally as needed by examples.

The destination action modifier uniquely specifies the means by which the input predicate and
the compare condition are combined to produce a final predicate result. To understand the
destination action specifiers, consider each combination of the predicate value and the boolean
result of the compare,. For each combination, there are three possible choices as to what can be
done with a destination. The choices are as follows:

1. Write 0 into the destination register.

2. Write 1 into the destination register.

3. Leave the destination unchanged.

That is, there are three possible actions for each of the four combinations of the predicate input
and compare result. A total of 34 = 81 possible actions that can be performed on a destination.
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Out of these, PlayDoh supports the ones described in Table 1. That is, the destination action may
take on one of eight settings:

<D-action> = UN I CN I ON I AN I UC I CC I OC I AC

means eave e target unc ane
Predicate Result of On result On the complement of result

input comparison UN CN ON AN UC CC OC AC

0 0 0 -- -- -- 0 -- -- --
0 1 0 -- -- -- 0 -- -- --
I 0 0 0 -- 0 1 1 1 --
I 1 1 1 1 -- 0 0 -- 0

each of which corresponds to a single column in Table 1. These are sufficient to cover most
requirements on predicate use. A brief explanation is given below for each of these eight
destination actions;

Table 1: Destination action specifiers for compare-to-predicate operations and their semantics. An entry with --
I th h ed

In the subsequent discussion, we use the following terms to describe compare operations. The
unconditional class refers to operations with UN and UC modifiers which always write the
target predicate. The conditional class refers to operations with CN and CC modifiers which
write the target predicate if the predicate input is true. The OR class refers to operations with ON
and OC modifiers as they are used in OR reductions, and the AND class refers to the ones with
AN and AC modifiers as they are useful in AND reductions.

First, we discuss the four actions grouped under the heading "on result". Unconditional
operations (UN) always write into the destination register. If the predicate input is false, they
clear the destination register; otherwise, they copy the result of the comparison into the
destination register. In other words, these operations effectively compute the boolean conjunction
of the input predicate and the result of the comparison.

Conditional operations (CN) behave like predicated compares. That is, if the predicate input is
false, they leave the destination unchanged; otherwise they copy the result of the comparison into
the destination. Note that both conditional and unconditional operations display identical
functionality if the predicate input is true and differ only in the case when the predicate input is
false.

The other two classes (OR and AND) are useful in efficient evaluation of boolean reductions (see
sections 6.4 and 6.5). Operations in the OR class (ON) write a 1 into the destination register only
if both the predicate input and the result of the comparison are true. Otherwise, they leave the
destination unchanged. Operations in the AND class (AN) write a 0 into the destination register
when the predicate input is true and the result of the comparison is false. Otherwise, they leave
the destination unchanged.

The actions marked "on the complement of the result" are similar to the ones described above
except that they implicitly complement the result of the comparison. For example, consider UN
and UC modifiers. Operations with UN modifier write the result of the comparison into the
destination register if the predicate is true, whereas operations with UC modifier write the
complement of the result.

A point to note is that the semantics of compare-to-predicate operations is somewhat unique with
respect to the conditions under which writes to the destination register are nullified.
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Unconditional compare operations always write into their destinations even if the predicate input
is false, i.e., they use the predicate input like a regular data input. Conditional compare
operations have semantics exactly similar to predicated data operations. Operations in the OR
class and the AND class also behave like conventional predicated operations; that is, they
perform no action if their predicate input is false. However, their operation semantics is unusual
in that these operations conditionally update their destination even when the predicate is true as
is illustrated in Figure 22.

6.3 Implementation of SELECT

The PlayDoh provides direct support for implementing a SELECT operation (see Section 2) in
terms of predicated copy operations. Figure 21 shows the implementation of a SELECT
operation.

r = SELECT(op1 if p1, ... , opn if pn) - r = op1 if p1

r = opn if pn

Figure 21: Implementation of SELECT

The result of SELECT is well-defined only when exactly one of the predicates is true. Then
according to the semantics of predicated execution, only one of the operations in the low-level
sequence writes into r and the result stored in r is the value computed by the operation. In all
other cases, the result of SELECT is undefined and it is immaterial what value is written into r by
the low-level code sequence. Note that predicated copies used to implement a SELECT operation
can be executed concurrently or in any order. Although they all target the same destination
register, there are no output dependences between them.

6.4 Implementation of AND

PlayDoh architecture provides the means for a very efficient implementation of the AND
reduction operation. The two features that are used are the AND class of comparison operations
and the PlayDoh semantics for the simultaneous writes to a destination register.

p = CMPP.W.. UN(l, 1) /* Initialize p to 1 */

p CMPP.W.<.AN(a, b)
p = CMPP.W.>.AN(c, d)
p = CMPP.W.<.AN(a, c)

Figure 22: Low-level code illustrating the implementation of AND reduction

The AND reduction operation can be implemented by first setting the destination register to 1,
and then executing one compare operation per argument of the AND reduction with AN (or AC)
as the destination modifier. When an argument evaluates to 1 then the corresponding compare
operation takes no action. When an argument evaluates to 0, the compare operation sets the
destination predicate to 0 forcing the result of the AND reduction to be O. As an example, we
illustrate the evaluation of the following AND-reduction. In the expression, p is a predicate
register and a, b, c, d are general purpose registers.

p = AND( a < b, c > d, a < c)
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The code for evaluating the reduction is given in Figure 22. The first statement in the code is a
way to set the register p to 1. In the statement, 0 refers to the integer literal O.

