
Achieving Transaction Scaleup on Unix

Marie-Anne Neimat and Donovan A. Schneider

Hewlett-Packard Laboratories

1501 Page Mill Road

Palo Alto, CA 94304

latname@hpl.hp.com

Abstract

Constructing scalable high-performance applications on commodity hardware

running the Unix operating system is a problem that must be addressed in several

application domains. We relate our experience in achieving transaction scaleup
on Unix for a high-performance OLTP system intended for Service Control Points
(SCPs) in a telephone switching network. We view the requirements of SCPs as

prototypical requirements of a class of applications that cannot be properly han-
dled by today's commercial DBMSs. In addition to high throughput and low
response time, SCPs require transaction scaleup on standard hardware and soft-
ware architectures. Using a main-memory DBMS to obtain high throughput,
we focus on the problem of achieving transaction scaleup on a cluster of work-

stations running Unix while constrained by the low response time requirement
of the SCP application. The use of a main-memory DBMS causes the through-
put and response time to be much more sensitive to the cost of messages and
more susceptible to the formation of convoys than they would have been with
a disk-based DBMS. We relate the various experiments and discoveries of what

goes on underneath the covers in Unix that led to our choice of architecture,
inter-process communication mechanisms and mode of running the system to
achieve transaction scaleup under the constraint of low response time. This ex-
perience should provide valuable information to anyone trying to build a scalable
high-performance application on Unix.

1 Introduction

The telecommunications industry has been undergoing some fundamental changes in the last

few years [19]. Many of these changes have been driven by the need to easily deploy new
services. In the past, installing a new service meant reprogramming a large number of expen-
sive special-purpose switches constructed with specialized hardware, operating systems, and

applications software. The trend now is to o�oad much of the specialized services and data

lookup of the switches to Service Control Points (SCPs). These are general-purpose comput-
ers that are relatively inexpensive when compared to the cost of switches, easy to program,

and easy to customize by telecommunications companies and some of their customers. At

the heart of the SCP is a giant database with stringent data access and throughput require-
ments. The operating system and the interfaces to software running on these systems must

be \standard". This insistence on \open systems" is no surprise as it is typical of today's

1

Internal Accession Date Only

trend in all application domains. The data management requirements of SCPs include very

high throughput, low response time and scalability on open systems.

The motivation for the work described in this paper was to meet these data management

requirements on Unix. The relevance of these requirements should not be con�ned to SCPs

as they are representative of a class of OLTP applications with data management demands

that exceed the capabilities of today's commercial DBMSs. Home Location Registers, as

found in mobile telephone networks, have similar requirements albeit for write-intensive

queries as opposed to the read-intensive queries of SCPs. Financial applications have similar

requirements.

As we explain later, the combined requirements of SCPs are such that they can only be

met by a main-memory DBMS. We used Smallbase [11], a main-memory DBMS developed

at HP Labs, to obtain the desired throughput rate and transaction response time on a

single-node system. We then focused on the scalability requirement of the SCP application.

Motivated by the necessity of using open systems, we addressed the problem of achieving
transaction scaleup on Unix under the constraint of low response time.

We evaluated a distributed architecture based on Smallbase using a benchmark for which
we expected transaction scaleup, i.e., for which we expected the number of Transactions
Per Second (TPS) to increase linearly with the number of processors used [6]. Our main

concern was whether we could maintain the constraint of low response time in a distributed
system, and whether we could indeed achieve transaction scaleup. Since we were using
a main-memory DBMS, we knew that the system would be very sensitive to the cost of
network messages [16]. Our initial experiments on Unix did not scale, and the constraints on
response time were not always met. It took numerous experiments and investigations into
the implications of various Unix commands to �nally discover the reasons why transaction

scaleup and low response time were not achieved and how to achieve them. The fact that
the system was based on a main-memory DBMS made it much much more susceptible to
the formation of convoys than it would have been with a disk-based system.

Extensive research has taken place in the design, benchmarking and tuning of main mem-
ory DBMSs, a subset of which may be found in [7, 8, 13, 15, 16]. This work has had a major

inuence on the design of Smallbase. On the other hand, research in parallel/distributed
main memory DBMSs has been substantially more limited. Prisma [21] is a main memory

parallel DBMS where the focus of the research has been to obtain linear speedup on \decision

support" queries. In the TPK system [16], Li and Naughton combine large main memories
and multi-processors to obtain high transaction rates. The focus of their work is on using

parallelism to speed up the most time-consuming components of a transaction and on the
judicious grouping of work to optimize throughput. The work we report in this paper is

unique in that its goal is to achieve transaction scaleup on Unix, and its contribution is to
report on the architectural design of a distributed OLTP system based on a main-memory

DBMS, on the choice of inter-process communication, and on the mode of running the system

to achieve the desired goal.

The remainder of the paper is organized as follows. Section 2 describes SCPs, their func-

tionality and requirements. Section 3 describes the benchmark we used. Section 4 describes
the architecture of the distributed system and the justi�cation for such an architecture. Sec-

tion 5 reports the results of the experiments we ran. Section 6 concludes with the lessons

we have learned.

2

Telecommunication companies

Switch

Signaling
Network

Service

System
Support

Operations

Control
Point

and Customer Terminals

Figure 1: Intelligent Network Architecture

2 Service Control Points

Telephone switches evolved from manually operated switches to switches that were pro-
grammable by the specialized switch manufacturers [19]. Although this represented a major

improvement over the manually operated switches of the past, it still meant that new services
were hard to deploy as they required modi�cations by experts to non-standard systems. It
also meant that to make a new service available to a speci�c geographic area, new software
had to be downloaded in the switches servicing that area. This is an expensive and time-
consuming process as the number of switches tends to be very large (over 15,000 in the US

alone.)
To solve this problem as well as the interoperability challenge that followed the divesti-

ture of the Bell Operating Companies from AT&T, the new regional companies de�ned the

architecture of the Intelligent Network (IN), a network architecture with capabilities for ad-
vanced services. A high-level picture of the IN Architecture is shown in Figure 1. When a

call is received by the switching system, if the call requires special processing such as 800
number lookup or the processing of a credit card call, a request is sent to the SCP where

it is serviced. The SCP executes the service logic used to control the call processing of
the switch. It interacts with a database that contains information about subscribers, the

services to which they are subscribed, the service logic, operational and con�guration data,

and vendor-speci�c con�guration information. The response is sent back to the switching

system to complete the call. The role of the operations support system is to permit the

administration of the database managed by the SCP and the introduction and modi�cation
of new services.

