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1. Introduction

The project which inspired this work aimed to provide passive position determination by

writing some sort of pattern on a surface which can be sensed by a pen. We shall describe

here the theory of designing the patterns which enable the determination of the position on

the surface, given a small part of the pattern. The surface will be divided into cells of

different colours, and the pen will be able to read the colour of one cell at a time as it

moves across the surface. Many different geometries are possible, but we have restricted

our attention to square grids, sometimes divided with what we call separators. The square

cells are the data cells, and carry the pattern information, whereas separators simply serve

to mark the transitions between data cells. There are two parts to the coding problem: to

define patterns which have the property that it is possible to determine the position of a

small part of the pattern, and to code these patterns onto a square grid.

In this paper, we describe the work on these codings to date. We first explain the basic

properties that a coding must have for it to be useful, and then look at the consequences of

allowing diagonal moves. The next section contains a catalogue of various codings,

including a table showing the tradeoffs between the different properties. We then discuss

the decoding problem, and then show how to find binary sequences with the required

qualities.
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2. Basic properties of codings

As mentioned in the introduction, our surface is divided into data cells and, depending on

the coding, may have separators. The codings are written in the data cells, and the

separators tell us that we have moved between data cells, and tells us the direction of that

movement. We have considered schemes with various types of separators, and the three

types are illustrated in Figures 1-3 respectively.

Figure 1 Figure 2 Figure 3

Obviously, the different separator schemes place different requirements on the coding

schemes. For example, if there are no separators, then not only must adjacent cells be

coloured with different colours, we must also provide within the coding a means for

distinguishing horizontal movement from vertical movement. To some extent, we can

simulate separators in the coding schemes themselves. For example, suppose we had a one

separator (see Figure 2) coding scheme which used a total of N colours, so that there are N­

1 data colours and one separator colour. We can turn this into a no separator scheme with

2N-2 colours in the following way. The first, third and every odd numbered row is coloured

as in the original scheme, so colours 0 to N-2 are used. The even rows are coloured with

colours N-1 to 2N-3 by simply colouring each cell with its original value plus N-1. Then a

vertical movement can be detected by the transition between a colour in the range 0 to N-2

and a colour in the range N-1 to 2N-3, or vice versa. We have thus increased the resolution

of the coding (packed in more data cells) at the expense of increasing the number of

colours.
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Although we began by considering the colours themselves encoding the underlying

sequences, we soon found it more convenient to let the transitions between the cells, that

is the changes in colour between neighbouring data cells, encode the information. This is

not really a restriction, since we were able to cast our old schemes into the new

framework, but it does require a certain change of view. In all our codings, therefore, the

information which allows us to determine our position can be thought of as being

encapsulated in the changes of colour between successive data cells.

Suppose that the transitions in a horizontal direction are given by the functions ho and hI,

and in a vertical direction by Vo and VI' This means that if the current cell is coloured with

colour x, then the next cell in a horizontal direction is coloured with colour ho(x) or hl(x)

according to the value of the corresponding sequence element. We shall now examine the

conditions which will be needed on these functions for the coding to have the properties we

desire. We recall that these properties are

• the coding must be well-defined

• decoding must be possible

• if there are no separators, then adjacent cells must be different colours

These conditions alone will lead us to some conclusions about the minimum number of

colours necessary for certain types of codings.

Clearly, for the coding to be well-defined, we must have h,(v j (x) = V j (h;(x» for all colours x

and i, j e {O,}} for otherwise we would have a conflict when we tried to determine the

colour of the cell diagonally adjacent to a cell coloured x. For the decoding to be possible,

we must be able to distinguish between ho(x) and hI (x) and between vo(x) and VI{x}, In other

words, for all colours x, we must have ho{x) '¢ hi (x) and vo(x) '¢ VI(x) .
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If there are no separators, there must be no adjacent cells coloured with the same colour,

and we must be able to distinguish horizontal movement from vertical movement, so we

must have x, ho(x}, hl(x}' vo(x), VI(X) are all different for each colour x, If there are just

horizontal separators, then we must have x, ho(x}, hl(x} are all different for each colour x.

We are now able to establish the following statements about minimum numbers of colours.

Proposition 2.1 If there are no separators, then at least 5 colours are needed.

Proof

For any colour x, the colours x, ho(x}, hl(x}' vo(x), VI(X) are all different, and so there must be

at least five colours.

