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Abstract

Two important questions in high-speed networking are
firstly, how to provide Gbit/s networking at low cost and
secondly, how to provide a flexible low-level network inter­
face so that applications can control their data from the
instant it arrives.

We describe some work that addresses both of these ques­
tions. The Jetstream Gbit/s LAN is an experimental, low­
cost network interface that provides the services required by
delay-sensitive traffic as well as meeting the performance
needs of current applications. Jetstream is a combination of
traditional shared-medium LAN technology and more
recent ATM cell- and switch-based technology.

Jetstream frames contain a channel identifier so that the net­
work driver can immediately associate an incoming frame
with its application. We have developed such a driver that
enables applications to control how their data should be
managed without the need to first move the data into the
application's address space. Consequently, applications can
elect to read just a part of a frame and then instruct the
driver to move the remainder directly to its destination.
Individual channels can elect to receive frames that have
failed their CRC, while applications can specify frame-drop
policies on a per-channel basis.

Measured results show that both kernel- and user-space pro­
tocols can achieve very good throughput: applications using
both TCP and our own reliable byte-stream protocol have
demonstrated throughputs in excess of 200 Mbit/s. The ben­
efits of running protocols in user-space are well known - the
drawback has often been a severe penalty in the perform­
ance achieved. In this paper we show that it is possible to
have the best of both worlds.
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1 Introduction

Networks will soon have to support new applications such
as videoconferencing, shared authoring and remote training
which will need synchronisation of streams of audio, video
and graphical information. These new applications will
cause two important changes in networked systems. First,
the networks themselves must offer new services that pro­
vide guaranteed bandwidth and bounded access delay. Sec-.
ond, the way in which computers process networked
information will change: the traditional model of just one or
two kernel-based protocols handling all network traffic will
be 100 inflexible to meet the wide range of new require­
ments.

Already we can see the first change, with recent network .
technologies such as FOOl and ATM providing a range of
different services. The critical obstacle to their success is
cost: LANs are commodity items, and for even a Gbit/s
LAN to achieve substantial commercial success, it must be
'cheap'.

The second change is still to happen and is about computers
being able to deal with different network data streams in
many different ways, but without sacrificing performance.
Experience with current networking shows that it is essen­
tial that data is not copied unnecessarily if both user and
kernel processes are to achieve high rates of throughput For
example, consider a user process that is managing an
incoming video stream where the start of each video frame
identifies the position of the video data on the screen. When
a frame arrives, the consumer process must examine the first
few bytes of information, but then need only instruct the
buffer manager to move the remainder of the data to a par­
ticular display location. Such piecemeal processing of net­
work data will require much more flexibility in both kernel
and user software and more intimate contact between the
application and the network buffers than currently available:
the model provided by normal TCP and UDP processing
would force the destination process to consume all tl!e data
before anything further could be done.



In this paper we report on some work that addresses both of
these issues. Our objective was to develop a network sub­
system that provides a variety of services as well as high
bandwidth and then to add a simple driver-level interface
with the flexibility to support both kernel and user-space
protocol processing. Two extra goals were that the network
should be low cost and designed for the workstations we use
day-to-day.These goals were entirely selfish: we want to be
able to use a Gbit/s network as our own LAN and distribute
it to other researchers so we will benefit from their experi­
ence.

We have developed such a low-cost, high-performancenet­
work that enables user applications to achieve throughput in
excess of 200 Mbit/s, with an aggregate bandwidth of
800 Mbit/s. In section 2 we describe our experimentalLAN,
called Jetstream, and explain the decisions we made regard­
ing the topology, frame size and core services. In section 3
we outline the software driver which provides flexible serv­
ices right up to the user's application. In section 4 we
describe how both the current kernel-based protocols as
well as user libraries can exploit this driver. Section 5
presents the measured performance of the system. .

2 The Jetstream LAN

This section describes the main characteristics of the Jet­
stream LAN and explains the reasoning behind the most
important decisions. More detail is presented in [1].

