
Alpha Message Scheduling for

Packet-Switched Interconnects

Ludmila Cherkasova and Tomas Rokicki

Hewlett-Packard Laboratories

1501 Page Mill Road

Palo Alto, CA 94303

Abstract.

Evaluation of interconnect performance generally focuses on �xed-size packet latency

as a function of tra�c load. To an application, however, it is the latency of variable-

length messages, rather than the individual packets, that is important. In this report,

we discuss how scheduling the packets of messages according to various strategies can

lead to e�ective performance di�erences of more than a factor of three. We present a

new scheduling technique, called alpha scheduling, that can combine the bandwidth-

fairness of round robin scheduling while attaining close to the optimal performance of

shortest-�rst scheduling. We demonstrate our results with a simple simulation model.

1

Internal Accession Date Only

Contents

1 Introduction 3

2 Assumptions and Investigation 3

3 FIFO Scheduling 4

4 Round Robin 4

5 Shortest First 5

6 Alpha Scheduling Strategy 5

7 Simulation 6

8 Results 7

9 An Analysis of Large Alpha 11

10 Using Alpha as a Priority Scheme 13

11 Ensuring In-Order Delivery of Messages 13

12 Adversary Applications 13

13 Tracking Alpha 15

14 Conclusion 15

15 Raw Data 15

16 Simulation Program 20

2

1 Introduction

Packet-switched interconnect hardware transmits �xed-size packets, while most operating

system interfaces provides for the transfer of variable-length messages. Each message is

therefore broken down into some number of packets for transmission by the hardware. In this

report, we consider scheduling strategies for the insertion into the interconnect hardware of

the packets that comprise a message. Our primary result is that using an appropriate strategy

to insert the packets comprising messages into an interconnect can have a tremendous impact

on the performance of that interconnect. Indeed, suitable selection of such a strategy can

increase the e�ective performance of the interconnect by a factor of two or three over naive

FIFO or round robin packet insertion.

Messages, and also packets, are separated into \priority" messages and \non-priority" mes-

sages. The former always take precedence over the latter in the hardware, and presumably

this will also be the case in the software. The hardware provides non-preemptive packet

transfer, possibly with in-order delivery provided by deterministic and possibly with out-of-

order delivery using adaptive routing. While packets cannot preempt each other, one packet

can overtake another during routing. The in-order delivery, even with deterministic routing,

is only guaranteed among packets of the same priority level.

2 Assumptions and Investigation

Since priority packets always take precedence over non-priority packets, we need consider

scheduling only for a single priority class. We consider the tasks to be a set of messages that

arrive to be delivered; the scheduling task is ordering the packets of the messages in such a

way that average message latency is reduced while guaranteeing the delivery of all messages.

We will assume that there is some �nite number of applications sending messages, and each

application sends a new message only after the previous message has been delivered. (If an

application can send a �nite number of messages concurrently, it is easily modeled by that

many component applications.) We only consider the queue latency since this is the waste

time we can control through scheduling.

Questions we consider are:

� Should packets from multiple messages be interleaved? At what grain should inter-

leaving be performed if so (per packet, every ten packets, etc.)?

� Is there a trade-o� between average latency, fairness, and guaranteed delivery? Can

this trade-o� be controlled?

� How does the resulting scheduling strategy compare with classic scheduling strategies?

3

3 FIFO Scheduling

The simplest scheduling strategy is �rst-in, �rst-out. With such a strategy, starvation is

impossible; each message from each application will eventually be delivered. The maximum

time waiting in the queue is proportional to the sum of the lengths of the messages in the

queue. To help keep this within a reasonable bound, messages longer than a particular size

(perhaps 100K bytes) can be broken up into smaller messages.

On the other hand, it is not fair; for two fast applications each submitting messages contin-

uously, the application that submits the longer messages will get a proportionately higher

share of the bandwidth.

The average latency is also not optimal. If one application submits a long message imme-

diately before another application submits a short message, then the short message will be

delayed; the best average latency in this case is to schedule the shorter message �rst.

FIFO is extremely cheap to implement, requiring the least computation by the host processor

or interface board.

Finally, short control messages can be delayed by the entire contents of the message queue

at the time they were submitted.

4 Round Robin

Another scheduling strategy is to iterate through the messages currently in the message

queue, interleaving packets from outstanding messages. If we assume that new packets

are inserted at the end of the message queue, then this strategy is maximally fair; each

application with an outstanding message will receive the same share of the bandwidth. It

also guarantees delivery, since there are a �nite number of applications. In this case, the

maximumdelivery time is proportional to the length of the message multiplied by the number

of applications; this is a better result than for FIFO, and there need be no upper limit on

the message size.

The average latency, on the other hand, is not optimal; interleaving a short and a long

message delays the short message by about a factor of two without changing the latency of

the longer message. The worst-case average latency is when the �nal packets for all messages

are sent at approximately the same time; this is possible with round robin scheduling. If

all messages are about the same length, the average message latency is twice as bad as the

optimal value. The increase in latency for a one-packet control message, on the other hand,

is proportional to the number of applications; this is much better than the FIFO scheduling

strategy.

Another issue with round robin is that the `current message' is constantly changing with

4

every packet. Depending on how access to the actual message body is done, this can have

negative e�ects on cache hit rates. Round robin will strain a �nite bu�er pool used to store

the messages on an interface board. Finally, each message has a certain amount of state that

will constantly need to be switched. If we are sending more than a million packets a second,

these state switches might have a large negative impact.