Proposition 2.2 If there is just one set of separators, then at least 4 colours are needed.

Proof

Suppose for definiteness that the separators are horizontal. For any colour x, the colours x,

ho(x}, and hl(x) are all different, and so there must be at least three data colours. In

addition, there must be one separator colour, which makes a total of four.

Proposition 2.3 If there are two sets of separators, then at least 4 colours are needed.

Proof

For any colour x, the colours ho(x) and hl(x) are different, and so there must be at least two

data colours. In addition, there must be two separator colours, which gives a total of four

colours.

We can in fact achieve these minimum numbers of colours, and we shall give examples of

such codings in Sections 4.1.1, 4.1.4 and 4.2.2.
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3. Allowing diagonal moves

We turn now to the situation where diagonal transitions are allowed. In this case, when

such a move is made, there are two bits of information to be determined. We shall call

these the x-bit and the y-bit respectively. There are several levels of information possible:

we might just be able to tell that we have made a diagonal move or we might also know

• that the x-bit and y-bit are equal (or unequal) or

• the values of both the x-bit and y-bit.

In fact, there is another possibility: that we get either get the information that the x-blt and

y-bit are equal or else we get the value of both bits. We shall now express these conditions

in terms of the functions hi and Vj'

The colours in the following set may occur a diagonal move away from x

Note that this set has at least two elements, because ho(vlx» '¢: h.(vj (x» and

h;(vo(x» '¢: h; (v. (x) . The size of this set determines the amount of information we can

expect to obtain once we know that a diagonal move has taken place. We shall say that a

coding is r-diagonal (where r =2,3,4) if the size of this set is equal to r,

The problem of detecting diagonal moves is different depending on the number of

separators. If there are two sets of separators, then diagonal moves are automatically

detected by the separators. At the other extreme, if there are no separators, then the

diagonal values must not be the same as any horizontal or vertical ones: in other words we

must have
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for each colour x. If we have one set of separators, say horizontal ones, then crossing a

separator tells us that we have either made a vertical or a diagonal move, and so in this

case we need

for each colour x.

We are now able to establish some statements on the minimum numbers of colours.

Proposition 3.1 If there are no separators, then the following numbers of colours are

required:

• 7 for a 2-diagonal coding

• 8 for a 3-diagonal coding

• 9 for a 4-diagonal coding.

Proof

For any colour x, we must have

The first set has five elements, and the second set has r elements for an r-diagonal coding.

We must therefore have at least r+5 colours for an r-diagonal coding.
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Proposition 3.2 If there are just one set of separators, then the following numbers of

colours are required:

• 5 for a 2-diagonal coding

• 6 for a 3-diagonal coding

• 7 for a 4-diagonal coding.

Proof

Suppose for definiteness that the separators are horizontal. For any colour x, we must have

{vo(x), VI (x)}n {ho(vo(x», ho(v.(x», JJ.(vo(x», JJ.(v1(x»}= 0

The size of the first set is 2, and the size of the second set is r. So we need at least r+2

data colours, and hence r+3 colours altogether for an r-diagonal coding.

Proposition 3.3 If there are two sets of separators, then the following numbers of colours

are required:

• 4 for a 2-diagonal coding

• 5 for a 3-diagonal coding

• 6 for a 4-diagonal coding.

Proof

In this case, we need at least r data colours for an r-diagonal coding. In addition, there

must be two separator colours, which gives a total of r+2 colours.

We can in fact achieve most of these minimum numbers of colours, and we shall give

examples of such codings in Sections 4.1.2, 4.1.3, 4.1.9, 4.1.5, 4.1.10, 4.2.2, 4.1.6, and

4.2.3. There is one case where we cannot achieve the minimum given above.
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Proposition 3.4 There is no 7 colour 2-diagonal no separator coding.

Proof

A 2-diagonal coding has the property that the set {~(vo(x»,~(VI(X»,~(vo(x»,~(VI(X» has

exactly two elements. Now we know that ho has no fixed points and that vo(x) ¢ vl(X) , so

~(vo(x» ¢ ~(vl(x». Similarly, ~(vo(x» ¢ ~(vo(x», so for the diagonal set to have only two

elements, we must have ~(vo(x» =~(vl(x» for all colours x, But we also know that

~ = ~-I and VI = vo-I , so if we denote hoVo by f, then we see thatl is the identity function.

