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1. Introduction

It is well known that random noise is hard to compress, while ordered information
is not. We exploit this property to filter random noise from signals.

Suppose that we are given a signal that is corrupted with additive random noise of
known strength. The strength may be measured as, say, the amplitude or the power
of the noise. Assume that we have at our disposal a lossy data compression routine
in the form of a black box. The black box has a knob that controls the loss allowed
of the routine, and we shall pay attention to the position of the knob when using the
box to compress the noisy signal. To begin, we set the knob at a large loss. Then,
the output of the box tracks the signal weakly, much compression has been achieved
in that the size of the output is small, and a lot of information has been lost. As we
reduce the allowed loss, the output of the box tracks the signal increasingly. When
the loss tolerance is equal to the strength of the noise, the output of the box just
begins to track the noise. As the loss tolerance is further reduced, the output of the
box tracks more of the noise. When the loss tolerance is equal to the noise
strength, will the noise and the loss add, so that the decompressed output is further
from the noise-free signal than the noisy signal? Or, will the loss cancel the noise,
so that the decompressed output closer to the noise-free signal than the noisy signal.
We show that the loss tends to cancel the noise, with the extent of the cancellation
depending on the compression achieved and how often the signal is sampled.

The above experiment suggests the following, which is the essence of our technique.
Compress the noisy signal with a lossy compression algorithm, with the allowed loss
set equal to the noise strength. The decompressed signal is the filtered signal.

We use the term Occam filters to refer to the class of filters realizable by our
technique. This is because the essence of our technique is the principle of Occam’s
Razor-"the simpler explanation of the observed phenomenon is more likely to be
correct”.

In the first part of the paper we discuss application issues. Readers interested in
understanding the spirit of the technique rather than its theoretical foundations will
find sufficient material in this part of the paper. We illustrate the application of the
technique using two examples involving univariate functions. The first example
concerns a broad-band signal corrupted with uniformly distributed random noise.
Using a compression algorithm that operates in terms of the piecewise linear
functions, we construct an Occam filter for the problem. We then compare the
performance of our filter with the Wiener filter, which is known to be the optimal
linear filter in the least-squares sense. We find that our non-linear Occam filter
outperforms the Wiener filter. Also, our filter remains effective even when the
distribution of the noise is skewed so as to have non-zero mean, a difficult situation



for any linear filter including the Wiener filter. The second example concerns a
smooth signal that is corrupted with normally distributed random noise. Using a
compression algorithm that operates in the spectral representation, we construct an
Occam filter for the problem. Since the Wiener filter operates in the spectral
domain as well, a comparison between the two filters is particularly interesting.
While its performance is slightly worse than that of the Wiener filter, unlike the
Wiener filter, the Occam filter does not require a priori knowledge of the spectral
properties of the noise-free signal.

In the second part of the paper, we examine the theoretical underpinnings of our
technique and obtain convergence bounds for the residual noise in terms of the
compression achieved and the sampling rate. Let s be the compressed size in bits
of the n noisy samples, when the allowed loss is equal to the noise strength.
Broac}ély speaking, we show that the residual noise in the filtered signal varies as
(s/m)™.

The results of this paper appeared in preliminary form in several papers. Natarajan
(1993a) introduces Occam filters with emphasis on application; Natarajan (1993b)
presents a theoretical justification in the learning theoretic context; Natarajan (1994)
offers a convergence bound on Occam filters under some restrictions.

Of related interest are the papers by Donoho (1992), Donocho et al (1993), and
DeVore and Lucier (1992), that examine the filtering of random Gaussian noise
using wavelets, by shifting and thresholding the transform coefficients by an amount
dependent on the noise strength, and then inverting to obtain the filtered signal.
Also of interest is the paper by Saito (1994) who observes that data compression
and filtering are related and attempts to filter normally distributed random noise by
using the wavelet basis that compresses the input data best, selected from among a
preselected class of wavelet bases. Saito justifies his technique via Rissanen’s
Minimum Description Length principle. Each of these results can be viewed as
specializations of our results to the context of wavelets.