A minor variant of this round robin strategy is to insert new packets at the front of the

message queue. In this case, messages of only one packet go out `immediately'. Even in this

variant, short messages of length two or more su�er in latency. In addition, always inserting

the short packets in the front of the queue allows a few applications generating many short

messages to inde�nitely starve a long message.

5 Shortest First

Another scheduling strategy is shortest message �rst. In this case, shorter messages are

always sent before longer messages. In addition, if a message arrives that is shorter than the

remaining portion of the message currently being sent, then that latter message is preempted

and the shorter message sent instead.

This strategy is optimal with respect to average latency. Given a ordered set of tasks ti each

of length li for 0 � i < n, the average delay for all tasks is

X

i

(n � i)li

because each task delays the (n� i) tasks in front of it by the amount of time necessary to

�nish that task. This weighted sum is minimized if the tasks are sorted by decreasing li.

Unfortunately, this scheduling strategy is subject to starvation; two applications that con-

stantly schedule short messages can starve an application with a pending longer message.

Because of this, the algorithm is also unfair.

These di�erent strategies are summarized below.

FIFO Round Robin Shortest First

Starvation No No Yes

Fair No Yes No

Latency Poor Moderate Optimal

6 Alpha Scheduling Strategy

We propose a scheduling strategy that lies between FIFO and shortest-�rst, based on the

value of a coe�cient. The messages are stored in a priority queue. Three parameters control

the ordering of messages in the queue:

5

� The node parameter c is a \clock" that starts at zero and increments for each packet

inserted into the interconnect through the current node. It is easy to keep this value

bounded without changing the scheduling solution as we shall see.

� The message parameter l is the number of packets in the message that have not yet

been sent. Initially this is just the length of the message. As each packet is sent out,

the message priority is decremented by � to keep the head message priority up to

date. Another strategy is to recalculate the head message priority before preempting

it during the scan for insertion of a new message.

� The tuning parameter � controls the balance between fairness and latency minimiza-

tion; it can range from 0 to 1

Messages are inserted into the delivery queue with a priority of

c+ �l:

Messages with the lowest priorities get delivered �rst. A new message inserted into the queue

with a priority lower than that of the sending message preempts the sending message.

If � = 0, then this strategy is simply FIFO.

If � =1, then this strategy is simply shortest-packet �rst; this is optimal for latency.

If � = 1 or some other �nite positive value, then the strategy will not allow any single

application to be delayed inde�nitely by the other applications, no matter what their mes-

sage stream looks like. Larger � provides better average latency; smaller � provides better

fairness.

7 Simulation

In this section, we present the results of simulating these di�erent message queue manage-

ment strategies. Our simulation consists of three main components: a simpli�ed model of

the interconnect, an instantiation of the queue and its strategy, and a model to generate

messages from a speci�c tra�c pattern. We describe each in turn.

Since we are only interested in the impact of message scheduling, we simpli�ed our model

of the interconnect to be a service queue with an average delay of one. This is the default

time unit for our simulation. For the probability distribution function, we use the sum of a

constant 0.5 plus a negative exponential with an average of 0.5 to reect the fact that the

port has a speci�c maximum bandwidth, and that the dead time between packets can vary

greatly.

Simulating the queue is straightforward for each of the strategies. Since the queue length (in

messages) is usually small, we use a simple priority queue based on linear lists. We construct

6

the simulation in such a way that we can use the same message generator and connect it to

many di�erent queues and packet acceptor models in order to run many di�erent parameters

in parallel. This allows us to amortize the expensive random-number generation over many

e�ective simulation runs.

For a default tra�c distribution, we assume 10% of the messages to be long, 20-packet

messages, and the remaining 90% are from one to �ve packets in length. The average

message length is therefore 4.7 packets. Given a tra�c density u between zero and one, we

generate new messages using a negative exponential distribution with an average interarrival

time of 4:7=u.

The �nal simulator model has three inputs. The �rst input is the tra�c density to use. The

second input was a list of strategies to consider; the model included both variants of round

robin, and all possible values of �. Since FIFO corresponds to an � of zero and shortest-�rst

corresponds to a very large �, these two strategies are implicitly included in the possibilities.

The third input is the message length distribution to use.

We collect statistics and report several di�erent parameters for each run. We report the

average queue length in packets, the total number of packets inserted and removed from

the queue, and the latencies for each of the di�erent classes of messages. In addition, we

calculate and report the average latency for all of the messages put together.

8 Results

Our primary results are summarized here.

� The e�ects of message scheduling increase with tra�c load.

� Round robin and FIFO scheduling can always be out-performed with a judicious se-

lection of the � parameter. A value of 10 will outperform both round robin and FIFO

scheduling for tra�c loads up to and including 98% of utilization for our tra�c load.

Other tra�c loads show similar results.

� The � parameter trades long-message latency for short-message latency. Higher �

gives better short-message latency and better average latency; lower � decreases the

worst-case message latency.

� Heavier tra�c requires larger � to obtain near-optimal average latency.

� An � of 10 works well over a wide range of workloads and utilizations.

We ran the simulation for the two variants of round robin and for values of � of 0, 1, 2, 3,

6, 10, 20, 30, 60, 100, and 1000000. We investigated tra�c loads of 0.01%, 1%, 20%, 50%,

7

70%, 80%, 90%, 95%, 97%, and 98%. Thus, there more than one hundred simulation runs.

In order to attain steady-state at the higher tra�c rates, tens or hundreds of millions of

packets were simulated.

In addition to the results illustrated here, we also ran many tests with various di�erent

message length distributions. While the numbers varied, the conclusions drawn remain the

same.