The semantics of simultaneous writes to a register permits these operations to be issued
concurrently or in any order. The AND class of compare operations either leave the destination
register unchanged or write 0 to it. Therefore whenever multiple AND class operations which
have the same destination register execute concurrently, the value in the destination register is
always well-defined. In the case where none of the operations modify the destination, the register
contains its value prior to the execution. If at least one of the AND class compare operations
modify the destination, the value is O. Thus, the AND reduction of the results of an arbitrary
number of compare operations can be done in the same amount of time as the latency of a single
AND provided there is enough parallelism in the machine. Terms participating in an AND
reduction are not output dependent on each other and can be executed in any order, in spite of the
fact that they target a common register. The AND operation is used directly in the height
reduction transformation.

6.5 Implementation of OR

The OR reduction can be implemented efficiently like the AND reduction. In this case, the
destination predicate is initialized to 0, and the <D-action> modifier for the compare operations
is ON or Oc. When an argument evaluates to 0, then the corresponding compare operation takes
no action. When an argument evaluates to 1, the compare operation sets the destination predicate
to 1 forcing the result of the OR reduction to be 1. The OR operation is used in the if-conversion
of conditionals [26] which has been performed prior to height reduction.

7 Conclusions

This work has demonstrated that loops with conditional exits provide substantial ILP when
accelerated using height reduction. On processors with adequate parallelism, multiple iterations
of a loop with conditional exits can be executed in a single cycle. A loop with exits contains an
embedded control recurrence. Techniques presented here to reduce the height of this control
recurrence are closely related to earlier techniques used to reduce the height of data recurrences
within counted loops [7]. These techniques may be extended to multiple CPU parallelization, but
this has not been attempted here.

Under restricted but commonly occurring conditions, loops with exits provide arbitrary amounts
of parallelism while requiring no redundant computation. Most string operations are excellent
examples of such computations. In fact, blocked back-substitution may reduce the number of
operations executed per iteration in some cases, since some of the code to compute live-out
values is moved out of the loop. The example presented in Section 3 illustrates such a case.

Height reduction techniques for loops with exits can also accommodate conditional branching
within the body of the loop. In this work, such conditionals are executed using hardware that
supports predicated execution. Predicated execution is also used to support the height reduction
of the loop exit recurrence. However, for loops with no conditionals within the body, height
reduction can be accomplished without the use of predicate hardware.

There are a number of potential obstacles to exposing parallelism within loops with exits. First, if
the trip count is excessively short, little parallelism may be available. Second, a key obstacle to
exposing parallelism regards the separability of stores to memory within the loop body. If stores
are not separable, the control recurrence is strictly sequential and the techniques presented here
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are not applicable. Finally, when loop performance is limited by the underlying data recurrences,
the acceleration of control recurrences may provide no benefit. In general, we must apply
techniques for the height reduction of both data and control recurrences to accelerate loop
performance.

We summarize some results from earlier data recurrence work. Many data recurrences are readily
accelerated without redundant code. A common example is the induction variable computation
used to compute address sequences with loop invariant stride. Another important example is the
reduction of a vector to a scalar using an associative operation, e.g., summing the elements of a
vector. When associative reductions are used within a loop with exit, the loop is fully
parallelizable without need for redundant computation.

More complex data recurrences may require redundant computation. Some recurrences use add
or add-multiply operations to compute a vector element in terms of previous vector elements.
Here, the entire vector sequence is computed for storage into an array. For such sequences, a
constant factor in redundant computation exposes unlimited parallelism. For example, a
summation such as x(i) = x(i-l) + t(i) within the body of a loop provides unlimited parallelism at
a cost of two additions per iteration. This represents a two fold redundancy in additions within
the loop body. Because no redundancy is required for memory, address, and other calculations,
the total required redundancy is less than two.

Some data recurrences, in particular some recurrences involving complex conditionals, are not
readily accelerated. Techniques to accelerate them may generate excessively redundant code, in
which case the acceleration of control recurrences is of no utility.

This work represents a step forward in our endeavor to liberate adequate program parallelism for
e ecution on ILP machines. We feel that program transformations can substantially increase
a ailable parallelism in a broad range of codes which have been classically termed non
v ctorizable or scalar. We are not yet able to measure the statistical utility of the techniques
p esented above. We leave this to future work.

e techniques presented can be generalized to provide acceleration within scalar code outside of
lops. Here, the benefits may not be of the same magnitude. We do not understand limits for
t ese techniques, and thus, are skeptical of the accuracy of measured "limits of parallelism"

hich have been derived from existing code without consideration for code transformation to
e hance parallelism.
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