Part 1: Application

2. Preliminaries

We consider functions on the unit interval [0,1]. The limitation to the unit interval is
in the interest of convenience and is without loss of generality. For a function f and
natural number n, f, refers to the sequence of uniform samples of f spaced 1/n
apart. Specifically, fa is the sequence of n samples

{£(0), f(Un),f(2n),....,f((n-1)/n)}. We call f, a sample sequence.



A metric over the space of sample sequences is a measure of distance between any
two sample sequences f, and g,, and is denoted by |f,,g.]]. The power or L,
metric is defined as

1t :
1 fns8n ll2 = ‘;1’.20 (f(l/n)- g(l/n)]2 . 1)
1=
Note that the power metric is the square of the Euclidean metric. The amplitude
or L, metric is defined as
n-l . .
I8l = max | £6i/m)- gGirm)| @

The L metric is defined as

n-1
italls = 3 |fm)-gGm)|, Q)
i=0

and measures the average absolute difference between two sequences.

The power of a sequence f, is its distance from the sequence of zeros, i.e., ||f,,0]2.
Similarly the amplitude of a sequence f, is ||f,,0]|~. In general, the strength of a
sequence f, in metric ||-|| is ||f,,0]]. In the interest of brevity we will write ||f, || to
denote ||f,,0].

With respect to a metric ||-||, a lossy compression algorithm C is a program that
takes as input a sequence f, and a loss tolerance € = 0, and produces as output a
binary string s representing a sequence g, such that ||f,,g, || = €. C is said to obey
the metric ||-||. A decompression algorithm D takes as input a binary string and
produces as output a sample sequence. In particular, the decompression algorithm
D corresponding to C would output g, on input s. We use C(f,,€) to denote the
string s obtained by running C on input f, and €, and we use D (s) to denote the
sequence g, obtained by running D on string s.

Let v be a random variable representing the noise. We use f,, to denote the
sequence f, corrupted with noise, ie., f, = {f(0)+v, f(I/n)+v, f(2/n)+v,..}.

3. The General Algorithm

Using the notation of the preceding section, we can state our filtering technique in
the form of an algorithm. In the following, the strength of the noise is measured in
the same metric as that obeyed by the compression algorithm.



Filtering Algorithm

input f,
begin

Let ||v]| be the strength of the noise.

Run C(fy, v |);

Decompress to obtain the filtered sequence g,;
end

As stated above, the filtering algorithm we requires the strength of the noise ||v|| to
be known, where |-|| is the metric obeyed by the compression algorithm. In the
next section we present a heuristic for estimating ||v||.

4. Estimating the Noise Strength

The heuristic is best illustrated via the following experiment. Suppose we had direct
access to the noise source and were able to obtain n samples of the noise v. Run
the compression algorithm on these samples, for various values of the allowed loss
€. Plot the size of the output of the compression algorithm as a function of log(e).
This is essentially the rate-distortion plot of the noise function. At values of e
greater than the noise strength ||v ||, the compressed size will be small, since at such
large tolerances the noise can be approximated by the constant function. As € is
reduced below the noise strength, the compressed size rises sharply, as shown
conceptually in Figure 4.1. Now suppose that we had access to the noise-free signal
f. Run the compression algorithm on f,, for various values of € and plot
compressed size against log(e), to obtain the rate-distortion plot of the signal. At
large values of e the compressed size is small, and as € is reduced the compressed
size increases, as shown conceptually in Figure 4.2. Lastly, run the compression
algorithm on the noisy samples f,, for various value of € and plot compressed size
against log(e), to obtain the rate-distortion plot of the noisy signal. As shown in
Figure 4.3, at values of e greater than the noise strength ||v ||, the plot follows the
rate-distortion plot for the noise-free signal as in Figure 4.2. At values of € less than
the noise strength, the noise dominates the signal f and the plot follows the rate-
distortion plot of the noise as in Figure 4.1. At e = ||v||, the rate-distortion plot of
the noisy signal f+v displays a sharp "knee point”, i.e., a point at which the plot
rises sharply. The knee point can be more precisely identified as the point at which
the second derivative of the plot attains a maximum. The second derivative plot is
also depicted in Figure 4.3. This suggests the following strategy for determining the
noise strength ||v||: Run the compression algorithm on samples of the noisy signal
for various values of the allowed loss €. Plot compressed size versus log(e). The
knee point of this plot is the strength of the noise in the metric obeyed by the
compression algorithm. The knee point may be determined by inspection or as the
value of € at which the second derivative of the rate-distortion plot attains a
maximum.



