
.•
•. . , ',HEWLen

'" ..··PACKARD

A Dovel approach t9 eveRt
correlatio.

Keith Harrison
T'leCO$$ Sy" DeP8J,1:mentFW L .' ···esBri.stGl
HPL~ 68
July, 1994

events, network
management, TMN,
correlation

Hewlett Packard Laboratories is res~ible for
long..ran., research i,nto new tecbnolo$iPs for use
9Y the Co~...' y Th..·.0 miss.J.Oft.'. of ..~.lu~te...ll1l.tig'jent
~twork.Co~~ . "CL) lJase(l in
BrmoL 1$ to. '. - •.•• .. and system
teduto1ops,to ..., ' to \WJ~ I .,player in
.1 ' . ' ittd.u~. Jtepsent an
q ,...' lie ~. 'belfti-cleilken by.

Itt til. .. of .. ~.t of
teI~~~neMOtb and .will ,pay
p$'tl.•. ' •ctllflt ..tiOll to 0lU' research mtoEvent
Management and Alarm Correlation.

(0) CopyrigbtHewlett.Packard Company 1994

Internal Accession Date Only

1. Introduction

The purposeof this paper is to give an overview intosome of the researchbeing carried out by
HPLabsin the area of event correlation aspartof a largerinvestigation into the open management
of large-scale heterogeneous telecommunication networks.

We define Event Correlation to be processing that involves multiple events - as opposed to
Event Filtering that treats each event independently.

This workon event couelatian was motivatedby two rea!-wGl'1d concerns: the baDdling of large
volumes of events from a singlefault, andthedetermination of the fault that underliesthe
observed events.

2.1 Volume of Traffic

The firstcoaGCm is tbat of volume.Whoaafou1t 0CCUl'$ on a network,theaetworkemits a short
lived storm ofevetlts. Pol'example. a breakin a SONET cable .yresult ina stQnnof many
thousands of events. Similatly, when thecable is restored. a restoration storm of similar sizemay
occur.

ev t creationrate

""--------------------+time
Each event is typically shipped across a data network to one or more network management appli
cations. Somewbere along the way it will be loged for audit purposes. As higher bandwidth
transmission standards are adopted, such as OC192, this event storm will reach epic proportions
it is not infeaaible for an OCl92 breakto result in excess of one million events. Ideally, we should
think about reducing this traffic by perfoI1lling some form of data comprrtssion., and by perform
ing this as early as possible.Obviously, this data compression shouldbe done in such a way that
no useful information is lost. An architecture for achieving this might look like:

The eventsemittedby the networkare sent to local data compressors where their bulk is reduced.
This reducedBow of events is then sent to regionaldata compressors and so on, up to the central
network management application.

It would defeat the purposeof the architecture if all events had to be sent to the application for
logging.There is an assumption that loggingwillbe performedlocally,and if a consolidated log
is required, then this can be performedoff-lineduringthe quiet periods.

2.2 The Cause Not the Symptoms ...

The operator is not interestedin the aetual events.They are more interestedin knowingwhat the
underlyingfault is that triggeredthe events.Thistask hasbeen traditionally attacked usingexpert
systemstechnology and involves a S<Jphisticated form of pattern matching. It is assumedthat a
fault producesa standardpatternof events - detect the pattern and you can determinethe fault.

Both problems, described in 2.1 and 2.2, maybe solvedby using a pattern matchingtechnology.
In the firstcase we haveheavy traffic but the patternsbeing detected are typicallyvery simple. In
the second case, we can take advantage of the reducedevent traffic, but the patternsbeing
detectedare more sophisticated.

This gives us a design objective:

2

Objective:

Develop a single technology that can tackle both the
data compression of large volumes of events AND
the determinationof the underlying pathology.

In practice, expert systems can be developed that are considerably more powerful than pattern
matchers.The assumption is that the 80-20 rule applies. That is, a large percentage of the prob
lems that arise in a network have been planned for and their event patterns predetermined. It may
well be necessary to use Expert System technologies to handle the remaining problems however
this can take advantage of the much reduced, andenriched, stream of events emitted by the data
compressors.

3. The Use of Expert Systems Technologies

Event correlation has, to date, been tackled in a variety of ways:

*Using specially written application code*Using table driven pattern matching code*Using Expert Systems Shells, such as ART or G2

Writing specialisedcode is expensive and time consuming although theresults can run impres
sively quickly. The disadvantage being that the code is inflexibleand difficultto enhance and
maintain.

Using expert system shells permits thedesigner to concentrate on the problem of specifying the
requiredcorrelation rules without having to worry about other housekeeping tasks at the possible
cost of efficiency- and, in some cases, unpredictabilityof response times.