But all functions from a set of size 7 to itself whose square is the identity have a fixed

point, so fmust have a fixed point. So there exists x such that ho(vo(x» = x , which

contradicts the fact that we can detect diagonal moves. Hence there is no such coding.

In all of the above, we have been assuming tacitly that the only possible vertical transitions

are x ~ vo(x), VI (x). This will only be true if Vo-I. VI-I e {vo.VI}' and this will only happen if

either Vo =vI-lor Vi =Vi -I for; =0,1. If this is not the case, then the number of colours will

inevitably be increased. On the other hand, some more information about direction will be

available because if Vo-I (x) E {vo(x), VI (x)} and we observe the transition x ~ Vo-I (x) we will

immediately be able to tell in which direction we are travelling.

If VO-
I E {VO'vl}, then for at least some x, the diagonal set contains ho(vO-I(x» and

h,(VO-
I(x» , which are distinct. If there are no vertical separators, then the diagonal set

must have no intersection with the set {vO(x),vl(X),VO-I(x)} for diagonal movements to be

detected. So the minimum number of colours is increased by one. Furthermore, since the

size of the diagonal set has potentially increased, there are more elements to be

distinguished, and this may well increase the number of colours again. Since we are limited

in the number of colours that we can provide, we have not considered this case further

when diagonal moves are allowed.
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4. Catalogue of codings

In this section, we shall describe various codings and their properties. We first present a

table containing all the codings, their properties and the sections in which they can be

found. The column labelled diagonal properties contains 0 if there is no diagonal detection,

and r if the coding is r-diagonal.

number of number of diagonal section
.eparators colours properties number

0 5 0 4.1.1
0 8 2 4.2.1
0 8 3 4.1.2
0 9 4 4.1.3

1 4 0 4.1.4
1 4 0 4.1.8
1 5 2 4.1.9
1 6 3 4.1.5
1 7 4 4.1.10

2 4 2 4.2.2
2 5 3 4.1.6
2 6 4 4.2.3
2 7 4 4.1.7

Table 1 : Coding schemes

We shall group the descriptions of the codings according to the type of transition function

used.

4.1 Addition modulo N

The first set of codings in this section have

ho(x)=x+a(modN) h.(x)=x-a(modN) vo(x)=x+b(modN) v\(x)=x-b(modN)

Note that we must always have a.b ~ 0 , for else we cannot decode.

We deal first with the no separator case. Here we must have a ~ b , since we must be able

to distinguish between horizontal and vertical moves.
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4.1.1 No separator, fiye colour coding

ho(x) = x+ l(modS) ~(x) = x-l(modS) vo(x) = x +2(modN ) v] (x) = x-2(modS)

This coding realises the minimum number of colours as dictated by Proposition 2.1. It has

no diagonal detection.

4.1.2 No separator, eight colour coding

ho(x) = x+l(mod8) h,(x) = x-l(mod8) vo(x) = x+3(mod8) VI (x) = x-3(mod8)

This coding realises the minimum number of colours for a 3-diagonal coding as dictated by

Proposition 3.1.

4.1.3 No separator, nine colour coding

ho(x) = x+ 1(mod9) h.(x) = x-l(mod9) vo(x) = x+3(mod9) v.(x) = x-3(mod9)

This coding realises the minimum number of colours for a 4-diagonal coding as dictated by

Proposition 3.1.

We turn now to the case of one set of separators. As usual, we assume for definiteness

that the separators are horizontal.

4.1.4 One separator, four colour coding

ho(x)=x+l(mod3) hl(x)=x-l(mod3) vo(x)=x+l(mod3) v.(x)=x-l(mod3)

This coding realises the minimum number of colours as dictated by Proposition 2.2. It has

no diagonal detection.

4.1.5 One separator, six colour coding

ho(x) = x+ 1(mod5) h.(x) = x-l(mod5) vo(x) = x+ l(modS) v.(x) = x-l(mod5)

This coding realises the minimum number of colours for a 3-diagonal coding as dictated by

Proposition 3.2.

We now look at the case of two sets of separators.
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4.1.6 Two separators, five colour coding

ho(x) = x + 1(mod3) hi(x) = x -1(mod3) "o(x) = x + 1(mod3) "I (x) = x -l(mod 3)

This coding realises the minimum number of colours for a 3-diagonal coding as dictated by

Proposition 3.3.