We can state the above strategy in the form of an algorithm.

Calibration Algorithm
input f,
begin
Run C(f,,,€) for various values of
€, and plot output size versus log(e);
Let €* be the knee point of this plot, i.e the point
at which its second derivative attains a maximum,;
Output €* as an estimate for the strength of the noise;
end

5. The Piecewise Linear Representation

In this section we select a compression algorithm that operates in terms of the
piecewise linear functions and obeys the L, or amplitude metric. Using this
compression algorithm we build an Occam filter and examine its properties.

The compression algorithm does the following. Given a sequence f, and a tolerance
€, the algorithm constructs a piecewise linear function g such that ||g,,f, |« = €,
and g consists of the fewest number of pieces over all such piecewise linear
functions.

The output of the compression algorithm is the sequence of break points of the
piecewise linear function g. Decompression is achieved by linear interpolation of
the break points.

It happens that the compression scheme described above can be implemented
optimally as an algorithm requiring time linear in the number of input points, using
visibility techniques. Details can be found in Imai and Iri (1986), or in Natarajan
(1991) where the case of univariate functions in higher dimensions is also examined.
Also, Konstantinides and Natarajan (1994) describe a simplified form of the general
algorithm that is amenable to hardware implementation.

We now use the above compression algorithm to construct a filter. As the noise-
free signal, we select the function

x =02

fk) = “4)

sin 1 otherwise
(x-0.2)+0.03 )



This is a broad-band signal, ie., it has broad spectral support, and is difficult to
filter with a classical spectral filter. Figure 5.1 is a plot of 1000 uniformly spaced
samples of the function.

We now add random noise to the function. We select the noise to be a uniformly
distributed random variable in the range [-0.1,+0.1}. Figure 5.2 shows the 1000
samples of Figure 5.1, corrupted with noise generated by a pseudo-random number
generator obeying the above distribution.

We now run the Calibration Algorithm given earlier on the noisy samples.
Specifically, we run the piecewise linear compression algorithm on the noisy
samples of Figure 5.2 for various values of the tolerance €, and plot the compressed
size of the samples versus log(e) in Figure 5.3. In the interest of simplicity, we
measure the compressed size in terms of the number of vertices defining the
piecewise linear representation output by the compression algorithm, rather than
the number of bits required to store these vertices. Since each vertex is stored as a
fixed and constant number of bits in the machine representation, this simplification
does not affect our calculations. Figure 5.3 also shows the second derivative of the
plot, calculated as central differences of the first derivative, which in turn was
calculated as the central differences of the values themselves. The second derivative
curve attains a maximum at €* = 0.098S. This is the knee point of the curve, and is
_ the estimate of the noise strength in the L., metric. Compare this estimate with the
true value of .1 as dictated by our selection of the noise variable to be uniformly
distributed over the range [-0.1, +0.1].

Using the knee point value as the estimate for the noise strength in the Filtering
Algorithm, we now run the compression algorithm on the noisy samples of Figure
5.2, with tolerance e = 0.0985. The result is the piecewise linear function of Figure
5.4. Visually, the function of Figure 5.4 appears to have much less noise than the
noisy signal of Figure 5.2.

We now run the compression algorithm for various values of the tolerance e. At
each value, we decompress the output of the compression algorithm to obtain the
sequence g,. We then measure the residual noise in g, by computing ||g,,f, |l1-
Figure 5.5 is a plot of this residual noise against log(e). Notice that the plot exhibits
a minimum at about the knee point e€* This minimum value of roughly 0.01
corresponds to the residual noise in the filtered sequence shown in Figure 5.4, and
should be compared to the average absolute value of the noise of 0.05.