2.1 Ring Topology

A Jetstream LAN interconnects up to 64 computers in a ring
topology to provide a shared bandwidth of 800 Mbit/s. It is
designed to interconnect a workgroup consisting of typi­
cally 10 to 30 computers and rarely more than 50. By focus­
ing on this group of users we avoid trying to build a network
that attempts to cater for all but risks satisfying none. We
also restrict the 'circumference' of the LAN to a few kilo­
metres.

We chose a shared-medium ring topology rather than a
switch-based mesh because it costs much less. With a ring
there is no expensive switch to be accounted for and only a
single transceiver and cable is needed for each station. A
switch-based network would offer greater aggregate band­
width, but we think that 800 Mbit/s will be sufficient for
many workgroups even allowing for uncompressed video
streams. Current applications, such as networked file sys­
tems, exhibit very bursty behaviour which can be exploited
by a shared medium LAN, with applications often finding
an idle network and thus achieving immediate access. Such
applications will remain a major source of network traffic
for a long time to come.

2.2 Frames vs. cells

Jetstream uses variable-size frames up to 64 Kbytes in
length, not small fixed-size cells. Segmentation and reas­
sembly of small cells at very high speed is costly: either
expensive special hardware is needed or the host processor
has to perform the necessary operation and with current
machines the resulting performance penalties would be
unacceptable.If the networkcan provide the necessary serv­
ices using variable size frames then there is no incentive to
use cells.

An additional benefit is that frames are the unit of retrans­
mission for many widely used protocols. Whereas a con­
gested router will discard an entire frame, a congested ATM
switch may discard just a single cell from a frame and prop­
agate the remaining (useless) cells. In both cases the entire
frame will have to be retransmitted so by dropping partial
retransmission units the switch wastes bandwidth and may
make congestion even worse.

We chose a maximum frame size of 64 Kbytes, Large
frames are more efficient in terms of the useful (application)
bytes sent per frame and reduce the total amount of process­
ing needed to send and receive the application data. On the
other hand, delay-sensitive traffic may be denied access to
the network during the transmission of a large frame.

Two further reasons led us to choose 64 Kbytes as the maxi­
mum frame size. First, it is important that Jetstream can
handle ATM AAL5 frames without the need for segmenta­
tion and reassembly,AAL5 being the ATMForum's adapta­
tion layer of choice for data and thus likely to be an
important frame format in the future [2]. The second reason
is that we did not know how end-to-end efficiency would be
affected by frame size and so we wanted to experiment with
a variety of sizes.

2.3 Frame format

The Jetstream frame format (Figure 1) is derived from the
ATM cell format as defined by the mJ-TSS, but with two
differences: the frame size can vary in multiples of four
bytes from 56 bytes to 64 Kbytes, and there is an additional
Jetstream header of three bytes which comes before the
ATMheader.

We chose to use the ATM format rather than that of a tradi­
tional LAN as the 24-bit ATM virtual channel identifier
(VCI) provides sufficiently fine granularity that each logical
data stream within a host can be multiplexed and demulti­
plexed at a single point: the driver. This is exactly what is
necessary to address the second issue described in the intro­
duction. By demultiplexing at the driver an incoming video
stream could be processed differently to a file transfer
stream or even another video stream using a different cod-

2



FIGURE 1. The Jetstream frame format

We have designed and built a small number of Jetstream
interfaces for use in our HP Series 700 workstations. Co­
axial cable has been used as the physical layer interconnect
for distancesup to about 50 meters,driven by HP's HDMP­
1000 serial transceiver[6] chipset, which employ a 16BI
20B coding scheme and can drive the cable directly at rates
beyond 1Gbit/s.

FIGURE 2. The prototype Jetstream
interface (left) with Afterburner card

2.5 The prototype LAN

A concern with using the timed token protocol [4] is the
worst case access delay that synchronous traffic might
encounter. This protocol uses a target token rotation time
(fTRT) to bound the delay encounteredby any station. The
maximum delay encounteredby synchronoustrafficwill not
exceed twice the 1TRT. Given a maximum frame size of
64 Kbytes it is quite feasible to define the 1TRT to be one
millisecond so that the maximum delay will be two milli­
seconds.It is not clear whethera two millisecondworstcase
accessdelay is acceptableor not, but if humanscan tolerate
delays of the order of 100 milliseconds [5] for audio/visual
information then Jetstream can provide the services for
many newapplications.