4.1.7 Two separators, seven colour coding

ho(x)=x+l(modS) ~(x)=x-l(modS) "o(x)=x+2(modS) ,,)(x)=x-2(modS)

This coding is 4-diagonal. The reason that we cannot achieve the minimum number (6) of

colours here is that we cannot find a and b mod 4 so that 0, a, -a, hand -h are all distinct,

so we must use five data colours. We shall have to wait until Section 4.2.3 for such a

coding with six colours.

The second set of codings in this section have

ho(x) =x+a(modN) h)(x) = x-a(modN) vo(x) = x(modN) V) (x) = x + h(modN)

and are therefore only suitable for one or two separator codings.

Note that we must always have a.b ¢ 0, for else we cannot decode.

4.1.8 One separator, four colour coding

ho(x) = x + 1(mod3) h)(x) = x-l(mod3) "o(x) = x(mod3) ,,)(x) = x+ 1(mod3)

This coding realises the minimum number of colours as dictated by Proposition 2.2.

4.1.9 One separator, five colour coding

ho(x) = x + 1(mod4) ~(x) = x-l(mod4) "o(x) = x(mod4) ".(x) = x+2(mod4)

This coding realises the minimum number of colours for a 2-diagonal coding as dictated by

Proposition 3.2.
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4.1.10 One separator. seven colour coding

ho(x)=x+l(mod6) ~(x)=x-l(mod6) vo(x)=x(mod6) v.(x)=x+3(mod6)

This coding realises the minimum number of colours for a 4-diagonal coding as dictated by

Proposition 3.2.

4.2 Bitwise exclusive or

The first set of codings in this section have

ho(x) =xE9a, h.(x) =xE9b, vo(x) =xE9c, v\(x) =xE9d

Note that we must always have a.b.c.d * 0 and a *band c * d. for else we cannot

decode.

We deal first with the no separator case. Here we must have a. b. c and d all different.

since we must be able to distinguish between horizontal and vertical moves.

4.2.1 No .eparator. eight colour coding

ho(x)=xE91, ~(x)=xE97, vo(x)=xE94, v\(x)=xE92

This coding is 2-diagonal.

The second set of codings in this section have

ho(x)=x, h.(x)=xE9a, vo(x)=x, vl(x)=xE9b

and so are only suitable for the case with two sets of separators.

4.2.2 Two .eparators. four colour coding

ho(x) =x, hi(x) =xE91, vo(x) =x, v\(x) =xE91

This coding realises the minimum number of colours for a 2-diagonal coding as dictated by

Proposition 3.3.
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4.2.3 Two separators, six colour coding

Ito (x) =x, hi(x) =xE91, vo(x) =x, VI(x) =xE92

This coding realises the minimum number of colours for a 4-diagonal coding as dictated by

Proposition 3.3.

5. Decoding

There are two problems in decoding: separating the input into the x and y sequences, and

tracking the position in each of those sequences. When diagonal moves are not allowed, or

the coding is 4-diagonal there is no problem extracting the x and y sequences, but in other

cases, there may be some considerable difficulty. We may, for example, have a 2-diagonal

coding and be able to tell on a diagonal move only that the x and y bits are equal or

unequal, without knowing their values. If there are very few diagonal moves, then it may

be possible to deal with such codings using a variant of our main algorithm, which is

described below. If, however, there will be many diagonal moves, then at the moment we

can only recommend the use of a 4-diagonal coding, with its consequent increase in number

of colours, since we have no good way of dealing with it otherwise.

We shall deal in this section with the problem of position tracking within a one-dimensional

sequence, and assume that we have successfully extracted these sequences from the input

information.

Suppose that we are concerned with the x dimension, and have a coding specified by the

two functions ho and hi' Then the only possible transitions are

x 1-+ Ito (x),hl (x), Ito-I (x), hl -
I (x). We shall assume that the number of possible transitions does

not depend on the starting point: that is that the size of the set tho(x), hi (x), ho-I (x), hi-I (x)}

is independent of x. There are now essentially four cases to be considered:
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1. all these four are different

2. ho=ho-1,h.*hl - ·

3. 110 =ho-·,~ =~-I

4. 110 =h.-·.

In the first case, we get both direction information and a bit of the sequence, that is, we

can say something like we are travelling from right to left and have read a O. In the second

case, we either get a 0 and no direction information, or a 1 and some direction information.