The services provided by the SCP could have been handled in the switch. However, by
taking them out of the switch and into a centralized database, new services can be made

available to a large number of switches (and hence a large geographical area) uniformly,

simultaneously and inexpensively. Hence, the main contribution of the IN was to introduce

3

the concept of a centralized database that could be used to deploy new services easily and

uniformly.

The second phase of the IN, named the Advanced Intelligent Network (AIN), focuses on

the easy development and customization of new services, known as service creation. This

permits a non-programmer to introduce new services by gluing together system-provided,

software construction blocks. The service creation environment must interact with the SCP

database to install new services. The goal is to make the creation of new services easy not

only for the telecommunications companies, but also for their customers.

The SCP is then at the heart of the IN and AIN architectures. Telecommunications

companies are insisting that SCP platforms be general-purpose computers running open

systems. The operations executed by the SCP are dominated by the interaction with its

database. Hence, an e�cient DBMS platform for SCPs is essential to the successful support

of the IN and AIN.

We examine now the DBMS requirements of the SCP [1]. Most of the performance
requirements speci�ed by Bellcore are in terms of overall performance of the SCP, and not
speci�cally as it pertains to the DBMS component of the SCP. Hence, the numbers reported
here as DBMS requirements are extrapolations from these more general SCP requirements to
guarantee that the general requirements are met. The SCP DBMS requirements are [17] 2,000

TPS, single �gure milliseconds response time, a database size that varies from 40 megabytes
to tens of gigabytes, no more than 3 minute down time per year, and the restriction that
no more than 1 transaction in 1,000,000 be lost. Scalability in throughput is expected to
accommodate increases in the number of supported subscribers. The size of the database
and the number of subscribers are strongly correlated.

The SCP transactions are simple, read-intensive, OLTP-type transactions. Update trans-

actions occur relatively infrequently. They reect events such as the installation of a new
service, or the registry of a new telephone number mapping in the case of a personal locator
service which allows a subscriber to use a single phone number independently of where he
is.

Given the type of transactions of the SCP, the 2,000 TPS throughput could, in principle,

be met by today's commercial disk-based DBMSs on a multi-computer system. This is
however an extravagant expense for small databases. To meet the 2,000 TPS requirement

on a single-computer system, the number of instructions required to execute a transaction

must be reduced considerably over that of conventional DBMSs. Main-memory DBMSs
[7, 13, 15, 16] have been shown to reduce the instruction path of a transaction enough to

make that throughput rate achievable. In fact, Smallbase [11] can easily meet this throughput
rate.

To meet the constraint on response time, it is essential that all I/O operations be taken
out of a transaction path. The use of a main-memory DBMS certainly helps, but it does not

eliminate the crucial log write to disk on commit that is needed to guarantee the durability of

transactions. Many techniques can be used to eliminate the disk write from the transaction

path. Keeping the log in safe RAM and spooling it to disk in the background is one possibility

[5]. Similar to the notion of levels of safety [14] used in the context of disaster recovery, a
notion of levels of durability can also be devised. For example, one could de�ne level 1-

durable to mean that the log is not posted to disk in the path of the transaction, level

2-durable to mean that the log is posted to the main memory of a hot standby, and level

4

3-durable to mean the conventional de�nition of posting the log to disk. Of course with

relaxed notions of durability, one could lose some transactions. The degree of tolerance for

such losses and consequently the level of durability is dependent on the application. We

thus assume that a main-memory DBMS with appropriate hardware support and/or more

exible notions of durability can meet the throughput and response time requirements of the

SCP application on a single-node system.

Although not the topic of this paper, high availability can be easily achieved with a hot

standby using log shipping as is done in Tandem's NonStop SQL [3]. When coupled with

scalability, one should not double the number of nodes so that each node has a dedicated hot

standby. Instead, each node could act as the primary for one partition of the database and

as the hot standby for another partition. The assignment of database partitions to primaries

and hot standbys could be done using chained declustering [12], with the partitions residing

in main memory instead of on disk. This technique of assigning partitions to nodes has been

used for many years by Tandem's customers [4] and has been proposed in [2]. We do not
further discuss the issue of high availability in this paper.

We concentrate, instead, on achieving transactional scaleup for a main-memory DBMS
on commodity hardware running the Unix operating system.

3 Benchmark

To experiment with di�erent architecture choices and measure the scalability of the system,
we chose to use the TPC-B OLTP benchmark as our sample application [9]. The TPC-B
benchmark does not truly model an SCP because SPCs are read intensive while the TPC-B

benchmark is write intensive. Nevertheless, we chose to use it for several reasons. First,
given the popularity of the TPC-B benchmark, the performance numbers we obtain have
a better-understood context than if we devise our own benchmark. Second, if we obtain
favorable results with the TPC-B benchmark, the results will also be favorable to the SCP
application. Finally, although focused on the SCP application, other applications like Home

Location Registers are write-intensive, and we wanted the results we obtain to be meaningful
in a more general context.

The TPC-B OLTP benchmark simulates a hypothetical bank with one or more branches,

tellers and many customer accounts. The database maintains current balances for each
account, branch and teller, plus a history of recent transactions.

The database consists of four separate �les/tables: Account, Teller, Branch and History
as shown in Figure 2. There is a one-to-many relationship between BranchID and Account-

BranchId and between BranchID and TellerBranchId. Account, Teller, and Branch records
must contain at least 100 bytes. For each TPS that a system claims to perform, there must

be at least 100,000 Account records, 10 Teller records and 1 Branch record. Hence a database

size must grow by roughly 10MB for each TPS. The benchmark also speci�es that 90% of

all transactions must complete in less that 2 seconds.