Next we consider the effect of increasing the sampling rate n. Figure 5.6 shows the
plots of output size versus log(e) for three different sampling rates, n = 1000, 2000
and 4000. In essence, Figure 5.6 is a parametrization of Figure 5.3 It is clear that
the knee point does not change appreciably as the sampling rate is increased, but it
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is better defined. Similarly, we plot residual noise versus log(e) for the three
different sampling rates to obtain Figure 5.7. In essence, Figure 5.7 is a
parametrization of Figure 5.5. Notice in Figure 5.7 that for each of three sampling
rates, the minimum residual noise occurs at roughly the knee point, i.e., € = €* but
as the sampling rate increases, the minimum residual noise decreases.

Next we change the distribution of the noise variable v from the uniform
distribution to a distribution with non-zero mean. Specifically, the noise variable
has the probability density function shown in Figure 5.8: v is uniform in [-0.1,
+0.02] with probability 1/8, v is uniform in [0.02,0.05], with probability 6/8, and v is
uniform in [0.05,0.1] with probability 1/8. The mean of the distribution is 0.030625.
Figure 5.9 shows the 1000 samples of the function of Figure 5.1 corrupted with
random noise under the new distribution, generated by a pseudo-random number
generator. Figure 5.10 shows the knee point plot for these 1000 samples with the
knee point occurring at 0.0985 again. Figure 5.11 shows the filtered function
obtained by compressing and decompressing at the knee point. Note that the
filtered function of Figure 5.11 is not displaced from the noise-free function of
Figure 5.1 by the mean value of the noise, i.e., the filter has eliminated the mean
value of the noise as well.

We now compare the performance of the Occam filter we constructed above with a
classical filter—the Wiener filter, Tretter (1976). The Wiener filter is known to be
optimal among linear filters in the least square sense. :

The Wiener filter requires that the spectral properties of the noise-free signal and
the noise be known in advance. Its transfer function is given by

_ S(w)
H©) = 5oy V@ - ©)

where S(w) is the power spectral density of the noise-free signal and N(w) is the
power spectral density of the noise. Since we assume the noise variable to be
statistically independent at each sample point, it has uniform power spectral density
and N(w) is a constant that depends only on the variance of the noise distribution.

We implement the Wiener filter as follows: We take the discrete Fourier transform
of the noise-free sequence. The sum of the squares of the imaginary and the real
part of the transform at each frequency is the power spectral density at that
frequency. Also, the power spectral density of the noise at each frequency is equal
to the average power of the noise over all frequencies. Using these estimates we
compute the transfer function H(w) at each frequency. We then compute the



discrete Fourier transform of the noisy sequence, and multiply each term of the
transform with the corresponding term of the transfer function. Inverting the
modified discrete Fourier transform gives the filtered sequence.

Figure 5.12 shows the result of filtering the sequence of Figure 5.2 with a Wiener
filter. The residual noise in the filtered sequence is 30 x 10" in the L, sense and
15x 104 in the L, sense. These numbers should be compared to the residual
noise in Figure 5.4 achieved with the Occam filter of 8.3 X 10~ in the L; sense and
5% 104 in the L, sense.

To verify that the residual noise values of the Occam and Wiener filter reported
above are statistically significant, we repeated the filtering experiment a 100 times,
with randomly chosen values for the seed of the pseudo-random number generator
generating the random noise values. At each experiment, we filtered the noisy
samples with both the Occam and the Wiener filters. In the L, metric, the average
value of the residual noise over these experiments was 4.1x 10 for the Occam
filter, and 15 x 10" for the Wiener filter. In the L, metric, the average value of the
residual noise over these experiments was 9.0 X 103 for the Occam filter, and
30 x 103 for the Wiener filter.

6. The Spectral Representation

In this section we select a compression algorithm that operates in terms of the sine
and cosine functions and obeys the L, or power metric. Using this compression
algorithm we will build an Occam filter and examine its properties.