Message Length vs Latency for 50% Traffic

RR’

RR

FIFO

1

2

3

6

10

20

30

60

100

SF

Y

X

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

40.00

5.00 10.00 15.00 20.00

Figure 1: Message length vs latency for 50% tra�c. In this and all �gures in this report, RR' means

the modi�ed round robin, RR is the normal round robin, SF is shortest �rst, and FIFO is �rst-in,

�rst-out. The two round robin strategies are the ones that are straight and of the highest slope.

The remaining curves are a family for � of 0 through � of 1; the former is nearest to horizontal,

and the latter is the curved line nearest to vertical.

The primary e�ect of increasing � is to insert more short messages before long messages,

thus trading o� long message latency for short message latency. We assume that short mes-

8

Message Length vs Latency for 95% Traffic

RR’

RR

FIFO

1

2

3

6

10

20

30

60

100

SF

Y

X-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

320.00

340.00

360.00

380.00

400.00

420.00

440.00

5.00 10.00 15.00 20.00

Figure 2: Message length vs latency for 95% tra�c.

sage latency is extremely important, and that short messages will outnumber long messages

signi�cantly. Yet, long message latency is of some importance and should factor into our

calculations. Figure 1 shows the impact of message length on message latency for a tra�c

rate of 50%; �gure 2 shows the same graph for a tra�c rate of 95%. Even with tra�c as light

as 50%, it is obvious that scheduling has a large impact on message latency. For one-packet

messages, average in-queue latency varied from an average of 0.35 (for round robin with

insertion at the head), to 0.41 (for shortest-�rst), to 1.18 (for standard round robin), to 5.46

for FIFO. For twenty-packet messages, average in-queue latency varied from 24.41 for FIFO

to 39.05 for round robin with insertion at the head of the queue.

At 95% tra�c, the impact was muchmore pronounced. In this case, for one-packet messages,

average in-queue latency for standard round robin was 18.25, while for shortest-�rst it was

only 0.79, more than twenty times faster. For twenty-packet messages, standard round robin

9

yielded an average in-queue latency of 374.23; this was much worse than even shortest-�rst

with an average of 264.23. In general, apart from fairness considerations, for all message

lengths and tra�c densities, standard round robin is always slower than shortest-�rst, and

usually signi�cantly slower.

On the other hand, round robin is always faster than FIFO for short messages, and always

slower than FIFO for long messages. We next show how we compare FIFO, and scheduling

with other � values, under these circumstances.

To weight things appropriately, we envision a `typical' application that calculates, sends

out a message, waits for it to be received, and then calculates again. We assume that this

application generates messages according to the current tra�c distribution. While this is

not typical of applications (most will generate highly skewed distributions), it is a useful

approximation of the entire pool of applications. The primary metric of message queue

delay to the application is the total amount of time its messages spend in the queue. If

we normalize this over the number of messages generated, we �nd that the overall average

message latency is a good metric of the cost to the application of the message queue delay.

Figure 3 shows how latency changes with tra�c load for the various strategies. Because of

the large variance in latency for the di�erent tra�c loads and strategies, the vertical scaling

makes it di�cult to distinguish the lines. For this reason, we adopt the shortest-�rst average

latency value as the vertical unit, and plot the other strategies as a fraction of that value,

yielding the graph shown in �gure 4. In this graph, curves closer to the horizontal line y = 1

reect more desirable latencies.

Consider the strategies under a 50% tra�c load. The optimal, shortest-�rst, gives an overall

average queue latency of 5.92 time units. The standard and insert-at-head round robin

strategies yield an average of 7.98 and 8.10 time units, respectively, making the delay 35%

and 37% higher than optimal. This is a large decrease in performance for such light tra�c.

The FIFO strategy yields an average of 9.14 time units, 54% worse than shortest-�rst. Even

a low � value such as 1 yields an average time of 7.46, beating round robin and FIFO. An

� value of only 10 yields an average time of 5.98, within one percent of optimal.

Now let us consider a tra�c load of 95%. The optimal in-queue average latency is 30.59

time units. The standard and insert-at-head round robin strategies yield an average of 87.34

and 83.46 time units, respectively, for an increase in delay of 186% and 173%, respectively.

FIFO yields a poor 107.01 time units, more than three times longer than optimal. An � of

10, with an average delay of 68.00, beats FIFO and both round robin strategies handily. An

� of 100 yields an average delay of 30.87, within one percent of optimal.

The graph shows that increasing the tra�c load requires � to increase in order to stay close

to the optimal throughput. At high tra�c loads, low � values behave more like FIFO than

like shortest-�rst. We next derive a quantitative analysis of the bad e�ects of a too-large �

that will allow is to better understand the trade-o�s associated with this parameter.

10

Traffic vs Latency

RR’

RR

FIFO

1

2

3

6

10

20

30

60

100

SF

Y

X
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

0.00 20.00 40.00 60.00 80.00 100.00

Figure 3: Tra�c versus overall latency. This graph is di�cult to read because of the large vertical

scale; yet, the performance di�erences for a given utilization are large.

9 An Analysis of Large Alpha

Our scheduling algorithm ensures several invariants, independent of �.

First, for �nite � and message lengths, if the queue does not grow without bound, every

message is eventually delivered. That is, starvation cannot occur. This is because c increases

with each packet sent, so eventually every new message will be inserted in the priority queue

after a given message.

Secondly, if an application submits a message of length l at time c, no message of length

l
0 � l that is submitted after the �rst message can slow down its delivery. This axiom does

not hold for round robin. This means that for every message size, any � provides FIFO

11

Traffic vs Latency/Optimal

RR’

RR

FIFO

1

2

3

6

10

20

30

60

100

SF

Y

X

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

3.60

3.80

4.00

0.00 20.00 40.00 60.00 80.00 100.00

Figure 4: Tra�c versus overall latency as a factor of optimal latency.

scheduling among those messages.