A transaction consists of 6 SQL statements: 3 updates, 1 select, 1 insert, and 1 commit
as shown below:

1. UPDATE Account

SET AccountBalance = AccountBalance + :amount

5

< AccountID, AccountBalance, AccountBranchId, AccountName >

Teller: < TellerID, TellerBalance, TellerBranchId, TellerName >

Account:

Branch:

time_stamp >

< BranchID, BranchBalance, BranchName >

History: < AccountID, TellerID, BranchID, amount,

Figure 2: TPC-B Schema

WHERE AccountID = :AccountID;

2. SELECT AccountBalance INTO :AccountBalance

FROM Account WHERE AccountID = :AccountID;

3. UPDATE Teller

SET TellerBalance = TellerBalance + :amount

WHERE TellerID = :TellerID;

4. UPDATE Branch

SET BranchBalance = BranchBalance + :amount

WHERE BranchID = :BranchID;

5. INSERT INTO history(AccountID, TellerID, BranchID, amount, time_stamp)

VALUES(:TellerID, :BranchID, :AccountID, :amount, curtime);

6. COMMIT WORK;

One can observe that the input parameters to a transaction are AccountID, TellerID,
BranchID, and amount. Given a BranchID, the benchmark speci�es that the TellerID gen-
erated must belong to the BranchID. On the other hand, the AccountID should belong to
the BranchID with an 85% probability and to a di�erent branch with a 15% probability.

For our prototype, we horizontally partition the 4 tables over a cluster of nodes. We
interpret the benchmark speci�cation in the following manner: for each branch residing at
a given node, the 10 tellers and 100,000 accounts associated with it will reside at the same

node; for a given transaction, the BranchID and TellerID will belong to the node on which
the transaction is generated, and the AccountID will belong to the local node with an 85%

probability and to a di�erent node with a 15% probability1.
The TPC-B benchmark queries do not involve joins and each statement can be executed

in its entirety on a single, possibly remote, node. The AccountID, TellerID, and BranchID

are known at the beginning of the transaction, and the only dependency between SQL
statements is between statements (1) and (2) where statement (1) must be executed before

statement (2). If the AccountID belongs to the local node, the entire transaction can be
handled locally. If the AccountID belongs to another node, the SQL statements (1), and (2)

will have to be executed on a remote node, while the SQL statements (3), (4) and (5) will
be executed on the local node.

We omit the commit statement (6) from the benchmark because Smallbase does not yet

support the ACID properties of transactions. It will support them in the future, but we

1This is a simpli�cation; a remote branch may be stored locally. 15% remote transactions is the worst

case.

6

recall that di�erent notions of durability will have to be implemented to meet the response

time constraint of the SCP application. For TPC-B and SCP-type applications where there

is very little contention on the data, the lack of transaction management a�ects the actual

throughput and response time numbers, but it does not a�ect the scalability of the system.

In other words, if throughput scales linearly without transaction management, it should also

scale linearly with transaction management, albeit with di�erent TPS numbers. Given that

our goal was transaction scaleup, the actual throughput numbers were not important to us in

and of themselves, provided they were high enough to meet our throughput goal even in the

presence of transaction management. As for response time, if we assume that I/O has been

taken out of the transaction path, our only concern should be for distributed transactions

where 2-phase commit would normally have to take place. We ensure in our experiments

that there is enough slack in the response time of distributed transactions that they can

pay for the additional cost of 2-phase commit while still remaining within the constraints on

their response time.

4 Prototype Architecture

The architecture of the system consists of copies of Smallbase residing on multiple nodes of

a computer cluster. The data for the TPC-B application is horizontally distributed amongst
the nodes in the cluster using value-range partitioning. Each copy of Smallbase assumes that
it owns the entire database and is unaware of the other nodes. Knowledge of data distribution
is implemented outside Smallbase. Client processes generate the transactions and submit
them for execution. We chose to run the client processes on the same nodes of the cluster,

i.e., there is no dedicated processor to run the clients. Inter-process communication (IPC) is
needed for distributed and for local transactions. In the remainder of this section, we discuss
our choice of IPC and the overall architecture of the system including the decisions that led
to it.

4.1 Inter-Process Communication

For remote IPC, we needed a communication protocol that guarantees the reliable delivery

of messages. Two user-level communication protocols built on top of the Internet Protocol
(IP) are the Internet Transmission Control Protocol (TCP) and the User Datagram Protocol

(UDP). IP is used to transmit blocks of data, also known as datagrams, between two nodes
connected by a packet-switched computer communication network. IP transmits datagrams

through the local network protocol, and handles services such as the fragmentation and
reassembly of long datagrams if necessary. IP is not a reliable communication mechanism.

There are no acknowledgements or error control for data.

TCP, built on top of IP, provides ordered, reliable delivery of streams of data between

pairs of processes in interconnected computers. It supports two-way transmission of data

between the processes. It requires the setting up of a connection between the two processes
prior to their exchanging messages.

UDP, also built on top of IP, provides support for sending datagrams from one application

program to another with as few details of the protocol as possible. UDP does not enhance

7

IP with reliable delivery of messages or with error control of data. It does not require setting

up a connection between the communicating processes.

For our data-centric application, the reliable delivery of messages is essential. Since

neither the TPC-B nor the SCP application requires message streams, reliable datagram

messages would have been the ideal because they do not require a prewired connection

between the communicating processes. We were however forced to use TCP because of its

reliable delivery of messages.

Both stream connections and datagram connections are available through Unix sockets,

an application program interface to the communication protocols. When used to communi-

cate between processes on di�erent nodes on a network, a socket stream connection will use

the TCP protocol. That is the mechanism we used for remote communication.