The Jetstream LAN uses a variationof the timed token pro­
tocol used in both IEEE 802.5 and FOOL This was chosen
because it is very simple (and cheap) to implement.
Whereas FOOl provides eight priority levels for asynchro­
nous traffic as well as a synchronous service, Jetstream pro­
vides a single priority asynchronous service and the
synchronous service.Only one source is transmitting data at
anyone time and frames are removed by their source. A bit
in each frame is used to detect frames that circulate the ring
more than once.

-32bits­

etstream Header
Sbyte B-1S0N header

-32bits­

etslream Header

Sbyte B-1S0N header

Using the ATMformatmeans that it will be almost trivial to
bridge a Jetstream LAN to an A1M network. A 53 byte
ATMcell becomes a Jetstream frame with just the addition
of the Jetstream header. An ATM/Jetstream interfacecould
also reassemble A1M cells into Jetstream frames because,
althoughthis operation is expensive, it needonly be done at
one point in the whole network. The Jetstream header must
be removed from frames passing to an A1M link and the
payloadsegmentedinto48 bytecells, each prefixedwith the
provided ATM header. Of course the virtual connection
identifiermay need to be changedat this interface.

The networkmust supportat least two classesof service:an
asynchronous service and a service providing guaranteed
bandwidth with bounded delay. To what degree should
bandwidth be guaranteed, and to what timescale should
access delay be bounded? There is clearly a spectrum of
possibleservices, twoexamplesbeingthe multi-millisecond
delay of the FOOl synchronous service and the once-per­
125-microseconds isochronous service proposed in FDDI­
II.

2.4 Services

The three-byte Jetstream header serves two purposes: it
aligns the payload to a 32-bit boundary, makingdata trans­
fers moreefficientfor most 32-bitcomputersand it contains
informationwhich is useful in the operationof a ring-based
LAN. This information is used to assign a unique identifier
to each station when the network starts up. This identifier
enables each station to use a unique part of the VCI space,
which is shared between many stations on Jetstream's
shared medium.

ing. Tennenhouse [3] provides other reasons why it is best
to demultiplex only at a singlepoint.
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The Jetstream interface has been designed for use with the
Afterburner network card [7]. Figure 2 shows both cards,
which connect to form a single board that plugs into the
graphics bus of the workstation.

Throughout this work we have aimed to produce a network
interface that offers high performance at low cost and mod­
est size. The current Jetstream prototype is built entirely
from commerciallyavailable parts and costs less than$2000
at one-off prices. The logic for the timed token protocol.
host interface and CRC and IP checksum calculations are
contained within two field programmable gate arrays. Most
of the other devices are needed to convert between ECL
logic used in the transceiverand 1TL usedby the rest of the
system (the two large 'boxes' on the left hand side of the
card are simply voltage converters). A product could be
made simpler and cheaper. The design uses a minimal
amount of memory,so we could compress much of the ran­
dom logic into a single ASIC and reduce the total cost to
approximately$500.

Other comparable network interfaces include Orbit [8], the
iWarp!Nectar CAB (9] and Davie's 622 Mbitls ATM
interface[10]. At 20cm by 12cm we believe that Jetstrearn
is substantially smaller and cheaper than these.

2.6 Afterburner

The Afterburner (7] card is simply some multi-ported buffer
memory together with some checksum calculation logic. It
is designed to be used with a network card such as Jet­
stream. It is based on the ideas in Jacobson's WITI..ESS
proposal (11] and our experience with the Medusa [12]
FDOI card. With the WI1l.ESS model, data is only copied
once and the IP checksumis calculatedduring that one copy
operation. Clark [13] and Partridge [14] describe these
issues in much more detail.