More generally, no message of length l
0
submitted more than �(l� l

0
) time units after c can

slow down delivery of the original message. Messages that are much smaller than l have a

longer time in which they can be submitted and enter the queue before the original message

than do messages that are close to l in size.

If we do not limit the number of applications, or do not limit the number of outstanding

messages from any given application, any number of messages might be inserted at a given

point in time. Therefore, there is no upper bound on the maximum delay that might be

incurred due to optimal scheduling. We can compare the situation to a FIFO queue, however.

We can associate a meaning with the value slop = �(l�1). That meaning is `enter me into a

FIFO queue, but you can pretend that I entered as late as the current time plus slop if it will

12

improve the average latency'. Thus, our scheduling algorithm optimizes the average latency

such that no ones slop constraint is violated. A higher slop allows the average latency to be

closer to optimal.

This raises the question of how much of slop is generally taken advantage of during a run.

Our simulation results show that on average only long messages are slowed down, as we

would expect. What is surprising is how little long messages are slowed down, even with

high � and therefore slop values. For instance, at a tra�c rate of 95%, an � value of one

million (virtually in�nity), the average queue wait time of long messages was 264.23 time

units, versus 122.30 for FIFO. This is the worst case observed during our entire simulation.

While long messages were delayed by a factor of two longer than normal, the overall average

message latency decreased by more than a factor of three.

10 Using Alpha as a Priority Scheme

The discussion so far has assumed that � is a constant controlled by the queue manager,

perhaps varying slowly over time but roughly the same for all messages entering during any

short interval. It is also possible that � can be used on a per-message basis as a rough

priority indicator; messages with high � can be displaced by messages with low �.

11 Ensuring In-Order Delivery of Messages

One possible objection to the use of a scheduling algorithm such as alpha scheduling is

that messages sent from the same application might arrive out of order. (We assume the

interconnect provides some facility for ensuring that the packets from a single message arrive

in-order where this is important.) This di�culty is easily resolved by associating with each

application a �eld that stores the priority �eld of the most recently sent message. With this

�eld, it is a simple matter to ensure that the priorities of successive messages from the same

application form an increasing sequence, and thus will be delivered in order. This �eld can be

reset to zero any time that the application submits a message when there is no outstanding

message from that application in the queue.

12 Adversary Applications

Another consideration in a message scheduling strategy is knowledge of how mean-spirited

applications can take advantage of the strategy to maximize their bandwidth. For instance,

with the standard Unix system scheduler, the user with the most processes wins, tempting

users to spawn many processes in order to maximize their share of computing resources. Yet,

the very multiplicity of these processes decreases the e�ciency of the system by increasing

the cache miss rate, the context switch rate, the page miss rate, and swamping other system

resources.

13

If applications are allowed to queue several concurrent messages, then round robin message

scheduling su�ers the same fate|the more messages enqueued, the larger share of inter-

connect performance an application gets. Similarly, for FIFO scheduling, an application

that submits a large number of messages at the same time will signi�cantly delay messages

submitted by later, more civilized applications.

The � scheduling algorithm su�ers the same di�culties under such scenarios. A possible

solution is to limit the number of messages a single application may submit at any given

time. The computational cost of implementing such a strategy, especially if it involves the

generation of CPU interrupts or additional in-line processing at the packet submission point,

may overwhelm its advantages.

If we take this situation to the limit, where an application may only submit a single mes-

sage at a time, the scheduling strategy can still be exploited. In this case, round robin

is bandwidth-fair to all applications, regardless of message length, assuming that no extra

overhead is incurred between messages from the same application. Any such extra overhead

would favor long messages over short messages. FIFO, on the other hand, is message-fair

to applications, which implies that long messages will get a correspondingly greater share

of available bandwidth. Shortest-�rst favors short messages, because long messages can be

starved inde�nitely.

The � scheduling strategy is a continuum between FIFO and shortest-�rst. An interesting

point would be the tra�c- and workload-dependent value of � for which fairness is most

closely attained. This happens when the message size versus latency curve is most nearly a

straight line that passes through the origin. (We shift the line by a one time unit to include

the time it takes to send the �nal packet through the interconnect.) Because we have so few

message sizes in our sample workload, and because all of the curves do not �t a straight-line

model, we calculate and compare the average latencies divided by the message length (or

the e�ective packet period for messages of a given size) for each of the simulation runs to

analyze the �t. We primarily consider the range of these values.

For a given tra�c rate and workload, there exists a value of � for which the range between

the minimum and the maximum e�ective packet period is minimized. For instance, at a

tra�c load of 50%, an � of six yields an e�ective packet period of between 1.39 (for three-

packet messages) and 1.61 (for twenty-packet messages.) For this �, overall average latency

is within 2% of optimal. Thus, we have the bandwidth-fairness of round robin but a 2%

lower average latency.

At the 95% tra�c rate, an � of sixty gives a minimum e�ective packet period for messages

of two packets of 2.25, while the maximum e�ective packet period is for messages of length

twenty-�ve at 12.92. At this point, the average latency is still 5% greater than optimal, and

it is 62% less than the average latency for round robin! A bit more bandwidth-fair is an � of

thirty, with e�ective packet periods running from 5.82 (for three-packet messages) to 12.01

14

(for twenty-packet messages), with an average latency of 8.75, still more than twice as fast

as round robin.

Note that these calculations do not take into account the latency due to packet assembly,

direct-memory access, or delivery. These factors contribute to raise the latency curve, so a

higher � than the ones calculated above would likely be more bandwidth-fair.