In the third case, we just get the bit of the sequence. In the fourth case, we can only say

something like either we are travelling from right to left and have read a 0, or else we are

travelling from left to right and have read a 1. For example, the coding in Section 4.1.1 is

of the fourth type, the vertical coding of Section 4.1.9 is of the third type, and the vertical

coding of Section 4.1 .8 is of the second type. We have not described a coding of the first

type, probably because it would require a larger number of colours, but an example would

be ho(x)=x+l(mod5), h.(x)=x+2(mod5).

These different types of codings require different methods of decoding and different kinds

of sequences to make position finding possible. We shall ignore for the moment the

problem of changing direction, and concentrate simply on finding the position of a

subsequence of length m within the sequence, when we do not know the direction of travel

beforehand. In the first case, we obtain direction information immediately, and so the

sequence needs only to have the windowing property, that is that each sequence of length

m occurs at most once within the sequence. In the second case, providing there is at least

one 1 in the subsequence, then we obtain direction information, and so we simply need a

windowing sequence which does not contain the all zero window. In the third case, we get

no direction information, and so the sequence must be orientable, that is each window of

length m must occur at most once, and if a sequence occurs, then its reverse does not. In

the fourth case, we again get no direction information, and this time the sequence must be
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what we call complement-orientable: that is each window of length m must occur at most

once, and if a sequence occurs, then its complement reversed does not. In Section 6, we

shall discuss methods for finding sequences of these different types.

Suppose now that we have found our position in the sequence, and we now want to track

any further movement (which may continue in the same direction or reverse at any point).

Again, the tracking will depend crucially on the type of coding. If the coding is of the first

type, then any reversal of direction will immediately be detected and so the position will

always be known correctly (assuming, as always, that there are no errors in reading the

colours). For all other types, there may be some uncertainty as to the direction, and we

may not be able to detect a reversal until some time after it has happened. In these cases,

therefore, we need to develop some method of dealing with this. The way we do this is by

means of the algorithm described below.

We assume that we continue in the same direction and compare each bit we read with the

expected bit of the sequence. When these bits do not match, we must have reversed

somewhere previously. We look at the sequence to see where we could have reversed and

only now discovered it, and set up candidate pointers at the positions we could be at now.

We then continue reading bits and comparing them with those we would have expected.

This enables us to discard candidate pointers when we read bits which contradict those

expected. After a short time, all but one of the pointers will have been discarded and we

will have re-established our position and direction.

It is clearly of interest to determine how long this process will take: in particular, how long

will it be until a reversal is detected, and how long after that will it be before all but one of

the candidate pointers is discarded. We call the first of these times the discovery time and

the second the recovery time and we have the following result.

16



Proposition 5.1 The maximum discovery time for a Type 2, 3 or 4 sequence with window

length m is (m+l)/2, and the maximum recovery time is (m-JJ.

In order to prove this result, we first set up some notation. Suppose that the cells are

coloured with the sequence of colours CO' cl' '' ' ' cN, and that the underlying sequence is

denoted by bo,bl' ... ,bN _ 1 , so that Ci +1 =hb,(c/) for i=O, .. ,N-l.

Suppose that we know initially that we are travelling in the direction of increasing i. There

are two possibilities for reversal: it may occur inside a data cell or, if there are separators,

then it may occur within a separator. These two cases will give rise to slightly different

conditions.

We deal first with the case of reversal within the data cell c/. The conditions for a reversal

to have occurred at c, and be detected when we thought we were at c/+s are that

The conditions for a reversal to have occurred between c, and c/+! and be detected when

we thought we were at c/+s are that c, =c"I' ... .c.: =c,.._I'C,_._1 ;tc,..,

We now consider the recovery process. Suppose that we have detected a reversal when

we thought we were at c
lI

' Then we look for pairs (I.S) such that u = I + S , and I and s

satisfy one of the above sets of equations. if there is only one such pair, then the recovery

time is zero. Otherwise, for each pair (u-s.s), we look at the sequence cll_2s,cll_2._!, ... if the

first set of equations is satisfied and at the sequence cll-2s-!,CIl-2s-2,'" if the second set is

satisfied and compare them with the bits read. The recovery time is equal to the longest T

for which two of these sequences match.

We first need a lemma.
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Lemma 1 Suppose that ha(c)=~-I(c). Then

• if the coding is Type 2, then a =b =0

• if the coding is Type 3, then a = b

• if the coding is Type 4, then a:l: b .