Afterburner provides one Mbyte of buffer memory as well
as IP checksum support for outbounddata.The buffermem­
ory can be organised as 512 2-Kbyte blocks, 2564-Kbyte
blocks, etc. A single frame can span several Afterburner
blocks, so IP can use a maximumprotocol data unit size of
64 Kbytes regardless of the actual block size. The choice of
block size will affect the system performance: larger blocks
yield better throughput (see section 5) but exhaust the avail­
able blocks more rapidly if many small framesare transmit­
ted.

3 Making the interface appear fast, flexible
and friendly to the user

Our goal in developing the Jetstream driver software was to
support normal kernel-resident protocol stacks like TCP/IP
and UDP/IP and also to support applications that require a

greaterdegree of control over networkdata streams than the
conventionalsend/receive model provides.

An example of such an application is one that routes video
data from a network to a frame buffer. This application has
no need to consume the data - it just needs to examinea por­
tion of the data in order to be able to route it to the appropri­
ate location in the frame buffer.

The same application, because of the nature of its data
stream, might be willing to receive data that arrives cor­
rupted, and if its receive buffers overflow might prefer old
packets to be discarded rather than more recent ones. Nei­
ther of these options is available under the conventional
send/receivemodel.

Toprovide support for this sort of applicationand to provide
support for the development of efficient user-space proto­
cols, we have developed a low-level access scheme that
allowsa much finerdegree of control to be exerted by appli­
cationsover their data-streams. In the case of Jetstream, the
functionality is provided by the driver and exploits features
of the hardware; however, we believe the scheme is more
genericand can be made hardware-independent

The key characteristics of our low-level access scheme are
as follows:

• Applicationdata-streamsare associated with sets of
fixedsize kernel buffers - we call this set of buffers a
'pool'.

• Applications canallocate buffers to their pool (subjectto
an upper limit) and freebuffers from their pool.

• Applications issue explicit operations to control move­
mentof data between their kernel buffersand user­
space.

• Applications cancompose arbitrary combinationsof
buffers into packets for transmissionon the Jetstream
network.

• Applicationsprovide the driver with sufficientinforma­
tion for it to place incoming packets into the appropriate
pool.

• Applications may associate other characteristics with
their pools, such as whether to keep or drop erroneous
packets and whether to discard new packets in prefer­
ence to old.

If the application is to provide enough informationto allow
the driver to demultiplex packets to the appropriatepool the
driver either needs to have detailed knowledge of all possi­
ble higher layer protocols,or needs to understandsome gen­
eral filter specification [15].
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Pool-specific policies for error handling are useful because
particular data streams may have different requirements in
case of error [16] or overflow. For instance. a file transfer
application will drop PDUs with an incorrect link CRC and
drop newly-arrived PDUs in preference to ones already
received. A video application might accept PDUs contain­
ing errors. and drop old PDUs in preference to new ones, in
order to keep the display up-to-date.

A number of other approaches allow a similar sort of low­
level access. Traw [17] and Druschel [18] are excellent
examples. These schemes perform demultiplexing in hard­
ware whereas our scheme does it in software.

A more fundamental difference is that in these schemes data
is available for consumption by an application immediately
after it has arrived off the network. In our scheme the appli­
cation must issue an explicit copy operation before the data
is accessible. The main reason for this is that the copy oper­
ation allows us to provide a uniform interface to what may
be a wide variety of underlying mechanisms; for instance,
the pool buffers might reside in I/O space (on the network
adapter) so actually copying the data might be necessary to
save the application having to understand the peculiarities
of accessing I/O memory; alternatively, the buffers might
reside in system memory in which case the copy operation
can (if the VM system is sufficiently clever) just swap the
appropriate pages in the virtual memory maps and thus
avoid actual data-copying. Another more prosaic advantage
is that an explicit operation provides a convenient way of
returning the checksum of the received data.