13 Tracking Alpha

Rather than �xing � at a particular value, it might be useful to have � track the interconnect

load as shown by the queue length in some fashion. Some reasonable upper limit (perhaps

100) and lower limit (perhaps 1), along with appropriate weighting of the queue length, would

probably yield an overall scheduling strategy with a high degree of bandwidth fairness, no

starvation, and a near-optimal average latency|the best features of the round robin, FIFO,

and shortest-�rst strategies.

Depending on how tra�c arrives at the node, and how packets are accepted by the inter-

connect, the dynamic behavior of the queue length over time might exhibit some extreme

swings. For this reason, we recommend that if tracking alpha is implemented, no or little

hysterisis be used. If the queue is empty for a period of time so � gets very small, a sudden

inux of messages should allow � to climb relatively rapidly. This is an interesting avenue

for future exploration.

Another avenue of exploration is how di�erent workloads a�ect the appropriate value of �.

14 Conclusion

In this report, we have introduced a new scheduling strategy, alpha scheduling, and shown

how it can improve the e�ective performance of an interconnect by simply scheduling the

packets within messages appropriately.

15 Raw Data

This section gives the raw data from which the conclusions in this report were drawn.

15

Tra�c = 0.01%; packets = 66,479.

� qlen lat1 lat2 lat3 lat4 lat5 lat20 avlat

RR' 0.00 0.00 1.02 2.02 3.01 3.99 18.97 3.74

RR 0.00 0.00 1.02 2.02 3.01 3.99 18.97 3.74

FIFO 0.00 0.00 1.02 2.02 3.01 3.99 18.97 3.74

1 0.00 0.00 1.02 2.02 3.01 3.99 18.97 3.74

2 0.00 0.00 1.02 2.02 3.01 3.99 18.97 3.74

3 0.00 0.00 1.02 2.02 3.01 3.99 18.97 3.74

6 0.00 0.00 1.02 2.02 3.01 3.99 18.97 3.74

10 0.00 0.00 1.02 2.02 3.01 3.99 18.97 3.74

20 0.00 0.00 1.02 2.02 3.01 3.99 18.97 3.74

30 0.00 0.00 1.02 2.02 3.01 3.99 18.97 3.74

60 0.00 0.00 1.02 2.02 3.01 3.99 18.97 3.74

100 0.00 0.00 1.02 2.02 3.01 3.99 18.97 3.74

SF 0.00 0.00 1.02 2.02 3.01 3.99 18.97 3.74

Tra�c = 1%; packets = 454,428.

� qlen lat1 lat2 lat3 lat4 lat5 lat20 avlat

RR' 0.05 0.01 1.02 2.03 3.05 4.04 19.19 3.73

RR 0.05 0.02 1.03 2.03 3.05 4.03 19.18 3.73

FIFO 0.05 0.07 1.06 2.06 3.06 4.04 19.05 3.74

1 0.05 0.03 1.03 2.03 3.04 4.02 19.09 3.72

2 0.05 0.02 1.02 2.02 3.04 4.02 19.11 3.72

3 0.05 0.01 1.02 2.02 3.03 4.02 19.12 3.72

6 0.05 0.01 1.02 2.02 3.03 4.02 19.13 3.71

10 0.05 0.01 1.02 2.01 3.03 4.02 19.13 3.71

20 0.05 0.01 1.02 2.01 3.03 4.02 19.14 3.71

30 0.05 0.01 1.02 2.01 3.03 4.02 19.14 3.71

60 0.05 0.01 1.02 2.01 3.03 4.02 19.14 3.71

100 0.05 0.01 1.02 2.01 3.03 4.02 19.14 3.71

SF 0.05 0.01 1.02 2.01 3.03 4.02 19.14 3.71

16

Tra�c = 20%; packets = 2,148,042.

� qlen lat1 lat2 lat3 lat4 lat5 lat20 avlat

RR' 1.23 0.13 1.40 2.65 3.93 5.16 23.96 4.78

RR 1.23 0.34 1.51 2.68 3.91 5.09 23.68 4.80

FIFO 1.23 1.38 2.36 3.33 4.38 5.34 20.36 5.06

1 1.23 0.61 1.67 2.71 3.80 4.82 21.34 4.58

2 1.23 0.37 1.45 2.51 3.62 4.70 21.74 4.45

3 1.23 0.28 1.35 2.44 3.56 4.63 21.95 4.40

6 1.23 0.20 1.27 2.36 3.48 4.57 22.21 4.35

10 1.23 0.18 1.24 2.33 3.44 4.53 22.36 4.34

20 1.23 0.17 1.23 2.31 3.41 4.50 22.50 4.34

30 1.23 0.17 1.22 2.30 3.41 4.49 22.53 4.33

60 1.23 0.16 1.22 2.30 3.41 4.49 22.53 4.33

100 1.23 0.16 1.22 2.30 3.41 4.49 22.53 4.33

SF 1.23 0.16 1.22 2.30 3.41 4.49 22.53 4.33

Tra�c = 50%; packets = 5,928,080.