The proof is immediate from the definition of the different types and we are now able to

prove Proposition 5.1.

Proof of Proposition 5.1

We look first at the case of a Type 2 coding. Consider first reversals which take place

within a data cell. We have c'_r = c/+r for 1S r S s -1. In particular, we have

hbt-) -I (c,) =C'_I =C'+I =hb, (c,), which implies that b'_1 =b, =0 by the lemma. In general, we

have ~,_, -1(c,_r+l) =c'_r =c'+r =~I+r-I (C/+r_I), and, since c'_r+1 =c'+r_1 ' we deduce that

b,_r=b/+r_I=O for ISrSs-l. So the sequence b,_s+I, ... ,b/+s_2 isastringof2s-2zeros. But

the longest string of zeros allowed in a sequence for a Type 2 coding is equal to m-I , so we

must have s S (m+ 1)/2, as required. When we go through the same process for reversals

within a separator, we obtain a string of 2s-1 zeros, and hence no stronger restriction on s.

We may do the same for Types 3 and 4 codings, and obtain respectively a palindrome of

length 2s-2 and a complement-palindrome (a sequence which is equal to its complemented

reverse) of length 2s-2, and thus obtain the same bound on s,
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We look now at the recovery times. Here the three types are not distinguished as we shall

only be using the windowing property, which they all share. Suppose that the recovery

time is T. We shall assume that both the possible reversals take place in data squares,

since this will give us the stronger bound on T and be applicable to both separator and non-

separator cases. Then there exist sand r with 0 < r < s such that

C.._s_\ =c..- s+\"",c..-2s-\ =c.._\,c.._2s :l: C..

c.._r_\ =c.._r+\" •• ,c.._2r_\ =c.._\,c.._2r :l: C..

c..-2s = c..-2r,c.._2s_\ = c..-2r-\,· .. ,c..-2s-T+\ = c..-2r-T+\

C..+r-2s, ... ,C..-2s+\,C..-2s, ... ,C..-2s-T+\' We claim that they are equal. Clearly the last T elements

are equal from the third equation above. We need only show then that C..-r-i = c..+r_ 2s-i for

O:s;;:S; r -1. But for that range of values of r, we have

C"-r-i = C"-r+i =c,,-s+(s-r+i) =c..-s-(s-r+i) =c..+r-2s-i

So the sequences are equal. We may deduce from this that the sequences

us a repeated subsequence of length r + T - 1. By the windowing property, we deduce that

r + T - 1:s; m -1 , and hence that r s m - 1.
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6. Finding sequences

In this section, we shall present some methods of finding sequences with the properties we

want. We recall that there are four types of codings, requiring four different types of

sequences:

• Type 1: the sequence must be windowing

• Type 2: the sequence must be windowing and not contain the all zero window

• Type 3: the sequence must be orientable

• Type 4: the sequence must be complement-orientable.

The first two types of sequences have been well-studied in the literature: the first type are

called deBruijn sequences and the second pseudo-random sequences. There are many

results concerning the construction of such sequences, and we do not pursue the subject

further here. The second two types do not seem to have received any attention before. It

is relatively straightforward to perform computer searches to find such sequences, but it is

prohibitively time-consuming for even moderate window lengths. It would be useful,

therefore, as well as intellectually satisfying, to be able to construct these sequences

algorithmically.

We shall express the problem of finding sequences in terms of finding a path through a

directed graph; this is standard practice in the area of deBruijn sequences. If we are looking

for sequences with window length m, we construct a directed graph, usually called the

deBruijn graph, whose vertices are labelled with the sequences of length (m-JJ and whose

edges are labelled with the sequences of length m, as follows. An edge is drawn from a

vertex labelled with (ao,a..... ,a..-2 ) to a different vertex labelled with (bo,b\>" ..,b..-2 ) if and

only if al =bO,a2 =b,,...,a.._2 =b.._3 • If this condition is satisfied, then the edge is labelled

with (aO,al , ... .a.._2,b.._2 )=(ao,bo,...,b.._3,b.._2 ) .
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We see, therefore, that a path through the graph can be thought of as a sequence where

successive windows of the sequence correspond to the successive edge labels. All

sequences of length m except the all zero and the all one sequence occur as edge labels.

These do not occur because they would link a vertex to itself, which is not allowed.