3.1 Pools: Facilities and Operations

A certain subset of the requirements we have identified are
assisted by facilities of the Jetstream hardware. For
instance, buffering is provided by Afterburner's on-board
Mbyte of VRAM, and pools are merely dynamically allo­
cated subsets of these VRAM blocks. Packets are demulti­
plexed to pools based on VCI, with the assistance of the
Jetstream VCI lookup table: if no pool identifier is specified
for a particular VCI then packets on that VCI are not
received; what's more the Jetstream adapter does not even
generate an interrupt for the packet. Thus, packets are only
received if they are destined for local pools. The remaining
requirements are satisfied entirely in software through the
Jetstream driver's support for the 'pool' abstraction. The
primitive operations supported on these pools are summa­
rised in Table l.
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open create a pool with a specified Tx limit,
Rx limit and drop/copy policies

close close the pool and freeall associated
blocks

alloc allocate a block on the pool for trans-
mission

free free an allocated or received block

copy copy data to/from a block owned by
the pool and return a checksum

send transmit a set of blocks using pool spe-
cific framing

assoc associate a VCI with the pool

deassoc break VCI to pool association

enqueue enqueue received PDU (a set of
blocks) on pool receive queue

dequeue dequeue received PDU from pool
receive queue

TABLE 1. Operations 00 pools

When a pool is opened its characteristics are described to
the Jetstream driver by specifying a nwnber of parameters.
These include:

• the maximum number of blocks that may be used for
transmission and reception.

• a receive function which handles incoming PDUs for
this pool (and also determines the error-handling policy,
the overflow policy and the link framing used on the
pool).

• a data-copying policy and a data-copying result.

Specifying a limit on the number of blocks usable by each
pool allows the Jetstream driver to distribute the After­
burner buffer space in whatever manner clients require. It
also prevents clients from deliberately or accidentally using
up all the available buffering.

The receive function is one of a small set of driver-supplied
routines. Certain receive functions are dedicated to handling
PDUs on a specific pool. Other receive functions are more
generic and handle PDUs on a range of pools. Of the
generic set, two append PDUs to a pool receive queue, but
implement different policies on finding that the pool is full.
One drops old PDUs; the other drops new PDUs.

The data-copying policy allows the pool client to determine
whether data should be copied via the cache or not. For
some clients having the data in cache is useful; for others it
is actually-a hindrance. The data-copying result allows the
client to select the checksum operation that should be car-



ried out during the copy (currently only IP and NONE are
supported).

4 Using the pool model

4.1 The Kernel as a Client

All accesses to Jetstream go through pools - it is the only
access path. For instance, three pools are automatically cre­
ated by the Jetstream driver for its own use. The INIT pool
is used exclusively by the Jetstream driver for ring initiali­
sation and station management. The other pools are used for
ARP and IP traffic; PDUs received on either of these are
passed to the corresponding protocol. To do this the Jet­
stream driver incorporates a 'glue' layer that uses the nor­
mal kernel interfaces and. in turn, provides the interfaces
that the kernel expects.

The kernel sees what is apparently an Ethernet interface
with a 64 Kbyte maximum frame size. Chains of memory
buffers ('mbufs') containing Ethernet frames are passed
down by the kernel in the normal way. The glue layer exam­
ines the frame header to determine whether to allocate
blocks in the IP or ARP pool and generates the Jetstream
header. It then copies the data portion of the frame into the
blocks it has allocated and finally transmits the frame.

The driver receives inbound frames as a set of Afterburner
blocks. The interrupt handling code uses the channel identi­
fier to determine the correct pool, then the driver calls the
function that is associated with the pool. For IP and ARP
this function does the following: checks the CRC, strips the
framing information, copies the frame to mbufs, puts a fake
Ethernet header on the front and then passes the resulting
mbuf chain up the protocol stack via the normal kernel
mechanisms.

Currently, there are two VCIs for IP: one for broadcast and
one for unicast. All IP traffic uses one or the other. At an
end station the IP pool is configured to receive on the both
VCIs. Thus, within a single host all IP traffic uses the same
pool, SOlow-level demultiplexing is not exploited.

Despite this, adequate performance can be achieved, as
shown in section 5.