As for the choice of IPC within a single node, two overriding concerns dominated our

decision making. First, we wanted to choose an IPC mechanism that executes as few in-

structions as possible. Second, we did not want to use polling for process synchronization
so that the CPU would be always executing useful work. We should point out that we
were willing to adopt a di�erent IPC mechanism for local communication than from remote
communication to guarantee the best performance on a single-node con�guration. This was
essential as the SCP can often be con�gured as a single-node system (ignoring the presence

of a hot standby).
On a single-node, the mechanisms available for one process to send data to another are:

sockets, pipes, named pipes (FIFOs), message queues, and shared memory coupled with
semaphores. Shared memory is the fastest and most exible way for one process to pass
data to another as it requires no data copying. The sender writes data in shared memory
where the receiver can read it. However, it does need to be coupled with a synchronization

mechanism so that reading and writing operations are atomic and properly interleaved.
Semaphores are typically coupled with shared memory. They provide the desired blocking
for synchronization as well as process scheduling. Of these �ve mechanisms, shared memory
coupled with semaphores is the fastest [20] as it requires no data copying into kernel bu�ers.

4.2 Description of architecture

As justi�ed earlier, we chose TCP/IP for two processes to communicate across the network.

TCP/IP requires setting up a connection prior to sending a message. The building and tear-
ing of such connections is too expensive to execute on the y. Hence, for a high-performance

application, any two processes that are intended to communicate via TCP/IP should set up

a connection that would last while the application is running. TCP/IP connections consume
main-memory kernel bu�ers and �le descriptors. This obviously presents a scalability prob-
lem as it implies that every pair of processes that reside on di�erent nodes and that need

to communicate must have this connection set up. It is thus important to limit the number

of processes that must directly communicate via TCP/IP. To this end, we chose to dedicate
one process on each node for sending network messages and one process on each node for

receiving network messages. The sender process on a node must have a socket connection

with each of the receiver processes on other nodes. Thus, the number of socket connections
per node on an n-node system is 2 * (n - 1).

Figure 3 displays the architecture of the prototype on one of the nodes in the cluster.

8

Request Queue

a Client Process

and replies

...

...

IPC to

Process

local and remote requests

remote request

Client Process Client Process Client Process

Node i

...

Server Process

SB Agent

Smallbase

TCP/IP msg

Net-Receiver
Process

from a
Server

to a
Net-Receiver
Process

local replies remote requests

Figure 3: Architecture

Running on each node is exactly one Server Process, one Net-Receiver Process, and one or

more Client Processes. The Server Process encapsulates the local copy of the Smallbase
server and provides transparent support for distributed transactions. It also plays the role of
the network sender process. The justi�cation for this decision will be explained below. The

Client Processes act as transaction generators. The Net-Receiver Process acts as a support
process for distributed transactions. These processes communicate via a queue in shared-

memory, namely the Request Queue, and semaphores for local transactions, and via TCP/IP
streams for remote transactions. More detailed behavior of each of these components is

described below.

Request Queue

All communications to the Server are submitted through the Request Queue. These may

be requests from Clients. They may also be requests or replies from remote Servers sent

through the Net-Receiver Process on the local node.

The Request Queue is a shared memory segment that is attached to the address space of

the Client Processes, the Net-Receiver Process and the Server Process. Client Processes and
the Net-Receiver Process enqueue requests/replies, and the Server dequeues them and pro-

cesses them. Enqueueing a request/reply involves allocating memory for the message, placing

the message in the allocated memory and notifying the Server that a new request/reply has

9

arrived. The noti�cation is a V operation on a counting semaphore [18]. Dequeuing a re-

quest/reply involves reading a message if one is available. This is a P operation on the

counting semaphore. The reader will block if there are no outstanding requests/replies,

and will only be scheduled to run by the operating system when a request/reply becomes

available.

Client Process

A Client Process is responsible for generating transactions. Since the statements of a TPC-B

transaction are well de�ned, the Client only generates the AccountID, TellerID, BranchID,

and amount for a given transaction. The Client knows the range of BranchIDs, TellerIDs,

and AccountIDs stored at the local node. It randomly draws a TellerID and BranchID from

the ranges stored at the local node and it randomly draws an AccountID from the local range

with an 85% probability and from the range of a remote node with a 15% probability.
The Client builds a request containing the parameters of the transaction and submits it

to the Server Process by inserting it on the Request Queue. The Client Process waits while

the transaction is being processed. Upon its completion, the Server noti�es the Client. The
Client is now ready to submit the next transaction. We chose to make the client requests
to the server synchronous to simplify the implementation of the clients and to more closely
model a typical interaction of a client with a server.

Since a client does not have more than one outstanding request at a time, we preallocate,

for each client, a portion of the Request Queue shared memory segment for submitting
requests to the server. Thus, the cost of allocating and deallocating memory on each request
is avoided. The client then enqueues the request and noti�es the Server by performing a V
operation on the counting semaphore associated with the Request Queue. It then waits for
the Server to notify it of its completion by performing a P operation on a di�erent binary

semaphore that is logically associated with that client. Each node will typically have more
than one client on it. The reason for that will be explained below. For a node with m clients,
there will be m + 1 semaphores, 1 for the Request Queue, and 1 for each of the clients.

Server Process

For each of the SQL statements (1) through (5), there is a corresponding section already
stored in Smallbase. A section is a pre-compiled SQL statement. If the transaction is purely

local, statements (1) through (5) must be executed locally. If the transaction is distributed,
statements (1) and (2) must be executed remotely and statements (3) through (5) must

be executed locally.

A Server Process consists of two modules: Smallbase and a Smallbase Agent (SB Agent).
The role of the SB Agent is to allow Smallbase to operate in a client/server model in the

presence of local and distributed transactions. For local transactions, it converts individual
requests to calls to the proper stored sections in the local Smallbase. For remote transactions,

it sends a TCP/IP message to the Net-Receiver Process of the remote node requesting the

processing of statements (1) and (2) of the transaction. It then proceeds to invoke the local
Smallbase to execute statements (3) through (5). It remembers the state of the transaction

so that when it receives a reply from a remote Server informing it of the completion of

10

statements (1) and (2), it can declare the transaction completed. The SB Agent will process

other requests while the remote portion of a transaction is processed on another node.

The SB Agent is also responsible for notifying local Client Processes and remote Server

Processes of the completion of their requests. Local Clients are noti�ed by performing a

V operation on their semaphores. Remote Servers are not noti�ed directly, but rather, the

SB Agent sends replies through a pre-established TCP/IP connection to the Net-Receiver

Process on the node that initiated the request.

