
rlin- HEWLETT
a:~ PACKARD

Scribble Matching

Richard Hull, Dave Reynolds, Dipankar Gupta
Office Appliance Department
HP Laboratories Bristol
HPL-94-61
July, 1994

scribble matching,
handwriting recognition,
pattern recognition

Scribble matching is a form of partial handwriting
recognition that allows like scribbles to be
identified. Three complimentary matching
algorithms have been developed that provide in
combination a matching rate of 97%. In this paper,
we describe the scribble matching problem and the
matching algorithms, report experimental results,
and discuss applicability and future challenges.

© Copyright Hewlett-Packard Company 1994

Internal Accession Date Only





1 Introduction

In the discussion of pen-based information systems, there can sometimes be a false dichotomy between
leaving electronic ink uninterpreted and full handwriting recognition. In fact, there is scope for a range of
partial recognition techniques that provide useful functionality without producing ASCn text. In this paper,
we describe one such technique, scribble matching, that allows electronic ink to be searched for like scribbles.
We show how matching rates of 97% can be achieved on unconstrained written input, enabling a variety of
robust search and retrieval applications.

First, we describe the scribble matching notion and its applications, Next, we describe three complementary
algorithms and their combination, and present various experimental results. Finally, we discuss the
advantages and limitations of this approach, identify future work, and draw some conclusions.

2 What is scribble matching?

The scribble matching problem may be easily understood by considering figure 1 below. We wish to know
whether two pieces of electronic ink ("scribbles") are the same in the mind of the person who wrote them. In
this example, do both pieces of electronic ink represent the word "scribble", even though they are not exactly
alike?

?

Figure 1 - The scribble matching problem illustrated

One way to answer this question would be to translate both scribbles into ASCn text via handwriting
recognition and to compare the resulting strings. However, the reliability of such an approach would be
restricted by the limited accuracy of handwriting recognition technology for unconstrained input [1]. In our
approach, we circumvent the problems of full recognition by matching scribbles according to various
topological and temporal features, and achieve very high matching rates. In this, we adopt an approach
similar to [2, 3,4].

The fact that scribble matching does not produce a textual version of the input may seem, at first, to limit its
applicability. Certainly, it is not an appropriate technology for data entry. However, scribble matching is of
great value in applications requiring search and retrieval of electronic ink. For example, scribble matching
could allow users of a Personal Digital Assistant (FDA) to address messages by simply scribbling the
recipient's name in an active "To" field on the message (see figure 2 below). The PDA would capture the
electronic scribble and match it against the contents of a handwritten address book entered earlier. The
associated telephone number of the best matching entry would be retrieved and used to send the message..

OCUl...
Phonebook

To:

Dear Dan, NcJ- Nick 27540
Here is a sketch of the
new design ... OCUl... Dan 274590

S=~ D~ Dave 28165

Figure 2 - Example application/or Scribble Matching

Other applications include the retrieval of documents by means of handwritten keywords or other annotations
attached to the documents, and the retrieval of personal handwritten notes by matching on their contents.

1



3 Scribble matching algorithms

The overall strategy that we have adopted for scribble matching has been to identify particular features that
are robust to anticipated variability, to develop and tune focussed matchers based on those features, and to
combine those matchers at the system level. This has proven to be more succesful in our experience than
developing a single matching algorithm based on multiple features. In this section we describe the three
complementary algorithms for scribble matching that have been most effective within this strategy, and their
combination.

The three matchers are termed syntactic, word shape, and elastic respectively, although to an extent these
names reflect motivations as much as final implementations. Each scribble matching algorithm has two
components, a coder and a matcher, that operate on a scribble table containing searchable codes representing,
for example, the handwritten annotations on a set of documents.

The coder is used every time a new scribble is added to the table to extract a set of features from the scribble
and produce an appropriate code. Each of the coding schemes is based on a set ofknot points identified in the
input scribble. These knots indicate significant points on the ink sequence - end points, cusps, ligatures and
so forth - as shown below.