6.1 Orientable sequences

We can obtain a crude upper bound on the length of an orientable sequence of window

length m. The total number of windows of length m is 2m
• If m is even, then the number of

palindromes of length m is equal to 211I/2
, whereas if m is odd, then the number of

palindromes is 2(11I+1)/2. The remainder of the windows may be grouped into pairs, each one

with its reverse. The maximum length of an orientable sequence is then

{

2..-1 _ 2(..-2)/2 + m-l
M=

200-1 _ 2(..-1)12 + m - 1

ifm is even

ifm is odd

It seems, however, that this upper bound is never attained.

An orientable sequence can be thought of as a path through the deBruijn graph which has

the property that if an edge occurs in the path, then the edge with the reverse label does

not occur. In particular, no edge with a palindromic label may occur. There are well known

methods for finding Eulerian paths (that is paths which use each edge exactly once) in a

directed graph, but none of them translates over immediately to our problem. We have

several algorithms for finding paths, but they are not guaranteed to find paths of maximal

lengths. We shall describe these briefly.

A directed graph has an Eulerian path if it is connected, and each vertex (except possibly

the start and end vertices) has the same number of edges coming into it as going out from

it. This is indeed the case for the deBruijn graph. We know that we are not allowed to use

edges with palindromic labels, so we must remove them. In order to preserve the Euler

property, we must actually remove complete cycles containing palindromes. This is the first
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step, therefore, to construct and remove cycles containing palindromes, and we have a

number of ways of doing this. The second stage is to find a path through the remaining

graph. A standard method is first to construct a spanning tree, mark all edges in this tree,

and then trace a path backwards through the graph, always choosing an unmarked edge if

possible. We have adapted this in a number of ways to our problem.

We can also construct orientable sequences of window length 2m+1 recursively from

orientable sequences of window length 2m, using the Lempel homomorphism. This maps

binary sequences of length I to binary sequences of length 1-1 and is defined by

(xo, ,Xt-l)f-+ (xoe XW..,X'_2 e X'_I)' The inverse image of (Yo""'Y'-2) is the set

~uo, ,Ut-l)(vo,...,V'_I) where Uo = 0, Vo = I and

and

If we have an orientable sequence of length m and window length 2m which starts with Zm-

1 zeros and ends with 2m-lones, and look at its inverse image under the Lempel

homomorphism, we obtain two sequences, one starting with 2m zeros and finishing with a

string of 2m alternating zeros and ones, and the other equal to the complement of this. If

we reverse the second sequence, and glue the two sequences together, amalgamating the

string of alternating zeros and ones, to obtain a sequence of length 2M + 2 - 2m which is

orientable with window length 2m+1.
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We present below a table of the longest orientable sequences that we have found so far for

window lengths 4 to 16. Those for window length up to 7 have been verified to be

maximal by exhaustive computer search.

window size length of sequence
4 8
5 14
6 26
7 48
8 108
9 210
10 440
11 872
12 1860
13 3710
14 7400
15 15467
16 31766

Table 2 : Orlentable sequence lengths

6.2 Complement-orlentable sequences

In this case, we are able to construct maximal length sequences when the window length is

odd, but are not able to do any better than in the orientable case if the window length is

even.

6.2.1 Odd window length

If the window length m is odd, then a sequence of length m and the reverse of its

complement cannot be equal. So the set of sequences of length m may be arranged in pairs

by associating each sequence with the reverse of its complement, and any complement-

orientable sequence may contain at most one of each pair as a subsequence. The number

of these pairs is clearly 2"'-1. A sequence of length n contains n-m+J subsequences of
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length m, so if n is the length of a complement-orientable sequence with window length m,

then we may deduce that n - m+ 1S 2..-1 and so n S 2..-1 + m - 1.

If we could construct a windowing sequence whose subsequences each contain more zeros

than ones, then it would automatically be complement-orientable, since the reverse of the

complement of any subsequence would have more ones than zeros, and so not be a

subsequence itself. We shall do this by looking at a subgraph of the deBruijn graph. This

subgraph consists of all vertices and edges whose labels have at most (m-I)/2 ones. Then

any Eulerian path through this directed graph yields a maximal length complement-orientable

sequence.

Let the indegree of a vertex be the number of edges coming into that vertex, and similarly

let the outdegree of a vertex be the number of edges coming out of that vertex. Then it is

well-known that a strongly connected graph has an Eulerian path if and only if the indegree

of each vertex is equal to the outdegree of that vertex. A graph with an Eulerian path is

called Eulerian. Let Go denote the subgraph of the deBruijn graph consisting of those edges

and vertices with at most (m-I)/2 ones in their label. We shall show that Go is Eulerian.