Note that the Server Process is not multi-threaded in this prototype. Since transactions

do not block for I/O, there was no reason to multi-thread the Server. Rather, the SB Agent

reads the next request o� of the Request Queue and submits it when the local Smallbase is

done servicing the current request. To keep the Server as busy as possible, the SB Agent

should not �nd an empty Request Queue. In running the benchmark, we set up as many

Client Processes as is necessary to maximize throughput. There is a tradeo� here as too

many client processes can degrade throughput because of operating system overhead, and
too empty a queue can degrade throughput by allowing the Server to remain idle. The SB
Agent removes all outstanding requests from the Request Queue in one operation in order
to dilute the cost of dequeuing, i.e., the cost of invoking the Unix semaphore operation (this
is the P operation on the Request Queue counting semaphore). This was shown bene�cial

in the TPK system [16].
We discuss now the justi�cation for having the Server Process send network messages

directly to remote nodes without the intermediary of another process. Initially, we thought
we needed an extra process to do the sending on behalf of the Server, so the Server would not
have to block while waiting for network send operations. In that scenario, there would have
been a separate Net-Sender Process, and the Server would have submitted send requests to

it via a send-message request queue similar to the Request Queue. We avoided that scenario
by ensuring that the Server never blocks on network send operations. This is preferable to
the extra process scenario as the latter requires additional semaphore operations.

To explain how we ensured a non-blocking Server, we �rst explain some of what happens
on a socket send operation. The data sent via a socket send operation is copied by the

kernel into a kernel bu�er, control returns to the calling process, and the message eventually
reaches the destination. With TCP/IP, the message is guaranteed to be delivered. If, when

performing the copy operation into the bu�er, the kernel �nds that the bu�er does not have

enough free space to hold the message, it will block the sending process while the bu�er is
being emptied. This, of course, is unacceptable as it severely a�ects throughput. We solved

this problem by making the socket bu�er large enough that a socket send would never �nd
a full bu�er. We note here that even with small messages, it was easy to �ll up a bu�er

because local transactions are so fast that a socket send could easily bump into the data of
prior socket sends that had not yet cleared out of the bu�er.

Net-Receiver Process

The Net-Receiver Process is responsible for handling requests and replies from remote Server

Processes. Its job is to submit the request or reply to the local Server Process in an e�cient

manner. This is done through the Request Queue.

The Net-Receiver Process submits requests/replies to the Server in exactly the same

11

way as the Client Processes with the minor di�erence of memory allocation. While the

Clients have a preallocated portion of memory for data passing, the Net-Receiver Process

must allocate memory for each request/reply it places on the queue. This memory is later

deallocated by the SB Agent. Synchronization for allocation and deallocation of the memory

is done via user-implemented latches. These can be implemented in very few instructions [10].

We now explain why we separated the sending of network messages from the receiving

of network messages. Recall that TCP/IP supports two-way transmission of data between a

pair of processes. Hence we did not really need to have a sender process as well as a receiver

process on each node. We could have combined them into a single process for handling

all network messages. We saw however how it was advantageous to assign the function of

sending network messages to the Server Process because it eliminated the need for the Server

to communicate with a sending process. Combining the receiving of network messages with

the Server was out of the question because there is no single mechanism the Server could

have used for simultaneously waiting on (n-1) incoming sockets and on the semaphore for
the Request Queue. Hence, it would have had to poll between checking the semaphore
and the (n-1) incoming sockets, and polling would have de�nitely degraded throughput.
Consequently, the two functions for sending and receiving network messages were assigned
to two di�erent processes.

Summary

To summarize, we quickly go through the steps of a purely local transaction and through
the steps of a distributed transaction. In the case of a local transaction, the client places
a transaction request on the Request Queue using a semaphore operation, and then waits
to be noti�ed of completion via another semaphore operation. The Server dequeues the
request using a semaphore operation. It notes that it is a local transaction. It services the

request and noti�es the client of completion via the semaphore the client was waiting on.
Hence a local transaction requires 4 semaphore operations. Note that one of the semaphore
operations is a dequeue operation, which will dequeue all outstanding messages from the
Request Queue. While this group dequeue operation does not improve the response time of
an individual transaction, it does increase the overall throughput.

In the case of a distributed transaction, the client places a transaction request on the
Request Queue using a semaphore operation, and then waits to be noti�ed of completion via

another semaphore operation. The Server dequeues the request using a semaphore operation.
It notes that it is a distributed transaction. It sends a TCP/IP message to the Net-Receiver

Process of a remote node requesting that its remote Server execute statements (1) and (2) of
the transaction. It then executes statements (3) through (5), marks the transaction as not

completed yet, and proceeds to execute other requests. In the mean time, the request reaches
the Net-Receiver Process, which places it on the remote Request Queue via a semaphore

operation. The remote Server dequeues the request using a semaphore operation. It services

the request and sends a TCP/IP message to the Net-Receiver Process of the originating node
to indicate completion of the work. Upon receipt of the message, the local Net-Receiver

Process places the message on the Request Queue using a semaphore operation. The Server

dequeues the message using a semaphore operation. It notes that the transaction is now
complete, and it noti�es the client of completion via the semaphore the client had been

12

waiting on. Hence, a distributed transaction requires 7 semaphore operations and 2 TCP/IP

operations. Two of the semaphore operations are group dequeue operations.

5 Performance evaluation

5.1 Test environment

We measured the performance of the basic prototype on a cluster of 8 workstations. Each

workstation was an HP 9000/735 con�gured with 144 megabytes of RAM. The 735 is rated

at 124 MIPS and 147 SPECmark. The operating system was HP-UX 9.01. The observations

we make in this paper are not unique to HP-UX, but are applicable to most implementations

of Unix. The workstations were interconnected through both an 10 Mbits/sec Ethernet and

an 100 Mbits/sec FDDI network.
The benchmark used was the TPC-B application, with 15% of all transactions being

distributed. Each experiment consisted of \warming up" for 10 seconds and cooling down
for 10 seconds. The actual test period was 120 seconds. The database was constructed with
a single branch for each node in the cluster. There were 10 tellers per branch and 100,000
accounts per branch. The total database size was 16.7 megabytes at each node.