Each coder generates labels for the knots or for the stroke segments between knots. Clearly, the success of
the scribble matching algorithms depends on the stability of knot points, and we have adopted pen velocity
minima as the most stable basis for knot point detection [5, 6, 7]. Other pre-processing steps include de­
bunching, de-hooking and (optionally) polygonal re-sampling,

The matcher is used when a search is to be performed. It compares the code of a handwritten queryscribble
against the codes in the scribble table. The code of the query will only rarely be an exact match to one of the
entries in the table owing to the variability of the user's writing. Thus the matcher has to use some form of
approximate matching to measure how similar the query code is to each table entry. The final result is a set
of distance scores for each table entry which can be used to extract an ordered list of possible matches. This. ­
process is illustrated in figure3below.-

Each ofthe matchers uses the same approach to approximate matching - that ofstring edit distances computed
via dynamic programming [8, 9]. The implementation of the underlying dynamic programming engine is
standard and utilises a limited beam width set by the invoking matcher. Finally, in each of the scribble
matchers the matching distance is normalised by dividing it by the average of the lengths of the two strings

2



Query:

~-..~... l!n!>u!ul!nU

+
~

Match list Score

"'"l!l!llu>ul!n<1 OCUL 20

l!nooluAlnU Matcher ~ D~ 35..
I!n<>olu!u leU NcPk 100

~ ~

oCUL---..I Coder

Table:

N~

Figure 3 - Performing a query search

being matched. This "edit cost per knot" measure is less biased towards short match strings and in practice
provides a small but useful improvement in accuracy.

3.1 Syntactic matcher

Open curves: n u for upwardly convex/concave curves .•

The syntactic matcher encodes scribbles by labelling each of the knot points with a symbol describing the
local shape of the ink at that point. The labels used are:

• Cusps: I I < > for up. down. left and right facing cusps.

• Closed curves: 0 p y e

• Miscilaneous smooth curve: -
• Diacritical marks: •

• Line end points: I L {} N U V

For example, the ink po..J. would generate a labelling of, "UP<>Olu>oIU".

The code is stored as a simple string with one character label for each knot point.

Matching is based on string edit distance as described earlier. The set of insertion. deletion and substitution
costs are set to cope with both variability in writing style (e.g. breaks in ligatures) and instability in the
labelling algorithm (e.g. the weakness of the loop tests which might label 'u' as '0' and vice versa). The
procedure for setting the edit operation costs is as follows:

1. Manuallydefinea initialset of costs.
2. Usethissetof coststo findtheminimumcosteditsequence betweeneachpair in anextensive

test database of word pairs.

3. Measure the relative frequencyPi with which each symbol or symbolpair i is substituted,

insertedand deleted.

4. Update the costs usingthe formula: Ci = -logp j for eachsymbolor symbolpair i .

5. Test the updatedcosts forperformanceon a testset. If performance has improvedfurther, go
to step2 else exit withprior cost set.

Figure 4 - Algorithm/or setting string edit costs/or syntactic matcher

3



The result is a table of fixed costs that reflect the probability of local variability, with likely deformations
such as that from a loop to a cusp incurring low costs. In practice, our first manual setting of the costs was
sufficiently accurate that only one cycle of iterative improvement was needed to generate the final cost table.
These costs were found to generalise well across test data sets.

3.2 Word shape matcher

The word shape matcher uses a representation of the overall shapes of scribbles, reflecting the pattern of
ascenders and descenders in their outer contours, eg

Descender I , Overall word shape

The coder generates a code vector of integers representing the normalized heights of knots taken in time
order. Knot heights are normalized relative to a (perhaps sloping) median line, and to the mean knot height
for that scribble.