4.2 Single-copy kernel client

In section 4.1, the pools were known only to the driver. If
higher layers are also aware of pools, then PDUs can be
demultiplexed directly to the end-consumer [3]. For
instance, when a TCP connection is established, dedicated
pools and VCls could beallocated allowing incoming PDUs.
to be directly demultiplexed to the appropriate TCP control
block and socket buffer. This of course would require
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changes to TCP code in the kernel. Whilst we believe that
this is the correct approach, it does entail substantial modifi­
cations to protocol code, so instead, as an intermediate step.
we extended some earlier work [7] to accommodate the
pool model. Thus, we retain a single IP pool but make some
of the IP pool operations visible to socket layer code. In this
way we support what we call 'single-copy' operation [7][8]
for TCP and UDP.

We made the IP pool aUoe, copy and free operations visible
to the socket layer by extending the table of function point­
ers within the ifnet structure. This allows the socket sendf)
and recvO functions to copy data directly in to and out of IP
pool blocks. A special mbuf type had to be used to differen­
tiate normal data from that in the IP pool. Furthermore. TCP
and UDP protocol code had to be modified slightly to han­
dle these special mbufs appropriately.

Using this single-copy approach and the checksum calculat­
ing facilities available within Afterburner, excess data­
touching operations can be eliminated and excellent per­
formance results obtained (see section 5).

4.3 Other Clients

Whilst we have not exploited all of Jetstream's facilities
from kernel code, we have seen no reason to restrict the
scope of other Jetstream clients. Our express goal has been
to make the full range of Jetstream facilities available to
ordinary user processes. We see user processes as first-class
clients of Jetstream and expect to develop new applications
that exploit Jetstream's facilities to the full.

Currently in HP-UX, the interfaces between user processes
and device driver code are not particularly rich, so we have
been forced to go through some contortions to make Jet­
stream facilities available to user clients. A user client must
first open the Jetstream device file /dev/jetstream, and then
associate a pool with the returned file descriptor by issuing a
special ioetiO call. Once the pool has been opened all other
pool operations may be invoked by issuing other ioctiO
calls.

Thus, all normal pool operations. such as alloc, copy, free
and send may be used in whatever manner and in whatever
order the user desires. To make receive operations possible.
the user pool operations are augmented by two pseudo-ops:
wait rx causes the user process to sleep for a specified
periOd or until a PDU is available to be received; rx does
the (non-blocking) receiving.

This technique allows user processes to access all Jetstream
services, but initial efforts showed us that the system call
overhead involved in making all these ioctls could be sub­
stantial. An obvious optimization was to allow the user
process to issue many operations with a single ioetl call.



To make this easier, we have developed a set of macros
which allow a user process to build a small script containing
alloc, copy, send, free, waitJx and rx operations, and pass
it via ioctlO to the Jetstream driver where it is executed
operation by operation. Results of individual operations are
placed within the script and the modified script is copied out
as the ioctlO terminates. Currently, there is an arbitrary limit
of 64 operations per script

We have measured the performance improvement that is
obtained when operations are collected into a script. Table 2
shows the throughput obtained by a simple byte-stream pro­
tocol when it uses one operation per call and when it uses
scripts. It is clear that the use of scripts yields about a 30%
performance advantage over one operation per call. Note, a
typical script contains between 20 and 40 operations.

Throughput (106 bitls)

Message size lop per Improve
(bytes) Script call ment (%)

4096 195.0 146.6 33

8192 195.1 148.3 31

16384 194.5 148.3 31

32768 182.1 132.6 27

TABLE 2. The impact or system calls

We do not expect application writers to use scripts directly;
instead we believe scripts will be constructed by special
libraries which export simpler 'interfaces, We have devel­
oped two experimental libraries in order to evaluate the per­
formance that user processes might expect to achieve.

The first of these is for applications requiring datagram or
RPC services. It allows datagrams up to 64 Kbyte to be sent
and received. The library provides a send function, a recv
functions and a rpc function which performs both a send
and a recv. We have measured the performance that user­
space applications obtain with remote procedure call opera­
tions based on our library as well as the standard UDP serv­
ices. Table 3 shows the time for each transaction as we vary
the amount of data that is sent and received at each call. Our
library interface is around 30% more efficient than UDP.