The experiments di�ered from the benchmark speci�cations in several ways. First, the

ACID properties are not maintained because transaction management is currently missing
from Smallbase. Thus, the commit statement was dropped from the benchmark and the
overhead of logging, checkpointing, concurrency control, and actual commit is unaccounted
for. We argued earlier that the lack of transaction management support only a�ects the
actual throughput and response time numbers, but does not a�ect the scalability of the

system. We will pay special attention later on to the response time numbers to ensure that
the constraint on response time can be met even in the presence of 2-phase commit.

The second way in which the experiments di�ered from the benchmark was that we
could not scale the database size as required by the benchmark, i.e., we could not have
10MB of memory-resident data for each TPS because our hardware does not support such

large physical memories. Finally, instead of appending a history record per transaction, a

single history record was updated. The reason is that the history �le grows with time and
overows physical memory and causes the data to cease being memory resident.

An important change we made to the benchmark was to modify the constraint that 90%

of the transactions �nish in less than 2 seconds, to having 90% of the transactions �nish in
less than 10 milliseconds.

We reiterate now that with a 10 msec constraint on response time, a disk I/O cannot be
tolerated in the path of a transaction. Hence, even if Smallbase had support for transaction

management, its semantics would have to be di�erent from that of the TPC-B benchmark.

5.2 Expectations

We had some expectations for scalability and response time prior to conducting the experi-

ments. The benchmark speci�es that 15% of the transactions are distributed. In an n-node
system, each node will execute 85% of its transactions locally and will send 15% of its trans-

actions to the other (n�1) nodes, with the remote transactions uniformly distributed among

13

them. Each node will also execute the remote portion of transactions sent to it from other

nodes. Since the 85%-15% break-down is independent of the number of nodes over which

the database is distributed, there is no reason why the throughput rate per node should not

remain constant, and hence why transactional scaleup could not be achieved. Of course there

is a loss in performance in going from a one-node to a two-node system because a one-node

system has no distributed transactions at all. However, once the overhead of distribution

is paid by a two-node system, this overhead should remain constant, independently of the

number of nodes in the system.

As far as response time is concerned, we knew that Smallbase executes a local transaction

in roughly 300 �secs. For a distributed transaction, we saw earlier that 2 TCP/IP messages,

and 7 semaphore calls would be required. We ran a few experiments to measure the cost

of each of these operations. Sending a TCP/IP message consumes roughly 1 msec from the

time it is sent from a process on one node until it is received by a process on another node.

This number is largely independent of the network (Ethernet or FDDI) as it is dominated
by software and protocol overhead. We also measured the overhead of a semaphore call.
It was roughly 55 �secs if it resulted in another process being scheduled and about 13
�secs otherwise. Hence we were con�dent that a distributed transaction could complete in
roughly 3 msecs. This was well within the constraint on response time that we had to meet

and could easily accommodate the cost of 2 additional TCP/IP messages to account for a
2-phase commit protocol.

It is with these expectations that we started running the experiments.

5.3 Performance of basic con�guration

In the basic con�guration, a single client on each workstation is submitting requests, and the
FDDI network is used for inter-node communication. The experiments were run on several
cluster con�gurations. The number of nodes per con�guration varied between 1 and 8 nodes.
For each con�guration, �ve experiments were run and the results were averaged. The data
collected was the overall throughput of the cluster expressed in number of TPS.

Given the above rough estimates of communication and computation costs, \back-of-the-
envelope" calculations lead us to expect about 1400 TPS per node. However, with eight

nodes the total throughput was only 600 TPS, with the throughput of each node at 75 TPS.

This was well short of the expected 1400 TPS. Worse, the overall average response time was
over 13 msecs per transaction, and the average response time for remote transactions was

over 85 msec. Clearly this performance was much worse than expected and unacceptable for
the SCP.

We instrumented the code in an attempt to account for the time delays for each part
of a distributed transaction. It was then obvious that the bulk of the time used by these

transactions was spent between the time a TCP/IP message was sent and the time it was

received. This suggested an unexpected delay in the actual sending or receiving of the

message. After further investigations, we discovered that the TPC/IP protocol attempts to

coalesce packets to optimize throughput. To this end, after receiving a send request, it waits
for a certain amount of time hoping to receive other send requests. Eventually, it times

out and sends the message. The inexplicable delays we were seeing were due to waiting

until time out. Fortunately, there is an option that can be set to override this default.

14

No of Reg Prio, FDDI High Prio, FDDI High Prio, Ethernet

nodes Thrpt E�ciency Thrpt E�ciency Thrpt E�ciency

1 3272 3163 3163

2 2265 100% 3784 100% 3596 100%

4 3328 73.5% 7275 96.1% 6743 93.8%
8 5790 63.9% 14254 94.2% 13361 92.9%

Table 1: Cluster throughput with 1 client per node

The \TCP NODELAY" option can be set on a socket and will cause messages to be sent

immediately.
We re-ran the experiments with the \TCP NODELAY" option set on sockets. The �rst

column of Table 1 contains the results of these experiments. With two nodes in the cluster,
the average throughput was 2265 TPS. This corresponds to an e�ective transaction rate
of 1132 TPS per node, very close to our rough estimates. We use 2265 TPS as the base
expected throughput rate. It is not appropriate to use the 1-node TPS rate as the base rate
since the 1-node con�guration does not have the overhead of network communication. With

8 nodes, the throughput increased to 5790 TPS. This corresponds to a speedup of 2.56 out
of a possible 4. The ratio of speedup over maximum possible speedup is termed e�ciency.
The e�ciency of the 8-node con�guration was 63.9% out of a possible 100%.

The e�ciency results were rather disappointing in that we were expecting close to 100%
e�ciency. However, the response times now met the speci�cations | an overall average of

0.53 msec/transaction and about 1.6 msec for each remote transaction. Only 0.03% of the
transactions exceeded 10 msecs.