More formally, a wordshape code is defined as a sequence S of N integers Si in time order,such that

S = SI'SZ, ... 'sN where Sj = lYi -YmedianJ and y, is the value of the y-coordinate of knot i, Ymedian is the
Ymean

y-coordinate of the median line of the scribble at the same x-coordinate as knot i, and

Ymean = [k. f IYi- Ymedianljis the mean vertical distance of knots from the median, eg
I = I

The matcher again uses the string edit distance metric. This time the cost parameters are defined by simple
equations rather than by a fixed table of costs, ie

ins (Sj) = ISjl

del (Sj) = IS,~

subs(S"Sj) = ISj-Sjl

The lowest cost edit sequences will tend to be those containing mostly substitutions of knots with similar
heights. The substitution of a knot that lies at the extreme of an ascender (or descender) with any other kind
of knot, or its deletion or insertion, will incur a high marginal cost and tend to increase overall matching
distance. Hence, the lowest overall matching distances will indeed tend to be those between scribbles with
similar patterns of ascenders, descenders and body characters, as intended. Moreover, the insertion and
deletion of knots close to the median line will incur low marginal cost and will therefore not greatly affect
overall matching distance. Hence, this matcher will be fairly robust to instability in the placement of knots
within body characters, and in the use of ligatures, further reflecting the emphasis on the overall shape of a
scribble rather than its internal details.

3.3 Elastic matcher

The elastic shape matcher matches the shape of the entire scribble using an approach similar to that in [10].
The main challenges to elastic matching are the sheer number of raw data points in a scribble, and the natural
variability in the order of diacritical strokes such as "t-bars", and in the number and position of penlifts. The
first two problems are resolved in the coder by removing diacritical strokes, and then polygonally re-sampling

4



the remaining segments of the scribble (between knots) to reduce the number of data points. For each of the
points in the subsampled space, we record three items:

• Relative height y from the base of the scribble's bounding box.

• The angle 9 of the tangent to the curve at the point'.

• A classification of the point as a penlift, knot, or intermediate point.

Given this information, the matcher computes the distance between two scribbles as a linear weighted sum
of the differences in the positions and tangents to the curve of each sample point in the scribbles. Note that
such differences can be caused by the different locations of corresponding points on the two scribbles, or by
extra points in either of the scribbles. We again use the string edit distance metric, with appropriate cost

functions chosen to reflect the more general form of elastic matching/; The cost functions are designed to
reflect the following criteria:

Within-c1ass3 substitution cost is determined only by the differerences in position and angle to the
curve of corresponding points, ie for points p, q :

subs (p, q) = m(Yp - Yq) + n (9p - 9q) where m and n are appropriate weights.

• The cost of substituting an intermediate point for a knot, or a knot for a penlift is further increased by
some weighting factor to reflect the greater deformation implied, but bounded to reflect errors in knot
finding and natural variability in penlifts.

• The cost of substituting an intermediate point for a penlift is made yet higher to reflect the most severe
form of deformation.

In effect, the higher cost of substituting an intermediate point for a knot (or penlift) encourages the matching
algorithm to try to line up knots in the two scribbles, even if it means requiring a number of insertions or
deletions of intermediate points. Insertion and deletion costs are symmetrical and combine to give a greater
cost than a corresponding substitution. The insertion/deletion cost for a penlift is set highest and made equal
to the cost of substituting the penlift for an intermediate point.

3.4 Combining scribble matchers
The three scribble matchers described may be combined in many ways, for example in a pipeline, or in
parallel. However, in this paper, we shall be concerned only with one very straightforward combination based
on a linear sum of matching distances. See [11] for a more far-ranging and detailed account ofmultiple
matcher architectures.

This combination technique simply uses each matcher to find a distance from the query scribble to every

entry in the scribble table, normalizes the distances to a common scale4 , and sums them to produce an overall
distance d, ie

Scribble
table

Query
scribble

Syntactic

Word shape

Elastic

d

Figure 5 - Overview ofcombination scheme

The effect of normalization is to place all match distances on a single scale that may be interpreted as the
degree of confidence of match. Thus the overall normalized distance could be used to reject low confidence

1. If this is a penlift,we computetheanglebetween the last pointof thepreviousstrokeand the first pointof thenext.
2. In whichrepeatedinsertionsof a sequenceof identicalsymbolsincurno (or little)extracost.
3. ie knot for knot,point for point,or penliftfor penlift.
4. by dividingby thestandarddeviation of that matcher's best matchdistance

5



matches. In practice, the gap between the best and second-best match was found to provide a better rejection
heuristic.