The second experimental library is for applications requir­
ing reliable byte-stream services. It provides connection
setup functions as well as the normal send and recv func­
tions. It is similar to TCP insofar as it uses cumulative
acknowledgements and a sliding-window f1ow-control
scheme and exhibits comparable behaviour in a LAN envi­
ronment. In section 5 we compare the performance of our
user-space library with that obtained using the kernel TCP.
The measured results show that our library obtains perform­
ance levels very close to those of the single-copy version of
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TCP and substantially better then the two-copy TCP. We
note that our stream library was coded and debugged in
about four weeks and is still being tuned, so better results
may be forthcoming.

RPC Data size Round Trip Time (us)
Send, Recv

(bytes) Library UDP

16,16 322 471

32,32 324 476

64,64 328 496

128,128 333 495

256,256 346 592

512,512 384 663

1024,1024 449 742

2048,2048 589 924

TABLE 3. RPC Performance

User-space protocol implementations have a number of
well-known advantages [19]. For example, they ease the
prototyping and debugging of new protocols. and allow
application specific lcnowledge to be exploited to allow per­
formance improvements to be made. We believe our results
show that with the right low-level interfaces, user-space
protocol implementations can also achieve the sort of per­
formance normally associated with kernel-based protocols.

4.4 Implications for User-Space Protocol Devel­
opers

It is clear from the results in Table 2 that operations on user
pools need to be batched to achieve the highest perform­
ance. In particular, libraries that implement byte-stream pro­
tocols need to batch operations together in an efficient
manner.

Fortunately, byte-stream protocols by their very nature lend
themselves to efficient pipelined operation. For example,
consider implementing TCP using the pool operations
described above. If we view the TCP sequence space from
the send side, a natural pipeline is obvious: at the front of
the sequence space new blocks are being alloc'd; further
back in sequence space allocated blocks have data copy'd
into them and blocks that are full (with checksums available
from the copy operation) are sent. At the trailing edge of
sequence space blocks are free'd when aclcnowledgements
are received. Using the Jetstream primitives, all of these
operations, including TCP ack reception, may be accom­
plished in a single batch.

Whilst we have not yet implemented a user-space TCP on
top of Jetstream, we are convinced that a TCP implementa-



tion that batches the primitive operations in this way would
perform at least as well as a kernel implementation of the
protocol.

4.5 General Observations

We observe that the scheme we have described for the Jet­
stream adapter need not be limited to network device driv­
ers. It might prove beneficial for other device drivers to
make their primitive operations visible to user processes.
For instance. consider a disk driver that allowed user code
to open files and directly read or write blocks of the file. If
disk device scripts and network device scripts could in some
way be amalgamated. it would be possible for a user pro­
gram to form a script to copy files straight onto the network.
or from the network straight to disk. The key point to note in
these scenarios is that the user process is in complete con­
trol of a data stream. without the data ever needing to cross
the kernel-user space boundary.

5 Performance

In this section we first show how throughput is affected by
the maximum Jetstrearn frame size and the Afterburner
buffer size. We then present application-to-application
throughput measured over Jetstream using TCP (single- and
double-copy) and our own reliable byte-stream protocol.

The measurements reported here were collected from two
HP 9OOOn35 workstations running HP-UX 9.01 and using
the netperf [20] utility. TCP window scaling [21] is used
with socket buffers of 245760 bytes. Both workstations are
connected to the site Ethernet and have the usual back­
ground processes. Note that the sink netperf process
receives the data but does not examine it. i.e, the data is cop­
ied to main memory but not brought into cache.

5.1 The effect of the maximum frame size

Table 4 shows the measured throughput in Mbit/s as we
vary both the maximum frame size and the size of the After­
burner buffers. The frame sizes are chosen to be multiples
of 4096 bytes plus space for various headers.

These results show that increasing the frame size yields
diminishing returns. This is what we expect: the per-frame
overhead is already quite small when we use a 32 Kbyte
frame. so doubling the frame size does not show much
improvement It is quite reassuring that we do not need to
have very large frames in order to achieve good perform­
ance; it would appear that even 16 Kbyte frames provide
adequate results. Similarly. increasing the Afterburner block
size does not yield large improvements and even 8 Kbyte
blocks yield throughputs in excess of 200 Mbit/s.