Event Correlatorstypically lose interest in events once the events become old. For example, it is
unlikely that any correlator would be interested in an event that is more than 24 hours old.
Because we cannot, and do not want to, store events within the correlator indefinitely, we are
requiredto find a strategy for releasingout-of-date events. "Events don't die they just fade away."

3

This gives us a second designobjective:

Objective:

Developa technology that can offerefficientand
continuousoperation over longtimescales.

4. What is an Event?

In order to obUlin a solution that is as..joneral as possible. and thus more amenableto reuse. it is
necessarytodeteI'Illinethe essentialcbar8cteristics of events.The chosen set is as follows:

*An event has a type*Each event is ti:mestamped upon creation*Eventshave to be sont from the issuing device to thecorrelator. This transit delaywill
takea raRdem but bolurIed·leDath of time.*Events mayarriveoutof otdet.

Note that in 0.- to correlatewe. aoing to have to be able to say wb.etber one event was ere
ated before or after at1Qdlerand wluniadle timediffereace. This mquires the events to be times
tamped at the time ofcreation - U$iaa aglobal tiJne rtfemnce. Inpractice it is sufficient to know
whichdevice issued tbe event and bow far adrift its<:iockis. A second problemoccursbecause
the clock resolutionis not alwaystinecnougb. Forexample. TLI typically hasa one secondclock
resolution. In this case. unambiguous orderingis goingto necessitate the event emittor to tag the
event with an incrementing counter.

5. The Basic Idea

The event handlingarchitecture described in section 2.1 assumes the existenceof a data compres
sor that is capableof accepting multiplestreams of events, correlating the events, and then creat
ing one or more streamsof eventsfor use elsewhere.

4

{Ed
Correlator

The resulting streamofeventsmay be a subsetof theorigiDal stream,or comprise eventsof a new
type. This COImlator sboWd be driven, or OOJltl'Olled..bya U$« sWIied specification. It should
also be capaWe ofbeiag dlicient andscalable.·1KJthin tums· of the arrival rate ofevents and the
complexityof thecc:m:elations to beperformed.

The key insight was to reatize·" this ID8CJ'()oolevel an:hiteetureremains validwhenused at the
micro-level. Thus. the iatemaIs oftbe em:mlator.t havethe foIk>wingstrueture:

Theq~ontben becemes - can wedesian a smallnumber of siIDple. etlicient andeasily under
stood nodes that maybe combinedtogether to provide pnx:e8Sors with desited behaviour?

It is easy to see that this architecture is suitable for parallel processing.

This CODcept is not diS$imilar to tlWfOlilDd within.~1.desian. Digital circuits are
constructed by~NANl).·NOa and MOT.... intbe~manuer. In order to
ease this task. standard. COlIlbiDations of d1eseprimitives havebeen packaged as multiplexors,
half-adders, tlip-flopsor even microprocessors.

It is important to recognise that our "hardware" components are implemented in software - and
thus may be easily customised.

6. An Example

5

Adetailed description of all of the standard components isbeyond the scope of thispaper. Togive
a flavour we will consider a very simple problem:

Imagine we have a hardware device that emits two types of events -

LOW -- the power level is getting dangerously low
OK -- the power level is acceptable again.

We might require only those LOW events which are not associated with a powerloss transient.
That is. the LOWpower event is not immediately followed by a power OK event.

Similarly we want to see those powerOKevents that mark the end ofsucha long power shortage.
Thus

input events

output events

LOW

*i'
S l'S

That is. we wish to specify the circuitry needed to complete the following:

LOW events

?
•

OKevents

6

Unmatched OK

events

One solution, making use of two types of nodes is as follows:

LOW

OK

unless,

(0. 1)

unless2

(-1,0)

LOWs marking
start of long power
low.

OKs marking end
of long power low.

Any event entering a Bus node is forwarded to each of the successor nodes.

The Unless node has thepropertythatevents presentedto theexcitor input will be outputted
unless a matching event arrives at the inhibitor event. We can visualise the Unless node as:

Excitor events Unless node

I Excitorllnbibitor predicate
I Inhibitor Wmdow____ .I

Output Events

The match criterion contains two pieces of information:

1. What is the required time relation between the inhibitor and the excitor event? In the upper
Unless node, unless}. the LOW event is the excitor event and the OK event is the inhibitor event.

The upper Unless node requires the OK event to have been created after the LOW event - but by
no more than one second. Similarly, in the lower Unless node. unlessj, the OK event is the excitor
event and the LOW event is the inhibitor event. The LOW event must have been created before
the OK event, but by no more than one second.

2. What relation, involving event attributes, must be satisfied between the two events? In this case
we require the LOW and OK events to have originated from the same device.