4 Experimental procedure

The scribble matching algorithms have been tested on data collected from around thirty subjects. Subjects
were instructed to write as naturally as possible, and the resulting corpus contains cursive, printed and mixed
styles. The collection procedure was designed to allow a study of the stability of an individual's handwriting
over time and captured multiple instances of the same scribbles over five months. The subjects were allocated
to development and test sets and used accordingly.

4.1 Test data

Data set
The data set consists of 100 items comprising one, two or three names and/or sets of initials, such as Andrew,
Elizabeth Taylor, W.A.Mozart, and IBM. The data set was designed to give minimal alphabet coverage in that
it included at least one instance of every letter in upper and lower case, but it was not balanced to reflect
language statistics.

Subjects
In order to collect multiple instances of the data set, each subject was asked to write the specified data set
twice in each of three sessions. The sessions were spaced one week and twenty-one weeks apart. Not all
subjects attended every session, but the outcome was a test corpus containing 6 instances of the dataset from
19 writers, 4 instances from a further 12 writers, and 2 instances from one further writer. The subjects, drawn
from students and staff at a local university, were roughly balanced in terms of gender. All but a few were
right-handed, and most were educated in Great Britain.

The data collected from each subject was assigned to one of three distinct sets, one used for development of

the matching algorithms I ,and two test sets T22 and T33.

Ink characteristics
The data was collected on a Wacom PL-looV active tablet connected to a 25MHz 386 PC running Windows­
for-Pen. For various non-technical reasons, the data was collected using a mouse driver rather than a pen
driver. This results in lower quality data in terms both of spatial and temporal resolution. In particular, ink is
collected at VGA resolution which is about 1I6th of digitizer resolution, and appears bunched ilJ time rather
than being regularly clocked. From a methodological point of view this results in a harder test set than if it
had been collected via a pen driver and will tend to result in an underestimate ofmatching performance rather
than an overestimate.

4.2 Performance metrics
The principal measurement made over the data sets was of scribble matching performance. This is measured

as follows. For a particular writer, two scribbled instances of each item in the data set are selected'' and
loaded into a scribble table. Hence, after loading, the scribble table has 200 entries. Each of the loaded
scribbles in tum is then taken temporarily out of the table, designated the query, and matched against the 199
scribbles remaining in the table. The table is sorted according to each scribble's matching distance from the
query, in ascending order. The scribble at the head of the sorted table is designated the best match. The
scribble that is the second instance of the data set item represented by the query is designated the intended
match. If the intended match is the best match, then the Top] count is incremented. If the intended match is
within the best five matches, the Top5 count is incremented. The procedure is repeated for all writers and
statistics are produced.

1. A set of II writersselectedrandomly fromthoseattending at leastthe first session
2. A further8 writerswhoattended the first2 collection sessions.
3. A further 12 writerswhoattended all 3 sessions.
4. Forexample,fromsessions a weekapart.

6



5 Results

In this section, we report on a number of experimental results obtained for the scribble matching algorithms
according to the procedure described in the previous section.

Single matchers v combined matcher

Table I shows the overall Topl and TopS performance of the various matchers on the development writers,

Table 1: Overall perfomance of scribble matchers

Syntactic Word Shape Elastic Combination
Data set

Top1 TopS Top1 TopS Top I TopS Top1 TopS

Development (11) 91.7 97.8 89.4 96.1 97.3 99.5 98.1 99.8

Test setTI (8) 86.9 95.6 88.6 96.4 95.8 98.9 97.3 99.5

Test set T3 (12) 87.8 96.2 87.2 95.4 95.1 98.4 96.9 99.1

and on the two sets of test writers. These figures relate to matching over pairs of scribbles captured during
the second session, giving a scribble table of 200 entries. We may make several observations

The elastic matcher performs better than the syntactic and wordshape matchers, though at the cost of
much greater computation [II]. As expected, the combined matcher performs best of all.

• For the combined matcher, results on the test sets are close to those on the development set The
algorithms do not seem to be over-trained on the development set and should generalize to a wider
population.

• The TopS perfomance of the combined matcher means that the correct hit can virtually always be
found in a short list of near matches that may bepresented when a user signals a bad best ~atch.