� qlen lat1 lat2 lat3 lat4 lat5 lat20 avlat

RR' 5.08 0.35 2.45 4.53 6.64 8.68 39.05 7.98

RR 5.08 1.18 2.97 4.79 6.67 8.53 37.56 8.10

FIFO 5.08 5.46 6.41 7.42 8.46 9.45 24.41 9.14

1 5.08 2.77 4.00 5.23 6.50 7.69 27.49 7.46

2 5.08 1.57 2.86 4.18 5.57 6.93 29.13 6.71

3 5.08 1.04 2.31 3.69 5.13 6.55 30.03 6.37

6 5.08 0.60 1.82 3.16 4.62 6.13 31.22 6.06

10 5.08 0.49 1.69 2.98 4.41 5.95 31.81 5.98

20 5.08 0.43 1.62 2.89 4.28 5.80 32.31 5.94

30 5.08 0.42 1.59 2.86 4.24 5.75 32.52 5.93

60 5.08 0.41 1.58 2.84 4.21 5.71 32.65 5.92

100 5.08 0.41 1.58 2.83 4.21 5.70 32.67 5.92

SF 5.08 0.41 1.58 2.83 4.21 5.70 32.68 5.92

17

Tra�c = 70%; packets = 16,271,947.

� qlen lat1 lat2 lat3 lat4 lat5 lat20 avlat

RR' 12.18 0.51 4.14 7.74 11.30 14.83 66.73 13.59

RR 12.18 2.51 5.52 8.55 11.59 14.67 62.44 13.94

FIFO 12.18 12.61 13.63 14.64 15.61 16.61 31.69 16.32

1 12.18 7.98 9.42 10.88 12.28 13.69 36.70 13.43

2 12.18 5.06 6.68 8.39 10.10 11.83 40.16 11.58

3 12.18 3.33 4.97 6.80 8.69 10.60 42.49 10.43

6 12.18 1.37 2.85 4.60 6.61 8.78 46.04 8.95

10 12.18 0.86 2.22 3.79 5.71 7.97 47.76 8.47

20 12.18 0.66 1.96 3.44 5.20 7.43 49.09 8.26

30 12.18 0.62 1.90 3.35 5.07 7.25 49.59 8.22

60 12.18 0.58 1.85 3.29 4.97 7.10 50.05 8.20

100 12.18 0.58 1.84 3.27 4.95 7.05 50.19 8.19

SF 12.18 0.57 1.84 3.27 4.94 7.04 50.24 8.19

Tra�c = 80%; packets = 396,336,637.

� qlen lat1 lat2 lat3 lat4 lat5 lat20 avlat

RR' 21.24 0.60 6.15 11.66 17.13 22.56 101.96 20.65

RR 21.24 4.13 8.70 13.28 17.88 22.54 93.60 21.33

FIFO 21.24 21.74 22.74 23.74 24.73 25.75 40.74 25.44

1 21.24 15.80 17.38 18.95 20.50 22.06 46.96 21.74

2 21.24 11.35 13.28 15.25 17.27 19.30 51.86 18.95

3 21.24 8.21 10.26 12.48 14.81 17.17 55.62 16.89

6 21.24 3.43 5.35 7.65 10.31 13.19 62.51 13.44

10 21.24 1.58 3.19 5.16 7.71 10.75 66.57 11.77

20 21.24 0.87 2.26 3.91 6.04 9.00 69.58 10.93

30 21.24 0.76 2.12 3.71 5.72 8.56 70.51 10.81

60 21.24 0.69 2.02 3.57 5.50 8.20 71.41 10.74

100 21.24 0.67 1.99 3.53 5.44 8.08 71.74 10.72

SF 21.24 0.66 1.97 3.51 5.40 8.01 71.95 10.71

18

Tra�c = 90%; packets = 368,394,590.

� qlen lat1 lat2 lat3 lat4 lat5 lat20 avlat

RR' 48.04 0.70 11.86 22.99 34.06 45.10 207.34 41.37

RR 48.04 8.82 17.99 27.19 36.41 45.70 185.99 43.09

FIFO 48.04 48.62 49.59 50.59 51.60 52.63 67.58 52.30

1 48.04 41.17 42.89 44.62 46.34 48.06 75.17 47.67

2 48.04 34.57 36.89 39.26 41.66 44.08 82.00 43.56

3 48.04 29.00 31.73 34.61 37.56 40.56 87.99 40.02

6 48.04 17.20 20.36 23.99 27.97 32.19 101.86 32.09

10 48.04 8.90 11.78 15.31 19.65 24.61 113.66 25.80

20 48.04 2.41 4.37 6.89 10.38 15.35 126.65 19.75

30 48.04 1.26 2.85 4.86 7.66 12.10 130.81 18.24

60 48.04 0.86 2.28 4.01 6.33 10.04 133.73 17.59

100 48.04 0.79 2.18 3.87 6.10 9.61 134.63 17.51

SF 48.04 0.75 2.11 3.76 5.93 9.27 135.52 17.47

Tra�c = 95%; packets = 353,635,860.

� qlen lat1 lat2 lat3 lat4 lat5 lat20 avlat

RR' 102.69 0.74 23.31 45.80 68.28 90.62 422.94 83.46

RR 102.69 18.25 36.85 55.44 74.09 92.71 374.23 87.34

FIFO 102.69 103.33 104.34 105.29 106.31 107.26 122.30 107.01

1 102.69 95.00 96.86 98.64 100.46 102.19 130.66 101.83

2 102.69 87.00 89.64 92.23 94.87 97.44 138.68 96.88

3 102.69 79.64 82.93 86.24 89.63 92.97 146.20 92.27

6 102.69 61.06 65.68 70.54 75.73 80.99 166.03 80.32

10 102.69 43.00 48.27 54.09 60.71 67.75 187.10 68.00

20 102.69 18.36 23.13 28.76 35.85 44.60 221.10 49.24

30 102.69 8.33 11.92 16.45 22.49 30.90 239.12 40.13

60 102.69 1.65 3.49 5.91 9.41 15.28 257.30 32.16

100 102.69 0.98 2.46 4.33 6.97 11.52 261.50 30.87

SF 102.69 0.79 2.19 3.90 6.22 10.06 264.23 30.59

19

Tra�c = 97%; packets = 2,209,436,237.