7

7. Processing Delays

This simple example illustrates an unavoidable fact of life. LOW events will need to be delayed
until the system is quite sure whether or not a matchingOK event is going to arrive. Even assum
ing there are no transit delays, this might result in a one seconddelay before the LOW is sent to its
successor.

This gives us a third design objective:

Objective

Unnecessarydelays should not be engineered into
the system

Note: In the example, if we have no transit delays to worry about then the OK events will not be
delayed because the inhibiting LOW event must have already arrived.

8. Memory Management

Once implemented, the event correlator is going to have to run for a long time, in some cases for
several years. Consequentlyit is important that events bereleasedas soon aspossible. By examin
ing the Unless node in detail,we will see that its memoryrequirements are well defined and lead
to a simple and efficient memory managementscheme.

The Unless node has two input streams of events - the excitor stream and the inhibitor stream. An
event from theexcitor stream willbe outputted if, and only if, there is no matching event in the
inhibitor stream such that the inhibitor event was createdwithin a specified time window relative
to the excitor event, and the two events satisfy some predefined criteria such as they come from
the same device. These semantics are implementedas follows:

On receipt of an excitor event we must:

*check to see if an acceptable inhibitorevent has already been received. This is done by
searching through a memory containingrecentlyreceived inhibitor events. If so, then
processing is terminated.

Note: Even ifwe require the inhibitorevent to havebeen created AFfER the excitor event
it is still possible that, because of transit delays, the inhibitor event arrived BEFORE
the excitor.

8

*check to see whether there is still time for an inhibitor event to arrive. If not, then the
excitor event can be immediatelyoutput. If there is still time, then the excitor event is
placed into an "excitor memory".

On receipt of an inhibitor event we must:

*Place the inhibitor event into an "inhibitor memory".*check the store of excitor events. Any stored excitor events that matches may be
removed- they have been inhibited.

Note: An inhibitor event may inhibit many excitor events.

Finally,periodically we must search the excitor memory. Anyexcitor event thatis sufficientlyold
that no matching inhibitor event could possibly arrive may be output and removed from the exci
tor memory. Similarly,inhibitor events in the inhibitor memory will eventually become suffi
ciently old that no matching excitor events could arrive, in which case they may be removed.

In order to consider how long events need to stored, consider the following diagram:

creation timeof excitor event

arrival window ofexcitor

inhibitor creation window

arrival window of inhibitors

c t
inhibitor storage duration --~

1< excitor storage duration-----=;:~

""E:--- transit dclayof outputted excitors

The line at time c represents the creation time of an excitor event. Because of minimum and max
imum transit delays for an excitor event, we do not know theprecise time this event will arrive,
but we do have an arrival window - the interval (d, f).

Associated with the Unless node is a time interval. Any inhibitorevent that is a match for the
excitor event must have been created within this window - the interval (a, e).

Because of the known bounds on the transit delays for the inhibitor events, we have an arrival
window for the range of acceptable inhibitor events - the interval (b, g).

9

From this diagram it is possibleto deduce the following:

The earliest that the excitor event can arrive is d. But the latest that the matchinginhibitor
can arrive is g. Thus we may have to store the excitor events for (g - d).

The earliest that the inhibitorevent can arrive is b. But the latest that an interestedexcitor
can arrive is f. Thus we may have to store the inhibitorevents for (f - b).

We cannot release an excitor event until we know the inhibitor event cannot arrive.Thus,
we have to wait until time g before the excitor may be emitted. This means the excitor
event emitted from the unless node will have a transit delay of (g - c).

An implicationof theanalysisgiven above is that althoughthe Unless node has to have memory
to store events we can predict,a priori, the maximumlength of time we have to store the events.
Anyevents that have passed their "sell-by date" may be released. Similar analysis is possibleand
required for all node types.

9. Summary

In this paper we have describeda technology that satisfiesthe three design objectives. Namely:

1.develop a single technology thatcan tackleboth thedata compression of large volumes
of events and the determination of the underlying pathology;

2. develop a technology that can offer efficientand continuous operation over long times
cales;

3. unnecessarydelays should not be engineered into the system.

The system is based on the novel notion of streams of events that are processed using simple
processingelements that are composedto producesophisticated correlations.

The system has been implemented and is runningin the laboratorywhere the initial results have
been found to be extremelypromising. Workis in progressto test the system in a real environ
ment to characterise its performance and to determinethe level of support needed to aid the circuit
designer.

Because an abstractdefinition of an event was adopted,this technologyhas found other usesapart
from event correlation.For example, it can be used for consolidatingbilling records into a single
billing record for the call.

10