The beneficial effect of combining the individual matchers is confirmed by the graph in figure 6. This shows
that combining matchers not only increases the average performance over a set of writers but also greatly
reduces the spread of performance experienced by different users. ~. .

100.0 .-................................................................................................ ._. .....

l I . ._.,/~._._._._._/' '-' ~%,.,./ ..=;=:.
~ ,~ /<"- ~ i==ed90.0 ~ I 'I'~' ,\, r.. f \, .- ~ ... ~ :: , I '\<'~7 'I :
! \, I / I \,1 :

~ './/\,' !
: / I I :
: '.''''''/ , I :

0. 800' I, ,

~ r v !
70.0 ;- ;

: :
L 1

60.0 L..,....L..•. I ••••L ...L••••J..... L••••1.... .L ••••1.... J•••••I.. ..J •••• l ••..,...• L•.••••.••L,..•I ••••J••••l
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

Writer

Figure6 - Per-writer perfomance ofscribblematcherson test writers

7



Stability over time
One possible limitation of scribble matching could arise from long-term drift in an individual's handwriting.
However, Table 2 shows that, in fact, long-term degradation of matching performance for the available test
writers is acceptably low.

Table 2: Variation over time Topl- TopS

Syntactic Word Shape Elastic Combination
Test set T3

Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

Same day'' 87.8 96.1 87.2 95.4 95.1 98.4 96.9 99.1

I week 85.9 95.7 86.2 95.8 94.2 98.5 97.2 99.4

5 months 82.3 94.6 84.4 94.9 95.3 98.3 96.8 99.2

a. Again, this result is reported for the second session. The first session gives poorer correlation with the 5 month session.
possibly due to subjects' lack of familiarity with the system.

As may be seen, there is some reduction in performance for the syntactic and wordshape algorithms when
matching scribbles collected five months apart. However, the elastic matcher is very stable, and the
combined algorithm shows no degradation as the interval between scribble capture increases. These results
suggest that there may be some underlying change in the writing styles of individuals over the five month
period, but that the combined scribble matcher is robust enough to cope. Note that if long-term drift is
revealed to be a problem, then a systems-level solution may be most appropriate, for example replacing the
reference scribble in the scribble table with the query scribble after a successful match

6 Discussion

For many applications, scribble matching has several advantages over an approach based on full recognition -

• For a personal device (so that the search is comparing one person's writing with their own writing)
then the search is more accurate. Handwriting recognition accuracy is currently limited in its ability
to cope with the huge variety of letter forms people employ in natural writing. However, scribble
matching simply requires the writer to use a similar letter form when writing the keyword each time,
It doesn't matter if that letter form is not recognisable.

• For small search lists (a few hundred entries) of unconstrained writing, scribble matching is
computationally cheaper than translation to text.

• The writer is not restricted to using only letters from (say) the Roman alphabet, arbitrary symbols can
be freely used in annotations and then later used in a search without any need for training. Thus small
iconic pictures, personal symbols (such as bullet marks) and symbols from other languages can be
freely used in annotations so long as they are sufficiently distinct and stable.

In realizing the advantages, we have had to address two main challenges -

• An individual's writing does vary, for example in the use of ligatures, even when writing the same
words. Scribble matching must be robust against such variation.

• Scribble matching is based on the assumption that a writer's style is reasonably stable. However, a
person's writing does change a little over time and scribble matching techniques must be robust
against this small variation.

In the results section, we have shown how these challenges have been overcome to produce an accurate and
robust scribble matching system. An overall Topl performance of 97% (Top5 >99%) can be achieved by
combining complementary scribble matching algorithms. The combined scribble matcher is robust against
long-term drift in handwriting, or at least that resulting from the passage of five months. Longer intervals are
likely to produce greater degradation but this problem may be best tackled at the system level, for example
by updating the reference scribbles held in the scribble table after successful matches.

8



Moreover, these results have been achieved using poor quality ink captured at VGA resolution and with
partial loss of timing information. The algorithms may be implemented efficiently [11) and have been
demonstrated on mid-range PCs with 386/25 processors.