At this point the lack of distributed program analysis tools became a real nuisance. The
clocks on a network cluster are not synchronized at a �ne enough granularity for a trace to
make sense when transactions execute in 300 �secs. Fortunately, we had developed a visual

tool to demonstrate the system. The tool continuously displayed the throughput at each
node of the cluster at 100 msec intervals. We promptly noticed that dips in throughput

occurred frequently and simultaneously at all nodes of the cluster. Since we were running

with only one client per node, this suggested a slow down at one node that caused a convoy
and promptly degraded the throughput at all other nodes.

5.4 Performance with enhanced priority

We suspected that the slow down was due to interference with normal Unix background
processes. To test this hypothesis, we ran the benchmark with high priority. This was done

via the command rtprio. For these experiments, the benchmark was run at real time priority

10, which is higher than that of most processes.
The results were much closer to our expectations. They are displayed in the second

column of Table 1. With two nodes, the throughput was measured at 3784 TPS and at eight

nodes the throughput increased to 14,254 TPS. With a base rate of 3784 TPS, the speedup
was 3.77 (out of a possible 4.0) and the e�ciency was approximately 94.2%.

15

2 3 4 5 6 7 8
number of processors

0

5000

10000

15000

T
P

S

Regular priority - FDDI
High priority - FDDI
High priority - Ethernet

Figure 4: Cluster throughput with 1 client per node

The poor performance of the benchmark running at regular priority is attributable to

two factors. First, various Unix daemons wake up periodically and perform some tasks. If
any such daemon runs for a signi�cant period of time, say 10msec, this would cause both the
performance deterioration and the convoys we observed. Running the benchmark at high
priority prevents most such daemons from being scheduled. The second, and more important,
factor is due to the Unix process scheduling algorithm The benchmark has three classes of

processes: servers, clients, and network message handlers. These processes consume CPU
cycles in the order in which they are listed above, i.e. the server process executes most
of the time, followed by the client processes, and �nally by the network message handlers.
Under Unix, processes that run for a long time drop in priority. Hence the server process

quickly becomes the lowest priority process on a node. It is then preempted by any network

message that arrives. This causes a larger number of context switches than necessary, and
deteriorates the overall performance of the system.

Although running at high priority provided a big increase in throughput and near-linear
scalability, the e�ciency of the cluster is still degrading as the number of nodes are increased.

In fact, the visual display tool still showed occasional small dips in throughput that were
propagated throughout the system. These dips appear more often as the size of the cluster

is increased. We intend to do further experimentation to track down the exact cause. We
should however emphasize that the e�ciency is quite acceptable and should provide adequate

scaleup for many SCP con�gurations.

5.5 E�ects of network communication

In this set of experiments, we wanted to test how the speed and the bandwidth of the

intercommunication network a�ect throughput. To this end, we used a 10 megabits/second

16

No of 1 Client 2 Clients 4 Clients 5 Clients

nodes Thrpt E�c Thrpt E�c Thrpt E�c Thrpt E�c

1 3163 3424 3470 3560

2 3784 100% 4339 100% 4475 100% 4481 100%

4 7275 96.1% 8388 96.7% 8310 92.8% 8497 94.8%
8 14254 94.2% 15828 91.2% 15560 86.9% 14346 80.0%

Table 2: Cluster throughput with FDDI network and high priority

Ethernet instead of the FDDI network. With one client per node and with a real-time

priority of 10, the throughput of the system is displayed in the third column of Table 1.
As expected, the throughput is lower than with the FDDI interconnect. The di�erence has

to do with the faster speed (lower latency) of the FDDI network and not due to its greater
bandwidth. The bandwidth of the Ethernet was adequate for this application. However even
with this kind of application, if high-availability is a requirement, log shipping might su�er
with Ethernet due to its limited bandwidth.

The results of the three sets of experiments in Table 1 are shown in Figure 4.

5.6 Performance with multiple clients

In these experiments, we were interested in the stability of throughput. As such, we increased
the number of clients per node. If resources are underutilized, increasing the number of clients

should increase throughput. Once a bottleneck is reached, the throughput should remain
stable, while response times rise. If throughput drops precipitously, there is a problem. All
experiments were run with a real time priority of ten, and using the FDDI network.

Table 2 and Figure 5 contain the results of these experiments for 1, 2, 4 and 5 clients per
node. With two clients per node, the throughput for two nodes was 4339 TPS and at eight

nodes it was 15,828 TPS. Thus, throughput increased by about 10% over the case with one

client per node. With more than two clients per node, the system becomes bottlenecked by
the CPU. As more and more clients are added per node, throughput actually goes down due
to extra overhead such as context switching.

5.7 Response time

Table 3 presents detailed response time data for a cluster with 2 clients per node. The

overall average response time per transaction is under 1 msec for all con�gurations. Local

transactions take approximately 0.63 msec to complete while remote transactions have a
response time of 3 msec or less. Furthermore, fewer than 0.15% of all transactions take more

than 10 msec to complete. These response time results leave plenty of room to absorb the
overhead of a 2-phase commit protocol and still meet a response time goal of 10 msec.

The same set of experiments were run with the Ethernet network instead of the FDDI

network. The results were essentially the same, with an additional 300 �sec for each remote
transaction because of the slower network.

17

1 2 3 4 5 6 7 8
number of nodes

0

5000

10000

15000

20000

T
P

S

1 client/node
2 clients/node
4 clients/node
5 clients/node

Figure 5: Performance with multiple clients

We also gathered performance data for minimum and maximum response times. The

minimum response time for a local transaction was about 270 �sec and was about 1 msec
for a remote transaction. Somewhat surprisingly, the maximum response times did not vary
much between local and remote transactions. In both cases, it was not uncommon to have
the slowest transaction take 300{500 msec to complete.

These high response times are consistent with the dips in throughput that we observed

in Section 5.4. If for any reason, a delay occurs at one of the nodes, a convoy will quickly
form causing the throughput to drop and response times to increase. We have pondered over
plausible reasons for these delays and have consulted with our local kernel gurus. At this
time, we have no explanation for them. More extensive investigations, such as tracing the

kernel may be needed. This is an example of the frustration of tuning such a system without

adequate tools for distributed program analysis. Other developers of high-performance,
distributed applications on Unix will run into similar frustrations.

In spite of the occasional and up-until-now inexplicable large response times, we should
point out that the overall response times are very satisfactory and well within the constraints

of the SCP application.