Proposition 6.1 If!!. is a vertex of Go with exactly (m-I)/2 ones or !! = (0,... ,0), then

indegreetg) = outdegreefg) = 1. If.!!. is any other vertex of Go then

indegree(~) = outdegreetg) = 2 .

Proof

If !!. has (m-I)l2 ones and there is an edge from!!. to e, then h(m - 2) =°since

(a(0), ... ,a(m-2),h(m-2» has only (m-I)/2 ones. Hence b =(a(l), ... ,a(m-2),0» and so there

is only one edge coming out of !!.. Similarly, there is only one edge going into g . If

!! = (0,,0.,0), then there is an edge from!!. to (0,... ,0,1) and one from (1,0,0,0,0) to !!., and no

others, since we do not include the edge joining !!. to itself.
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If !! has fewer than (m-J)/2 ones, then there are edges trom g to (a(l)"",a(m-2),0) and

(a(I), ... ,a(m-2),I), and similarly edges from (0,a(0),a(l), ... ,a(m-2») and

(l,a(O),a(I), ... ,a(m - 2»).

So we have proved the following:

Proposition 6.2 Go is Eulerian.

This means that we have shown the existence of a binary sequence whose subsequences

of length m are precisely the sequences of length m which have at most (m-J)/2 ones. We

have therefore shown the existence of a complement-orientable sequence of maximal

length.

It is straightforward to find an Eulerian path in a graph, and several algorithms exist. We

present below an algorithm which finds such a path in this particular graph.

We claim that the following algorithm constructs a maximal length complement-orientable

sequence. The successive windows of the sequence are given by ~.

o

•

•

Set ~= (w(0),w(l), ... , w(m-l)) to be (0,... ,0).

If (w(I), ... , w(m-l)) contains fewer than (m-J)/2 ones then

o if we haven't already seen (w(I),... , w(m-l),l) then

set ~=(w(l), ... ,w(m-l),l)

else if we haven't already seen (w(l), ... , w(m-l).O) then

set ~=(w(l), .... w(m-l).O)
o

• else

else
stop

o

o

if we haven't already seen (w(I)..... w(m-l),O) then

set ~=(w(I), .... w(m-l).O)

else
stop.

In other words, we add 1 to the sequence whenever we can and add 0 otherwise.
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Proposition 6.3 The algorithm above yields a maximal length complement-orientable

sequence.

Proof

By construction, the sequence generated is a window sequence, and each window has at

most (m-l)/2 ones. So by the remarks earlier, it is a complement-orientable sequence. We

need only establish that it is of maximal length. This is equivalent to showing that it

corresponds to an Eulerian path in the directed graph described earlier.

Suppose that an edge ~ = (e(O), ... ,e(m-I» has not been included in the path constructed.

We may assume that e(m-I) =0, because if (e(0),... ,e(m-2),I) has not been used, then

certainly (e(0),... ,e(m-2),0) has not been used, since it would have been used first. Now

consider the vertex ~ = (e(1), ... ,e(m-2),0). The edge ~ is an in-edge to this vertex. If ~ has

indegree 1, then it has not been visited in the path, and so the edge (e(I), ... ,e(m-2),0,0) has

not been used. If, on the other hand, ~ has indegree 2, then it has been visited at most

once in the path. But in this case, it also has outdegree 2, so again the edge

(e(1), ... ,e(m-2),0,0) has not been used. Repeating this argument shows us that all the

edges (e(0),... ,e(m-2),0), (e(l), ,e(m - 2),0,0), (e(2), ... ,e(m-2),0,0,0), ... , (0,... ,0) are

unused. But we know that (0, ,0) is in the path, so this is a contradiction. Hence all the

edges have been used in the path.

6.2.2 Even window length

If the window length is even, then we could simply look at the subgraph of the deBruijn

graph where each label has at most (m-2)/2 ones, which would guarantee complement­

orientableness. This, however, does not yield long sequences, because of all the sequences

with ml2 ones which are not complement-palindromes, but have been excluded from

consideration by this method. We could use an adaptation of any of the methods used for
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finding orientable sequences, but since we do not care whether the window length is odd or

even, and we can easily construct maximal sequences when the window length is odd, we

have not pursued this further.