There remain, however, other chal1enges requiring future work. The results given in this paper have been
produced with scribble tables containing 200 entries. While large enough to accurately represent many
applications of interest, this scale of test is insufficient for assessing performance in applications requiring
search over large volumes of ink, such as might be found in a folder of electronic notes. In additon to further
improving the efficiency of our implementations, one approach to large-scale search may be to pre-compute
matching indices when electronic notes are first filed, so restricting real-time search to a small number of
representative scribbles indexed to many instances scattered thoughout the notes.

A second focus for future work would be to extend scribble matching to offline data. This would require
significant modification to the knot finding algortihm underlying each of the matchers. The current algorithm
exploits dynamic information in electronic ink (the pen velocity) that is not present in the static images
usual1y found in offline settings. One approach might be to find other significant and stable points on a static
scribble, such as y-extrema. However, an alternative approach of interest might be to infer the dynamic
information from the static image (eg see [12]).

7 Conclusions

A set of algorithms have been developed for the relatively new problem area of scribble matching. Matching
rates of around 97% have been achieved over mixed cursive and printed input collected from thirty writers
over a period of five months, despite the use of low-grade electronic ink. The combined matching algorithm
is robust to any changes in subjects' handwriting styles that may have occurred over the col1ection period.
Current performance is sufficient to enable many search applications of interest, such as the retrieval of
electronic documents with scribbled annotations. Several future directions have been identified for this work,
including extensions into large-volume search and offline matching.

8 References

[I] Charles C. Tappert, Ching Y.Suen and Tom Wakahara. The state of the art in on-line handwriting
recognition. IEEE Transactions on Pattern Recognition and Machine Intelligence. 12(8):787­
808, August, 1990.

[2] Daniel P. Lopresti and Andrew Tomkins. Pictographic naming. Technical Report oo7-mei-pti­
mitl-228-1, Matsushita Information Technology Laboratory, Princeton, November, 1992.

[3] Thierry Paquet and Yves Lecourtier. Recognition of handwritten sentences using a restricted lex­
icon. Pattern Recognition. 26(3):391 - 407, 1993.

[4] Daniel P.Lopresti and Andrew Tomkins. A comparison oftechniques for graphical database que­
ries. Technical Report MITL-TR-45-93, Matsushita Information Technology Laboratory, Prince­
ton, May, 1993.

[5] Hans-Leo Teulings, Lambert Schomaker, Pietro Morasso and Arnold Thomassen. Handwriting­
analysis system. Proceedings 3rd International Symposium on Handwriting Computer Applica­
tions, pages 181 - 183. July, 1987.

[6] Lambert Schomaker. Simulation and recognition of handwriting movements. PhD Thesis,
Nijmegen Institute for Cognition Research and Information Technology, 1991.

[7] Hans-Leo Teulings, Lambert Schomaker, Gerben Abbink and Eric Helsper. Invariant segmenta­
tion of on-line cursive script. Proceedings Sixth International Conference on Handwriting and
Drawing, ICOHD'93, Paris, pages 198 - 200.1993.

[8] David Sankoff and Joseph B. Kruskal (editor). Time warps, string edits. and macromolecules: The
theory and practice ofsequence comparison. Addison-Wesley, 1983.

[9) Okuda et al. Correction of garbled words based on Levenstein metric. IEEE transactions on com­
puting. C-25(2):??, Feb; 1976.

[10] C.C. Tappert. Speed, accuracy and flexibility trade-offs in on-line character recognition. Interna­
tional Journal of Pattern Recognition and ArtijicialIntelligence. 5(1-2):79 - 96, June, 1991.

9



[11] D.E.Reynolds, D. Gupta and R. Hull. Architectures for efficient scribble matching. Submitted to
4th Int. Wkshp on Frontiers ofHandwriting Recognition, 1994.

[12] David S. Doermann and Azriel Rozenfeld. Recovery of temporal information from static images
of handwriting. Proc. IEEE Computer Society Conference on Computer Vision and Pattern Rec­
ognition, pages 162-168. 1992.

10