6 Conclusion

We have designed an architecture for a high-performance, distributed OLTP application

intended to run on Unix. The application is unique in that it requires the use of a main-

memory DBMS and it has severe constraints on response time. We made several decisions

in the choice of architecture and IPC. It was mandatory for us to use a reliable message

delivery mechanism for distributed communication, hence our choice of TCP/IP. In our

18

High Priority, FDDI

No of Avg Resp Time (msecs) % xacts over

nodes Overall Local Remote 10 msec

1 0.56 0.56 na 0.00%

2 0.90 0.64 2.37 0.05%
4 0.93 0.63 2.64 0.09%

8 0.98 0.63 3.02 0.14%

Table 3: Average response time with 2 clients per node

choice of processes and IPC, we were very careful to avoid any polling so that throughput
would be optimized.

In our experiments, we learned that it is crucial to understand the scheduling policy of
the operating system and to ensure that it does not undermine the performance goal of the
application. In our case, because the throughput of the main-memory DBMS is so high, any
delay in one node was very quick to propagate to all other nodes of the cluster, causing a
convoy and resulting in degradation of the overall throughput. We mostly circumvented this

problem by running the application at high priority.
We also learned that system-wide optimizations may interfere with the application re-

quirements. For distributed communication, TCP/IP optimizes for throughput, while our
application had response time constraints that did not tolerate the delays introduced in fa-
vor of high throughput. Fortunately, it was possible to override the default optimization of

TCP/IP.
The lack of distributed programming analysis tools made it very di�cult to understand

the interplay of a large number of parameters that ultimately contribute to overall through-
put. This is crucial if clusters are to become the widely-used alternative to mainframes that
many computer manufacturers are advertising.

In spite of the obstacles we encountered, we did obtain very high throughput, low response
time and near-linear transaction scaleup on an 8-node cluster running Unix. This was

particularly challenging because it was a main-memory DBMS. With a transaction response

time of 300 �sec on a single node, any delays are magni�ed and have a severe adverse e�ect
on scalability.

Acknowledgements

We thank Ravi Krishnamurthy and Henry Cate for their feedback on an earlier draft of
this paper. We also thank Scott Marovich, Milon Mackey, and Tim Connors for their trou-

bleshooting expertise. Sherry Listgarten developed the GUI interface for displaying cluster

throughput.

19

References

[1] Advanced Intelligent Network Release 1, Adjunct Framework Generic Requirements. Bell-

core FA-NWT-001127, Issue 1 October 1991.

[2] A.B. Bondi and V.Y. Jin. Performance Analysis of a Minimally Replicated Distributed

Database for Universal Personal Telecommunications Services. 8th ITC Specialist Semi-

nar: UPT, Santa Marguerita, Italy, Oct 1992.

[3] A. Borr. Robustness to Crash in a Distributed Database: A Non Shared-Memory Multi-

Processor Approach. Proc 10th Int Conf on Very Large Data Bases, Singapore, Aug

1984.

[4] A. Borr. Personal Communication.

[5] G. Copeland, R. Krishnamurthy, M. Smith. The Case for Safe RAM. Proc 15th Int Conf

on Very Large Databases, Amsterdam, 1989.

[6] D.J. DeWitt, J. Gray. Parallel Database Systems: The Future of High Performance
Database Systems. CACM, vol 35, no 6, June 1992.

[7] D.J. DeWitt, R.H. Katz, F. Olken, L.D. Shapiro, M.R. Stonebraker, and D. Wood.

Implementation Techniques for Main Memory Database Systems. Proc ACM SIGMOD

Conf, Boston, MA, June 1984.

[8] M. Eich. Main Memory Database Research Directions. Proc of the 6th Int. Workshop on

Database Machines, Deauville, France, June 1989.

[9] J. Gray. The Benchmark Handbook for Database and Transaction Processing Systems.

The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann Pub-
lishers, San Mateo, California, 1991.

[10] J. Gray, A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann Publishers, San Mateo, California, 1993.

[11] M. Heytens, S. Listgarten, M.-A. Neimat, K. Wilkinson. Smallbase: A Main-Memory

DBMS for High-Performance Applications (Release 3.1). Database Technology Depart-

ment, HP Labs, March 31, 1994.

[12] H.-I. Hsiao and D.J. DeWitt. Chained Declustering: A New Availability Strategy for

Multiprocessor Database Machines. Proc 6th Int Conf on Data Engineering, Los Angeles,
CA, Feb 1990.

[13] IEEE Trans on Knowledge and Data Engineering, vol 4, no 6, Dec 1992. Special Section
on Main-Memory Databases.

[14] R. King, N. Halim, H. Garcia-Molina, C. Polyzois. Management of a Remote Backup

Copy for Disaster Recovery. ACM TODS, vol 16, no 2, June 1991.

20

[15] T.J. Lehman. Design and Performance Evaluation of a Main Memory Relational

Database System. Ph.D. Dissertation, U of Wisconsin-Madison, Computer Sciences Tech-

nical Report #656, Aug 1986.

[16] K. Li and J.F. Naughton. Multiprocessor Main Memory Transaction Processing. Proc

Int Symp on Databases in Parallel and Distributed Systems, Austin, TX, Dec. 1988.

[17] H. Oliver, J. Carroll, D. Chan, D. Wells. IN Processor Database Requirements. Intelligent

Network Platform Department, HP Labs, January 17, 1994.

[18] J.L. Peterson and A. Silberschatz. Operating Systems Concepts. Addison Wesley, 1985.

[19] R.B. Robrock II. The Intelligent Network{Changing the Face of Telecommunications.

Proc of the IEEE, vol 79, no 1, January 1991.

[20] W.R. Stevens. Unix Network Programming. Prentice Hall Software Series, Englewood
Cli�s, New Jersey, 1990.

[21] A.N. Wilschut, J. Flokstra, and P.M.G. Apers. Parallelism in a Main-Memory DBMS:

The Performance of PRISMA/DB. Proc 18th Int Conf on Very Large Data Bases, Van-
couver, Canada, Aug 1992.

21