� qlen lat1 lat2 lat3 lat4 lat5 lat20 avlat

RR' 175.86 1.64 39.22 76.75 114.23 151.67 709.38 139.97

RR 175.86 30.85 62.04 93.22 124.43 155.71 626.17 146.55

FIFO 175.86 176.45 177.47 178.44 179.42 180.47 195.49 180.15

1 175.86 167.76 169.66 171.51 173.32 175.19 204.17 174.76

2 175.86 159.15 161.91 164.63 167.34 170.10 212.72 169.44

3 175.86 150.95 154.49 158.03 161.59 165.20 220.94 164.34

6 175.86 128.76 134.16 139.75 145.52 151.43 243.77 150.31

10 175.86 104.22 111.19 118.64 126.62 134.99 270.36 134.26

20 175.86 61.65 69.89 79.13 89.68 101.74 321.34 104.51

30 175.86 36.68 44.33 53.31 64.03 77.25 356.07 85.22

60 175.86 8.33 12.56 18.14 25.67 36.60 407.35 58.97

100 175.86 1.93 4.01 6.87 11.11 18.28 427.12 50.31

SF 175.86 0.81 2.22 3.96 6.35 10.41 436.28 47.90

Tra�c = 98%; packets = 782,215,691.

� qlen lat1 lat2 lat3 lat4 lat5 lat20 avlat

RR' 264.51 0.77 57.01 113.17 169.27 225.32 1061.99 208.00

RR 264.51 46.13 92.59 139.04 185.50 232.04 931.31 218.29

FIFO 264.51 265.17 266.16 267.11 268.08 269.10 284.09 268.82

1 264.51 256.29 258.20 260.04 261.86 263.72 292.93 263.31

2 264.51 247.36 250.16 252.93 255.67 258.46 301.74 257.80

3 264.51 238.71 242.36 246.00 249.64 253.33 310.34 252.44

6 264.51 214.50 220.34 226.31 232.40 238.60 334.82 237.27

10 264.51 186.00 194.06 202.45 211.25 220.36 364.63 219.00

20 264.51 130.29 141.39 153.32 166.42 180.73 426.94 181.68

30 264.51 91.26 103.14 116.31 131.23 148.36 475.08 153.76

60 264.51 31.53 40.54 51.60 65.35 83.00 563.56 105.32

100 264.51 8.30 12.96 19.30 28.11 41.04 612.74 81.02

SF 264.51 0.81 2.23 3.99 6.41 10.60 644.64 68.79

16 Simulation Program

This section is a listing of the simulation program, written in CSIM.

/*

* A simple scheduling test for csim.

*/

#include <cpp.h>

#include <math.h>

20

const int MAXMESLENGTH = 100 ;

double traffic = 90.0, queuedelay = 200.0, galpha, avgmeslen = 0.0 ;

long packsin ;

struct args {

char arg ;

double *param ;

} options[] = { { 'a', &galpha }, { 't', &traffic },

{ 'q', &queuedelay }, { 'm', 0 }, { 0, 0 } } ;

double defaultalphas[] =

{ -2, -1, 0, 1, 2, 3, 6, 10, 20, 30, 60, 100, 1e6 } ;

struct mesdis {

int low, high ;

double freq ;

} mesdis[10] = { { 1, 5, 0.9 }, { 20, 20, 0.1 }, { 0, 0, 0.0 },

{ 0, 0, 0.0 }, { 0, 0, 0.0 }, { 0, 0, 0.0 }, { 0, 0, 0.0 },

{ 0, 0, 0.0 }, { 0, 0, 0.0 }, { 0, 0, 0.0 }} ;

int nummesdis = 0 ;

event newelement("newelement") ;

class Message {

public:

void sendpack(void) { numleft-- ; }

int done(void) { return (numleft == 0) ; }

TIME entry(void) { return entrytime ; }

int meslen(void) { return len ; }

Message(int ilen) { numleft = len = ilen ; entrytime = simtime() ; }

private:

int len, numleft ;

TIME entrytime ;

};

class Average {

public:

double nval(void) { return n ; }

double average(void) { return (n ? sum / n : 0) ; }

int centaver(void) { return (int)floor(100.0*average()+0.5) ; }

void newval(double v) { sum += v ; n++ ; }

Average(void) { n = sum = 0 ; }

private:

double n, sum ;

21

} ;

/*

* The schedule queue is implemented as a linked list of void *

* based on the current time and alpha.

*/

class schedlink {

public:

schedlink(void *el, double pr) { data = el ; next = 0 ; pri = pr ; }

void *data ;

double pri ;

schedlink *next ;

};

class ScheduleQueue *sqs ;

class ScheduleQueue {

public:

int empty(void) { return (head == 0) ; }

void *dequeue(void) ;

void *firsttick(void) { tick++ ; return head->data ; }

void insert(void *el, int len) ;

void toend(void) ;

int packet_acceptor(void) ;

void reportvals(void) ;

void newqpoint(void)

{ queuelength.newval((double)(packsin-packsout)) ; }

void updatehdpr(void) { if (alpha > 0.0) head->pri -= alpha ; }

ScheduleQueue(double al) { alpha = al ; head = 0 ; tick = 0 ;

next = sqs ; sqs = this ; }

class ScheduleQueue *next ;

private:

double alpha ;

schedlink *head ;

int tick ;

long packsout ;

class Average mesrep[MAXMESLENGTH+1] ;

class Average queuelength ;