Frame size
Throughput (10 6 bit/s)

(bytes) 4K block 8K block 16K block

8256 150 - -
16448 173 184 -
32832 187 200 -
49216 192 206 -
65344 - 210 217

TABLE 4. Measured TCP performance

It is clear that a single workstation cannot use the full net­
work bandwidth: the current bottleneck is the rate at which
the processor can move data across the graphics bus.
Although a single pair of workstations achieve 200 Mbit/s,
we hope to obtain results for three simultaneously active
workstations in the near future to confirm that the aggregate
network performance can be much higher.

5.2 Throughput of byte-stream protocols

The next set of results show how important it is to reduce
data copies to a minimum and they also show that protocol
implementations do not have to be kernel-based in order to
achieve high throughput.

Figure 3 shows application throughput for three configura­
tions. In all three we have measured the throughput as the
application message size is increased. The maximum frame
size was set to 61504 bytes. the Afterburner block size was
4096 bytes and 245760 byte socket buffers (or equivalent)
were allocated.

The first and second configurations use the netperf applica­
tion with the kernel TCP. One configuration uses the single­
copy TCP and the other uses the two-copy implementation.
It is very clear that reducing the number of copies from two
to one has a dramatic effect on the throughput. Another
result from this graph is that the application does not need to
use large buffers in order to achieve good performance - the
knee in the curve occurs with message sizes of only
2 Kbyte.

The third set of results show the performance of a netperf­
like application that uses our reliable byte-stream protocol.
The objective was to show that if the network driver pro­
vides the right interface then protocols can be developed
and run in user space and still obtain high performance,
These results confirm this as we see that the user-space pro­
tocol can achieve throughput that is comparable with the
kernel single-copy TCP.
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We conclude that low-cost, high-performance Gbit/s net­
working can be practical. Such a network can provide the
services and flexibility that will be needed to support not
only the emerging delay-sensitive multimedia applications,
but also will enable current applications to achieve much
better performance than they do today.

Afterburner card and our single-copy version of TCP to pro­
vide application throughput in excess of 200 Mbit/s. A Jet­
stream driver has been developed which uses the
Afterburner buffer memory to associate 'pools' of buffers
with application channels. Applications control how their
buffer pools are managed by the use of simple operations
which are combined to form control scripts. We have imple­
mented a reliable byte-stream protocol using such scripts to
show that protocols can be developed and run in user-space
and yet still achieve levels of performance comparable with
kernel-based implementations.

48KB16KB 32KB
Message Size

O'------.L..------'-----......
o

250 ,------..,......-----r-------n

FIGURE 3. Performance of Reliable
byte-stream protocols

6 Conclusions

til
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~ 150 ~i 100 J .
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5 ._.... TCP (2copies)
~ 50 Jetstream Ubrary (1 copy)

High speed networking faces two important issues. The first
is to find cost-effective Gbit/s technologies that can support
both new delay-sensitive applications together with existing
ones. The second issue is that the driver-level interface
between the network and the application must become
much more flexible to support these applications; in particu­
lar, it must provide applications with greater control over
how incoming data is processed.

We have addressed the first of these issues with the develop­
ment of an experimental LAN, called Ietstream, which pro­
vides Gbit/s link rates as well as the ability to provide
guaranteed bandwidth and tightly controlled access delays.
With Ietstream we have eschewed the move towards
switch-based networks because we have focused on provid­
ing a very low-cost system. Further, the use of variable size
frames means that we avoid the costs of segmentation and
reassembly, while the high link rate can assure low access
delay. Jetstream frames use the same format as ATM cells
and this provides two important benefits; the first is that
interworking between Jetstream and ATM networks
becomes very simple; the second benefit is that the channel
identifier provides fine grain control over application data.

The presence of the channel identifier in every frame means
that the Jetstream driver can immediately associate an
incoming frame with its consumer. We have exploited this
with the development ofa driver that enables applications to
control how their data should be managed without the need
to first move the data into the application's address space.
Consequently, applications can elect to read just a part of a
frame and then instruct the driver to move the remainder
directly to its destination.
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