};

void *ScheduleQueue::dequeue(void) {

schedlink *sl = head ;

void *t = sl->data ;

double latency = simtime() - ((Message *)t)->entry() ;

22

int len = ((Message *)t)->meslen() ;

mesrep[len].newval(latency) ;

mesrep[0].newval(latency) ;

head = head->next ;

delete sl ;

return t ;

}

void ScheduleQueue::insert(void *el, int len) {

double pr = (alpha <= 0.0) ? ((alpha < -1.5) ? 0.0 : tick)

: (alpha * len + tick) ;

schedlink *sl = new schedlink(el, pr) ;

if (head == 0) {

head = sl ;

} else if (head->pri > pr) {

sl->next = head ;

head = sl ;

} else {

schedlink *hsl = head ;

while (hsl->next && hsl->next->pri <= pr)

hsl = hsl->next ;

sl->next = hsl->next ;

hsl->next = sl ;

}

}

void ScheduleQueue::toend(void) {

schedlink *sl = head ;

sl->pri = tick ;

head = head->next ;

if (head == 0) {

head = sl ;

} else {

schedlink *hsl = head ;

while (hsl->next)

hsl = hsl->next ;

sl->next = hsl->next ;

hsl->next = sl ;

}

}

int ScheduleQueue::packet_acceptor(void) {

Message *mess ;

if (!empty()) {

23

packsout++ ;

mess = (Message *)firsttick() ;

mess->sendpack() ;

updatehdpr() ; /* reflect that we just shipped a packet */

if (mess->done()) {

dequeue() ;

delete mess ;

} else if (alpha < 0.0) {

toend() ;

}

return 1 ;

} else

return 0 ;

}

void overall_acceptor() {

create("packet_acceptor") ;

while (1) {

int s=0 ;

for (ScheduleQueue *sq = sqs; sq; sq = sq->next)

s += sq->packet_acceptor() ;

if (s)

hold(0.5+expntl(0.5)) ;

else

newelement.wait() ;

}

}

void message_generator() {

create("message_generator") ;

while (1) {

double lenr = uniform(0.0, 0.99999999) ;

int len ;

ScheduleQueue *sq ;

struct mesdis *md = mesdis ;

while (md->freq <= lenr) {

lenr -= md->freq ;

md++ ;

}

if (md->freq > 1.0) {

fprintf(stderr, "bad distribution\n") ;

exit(10) ;

}

if (md->low != md->high)

24

len = md->low +

(int)floor(lenr/md->freq*(md->high - md->low + 1)) ;

else

len = md->low ;

packsin += len ;

for (sq = sqs; sq; sq = sq->next)

sq->insert(new Message(len), len) ;

newelement.set() ;

hold(expntl(100.0 * avgmeslen / traffic)) ;

}

}

void queue_size() {

create("queue monitor") ;

while (1) {

ScheduleQueue *sq ;

hold(queuedelay) ;

for (sq = sqs; sq; sq = sq->next)

sq->newqpoint() ;

}

}

void ScheduleQueue::reportvals(void) {

printf(">> %g %g %d %d %d", traffic, alpha, queuelength.centaver(),

packsin, packsout) ;

for (int i = 1; i<=MAXMESLENGTH; i++)

if (mesrep[i].nval())

printf(" %d", mesrep[i].centaver()) ;

printf(" %d\n", mesrep[0].centaver()) ;

fflush(stdout) ;

}

extern "C" void sim(int argc, char *argv[]) {

double statdelay = 20000.0 ;

struct mesdis *md ;

create("sim") ;

while (argc > 2 && argv[1][0] == '-') {

struct args *argp = options ;

argc-- ;

argv++ ;

while (argp->arg)

if (argp->arg == argv[0][1]) {

if (argp->param == 0) {

25

switch(argp->arg) {

case 'm':

md = &(mesdis[nummesdis]) ;

if (sscanf(argv[1], "%d", &(md->low)) != 1 ||

sscanf(argv[2], "%d", &(md->high)) != 1 ||

sscanf(argv[3], "%lg", &(md->freq)) != 1) {

(void)fprintf(stderr, "Oops; need three numbers.\n") ;

exit(10) ;

}

md->freq /= 100.0 ;

nummesdis++ ;

argv += 2 ;

argc -= 2 ;

}

} else if (sscanf(argv[1], "%lg", argp->param) != 1) {

(void)fprintf(stderr, "Oops; need a float param.\n") ;

exit(10) ;

}

break ;

} else

argp++ ;

if (argp->arg == 0) {

(void)fprintf(stderr, "Bad argument.\n") ;

exit(10) ;

} else if (argp->arg == 'a') {

(void)(new ScheduleQueue(galpha)) ;

}

argc-- ;

argv++ ;

}

if (nummesdis == 0)

nummesdis = 2 ;

mesdis[nummesdis].freq = 1000.0 ;

for (int i=0; i<nummesdis; i++)

avgmeslen += mesdis[i].freq *

(mesdis[i].low + mesdis[i].high) / 2.0 ;

if (sqs == 0) {

for (int i=0; i<sizeof(defaultalphas)/sizeof(double); i++)

(void)(new ScheduleQueue(defaultalphas[i])) ;

}

{

ScheduleQueue *nsq = 0, *t ;

while (sqs) {

t = sqs ;

26

sqs = sqs->next ;

t->next = nsq ;

nsq = t ;

}

sqs = nsq ;

}

message_generator() ;

overall_acceptor() ;

queue_size() ;

while (1) {

ScheduleQueue *sq ;

hold(statdelay) ;

printf("\n") ;

for (sq = sqs; sq; sq = sq->next)

sq->reportvals() ;

statdelay = statdelay * 1.1 ;

}

}

27