The compression algorithm that we use does the following. Given a sample
sequence f, and a tolerance e, the algorithm computes a sequence g, such that
llg:.f: ll2 = €, and the discrete Fourier transform of g, has the fewest non-zero
terms over all such sequences. The non-zero terms of the transform is the
compressed representation of g,.

The above spectral compression algorithm is straightforward to implement by
exploiting the orthogonality of the Fourier transform. Specifically, compute the
discrete Fourier transform of f,. In order of increasing size, set to zero terms of the
transform so that the sum of the squares of the terms set to zero does not exceed €.
To decompress, simply invert the transform to obtain the sequence g,.

As the noise-free signal f we choose
f(x) = xsin(6mx)- xcos(40mx) . (6)

A sequence of 1000 samples of f is shown in Figure 6.1. We now add random noise



to these samples. We select the noise to be Gaussian distributed with zero mean
and variance .003. Figure 6.2 shows the 1000 samples of Figure 6.1, corrupted with
random noise, generated by a pseudo-random number generator.

We now run the Calibration Algorithm on the noisy sequence. Specifically, we run
the spectral compression scheme described above on the noisy samples of Figure 6.2
for various values of the tolerance €, and plot compressed size versus log(e) in
Figure 6.3. In the interest of simplicity, we measure the compressed size in terms
of the number of non-zero frequency terms in the discrete Fourier transform output
by the compression algorithm, rather than the number of bits required to store
these terms. Since each term is stored as a fixed and constant number of bits in the
machine representation, this simplification does not affect our calculation of the
knee point. Figure 6.3 also shows the second derivative of the plot, calculated as
central differences of the first derivative, which in turn was calculated as the central
differences of the values themselves. The second derivative plot attains a maximum
at e* = .00394, and this is the knee point of the plot. This is the estimate of the
noise strength in the L, metric as determined by the Calibration Algorithm.

Using € = €* in the Filtering Algorithm, we get the filtered sequence of Figure 6.4.
The residual noise in the filtered sequence is 8.2 X 10 in the L, metric.

Figure 6.5 shows the result of filtering the noisy sequence of Figure 6.2 with a
Wiener filter. The residual noise in the filtered sequence is 6.5 X 104 in the L,
metric.

To verify that the residual noise values of the Occam and Wiener filter reported
above are statistically significant, we repeated the filtering experiment a 100 times,
with randomly chosen values for the seed of the pseudo-random number generator
generating the random noise values. At each experiment, we filtered the noisy
samples with both the Occam and the Wiener filters. In the L, metric, the average
value of the residual noise over these experiments was 8.3 X 10* for the Occam
filter, and 6.8 X 10°* for the Wiener filter.

Part 2: Theory

We now establish convergence bounds on Occam filters. Specifically, we estimate
the residual noise in the filtered sequence as a function of the sampling rate, and
the compression achieved by the compression algorithm. The bounds that we
establish are largely of asymptotic interest, and are too loose to be used as quality
measures for applications.

Our proof technique requires that the metric obeyed by the compression algorithm



be linear in that the measure of the noisy sequence be the sum of the measures of
the noise and the noise-free signal, in the limit as the sampling rate becomes
infinite.

Tm 5l = 150+ 1V ©)

Since v is statistically independent of f,, the amplitude metric L is linear. If v is
of zero mean the power metric L, is linear, since the variance of the sum of two
random variables is the sum of their variances, provided that at least one of the
random variables is of zero mean.

We assume that the noise-free signal is a function from the interval [0,1] to the
interval [-a, +a], and that the noise v is a random variable in the interval [-b, +b].
Later we mention how these restrictions may be removed.

For a random event A, Pr{4} denotes the probability of 4 occurring. For a
random variable x, E {x} denotes the expected value of x.

7. The L, Metric

Let C be a compression algorithm that obeys the L, metric. Let S, denote the
expected length in bits of the output of the compression algorithm when given f,
and b = ||v|«» as input. The expectation is taken over all possible values of the
noise corrupting the sequence. Specifically,

S, = E{|C(},,,b)|}. ®)

With respect to the probability distribution of the noise variable v, the tail estimate
7({) denotes the minimum probability that v will fall within { of +b or -b.
Specifically,

T(§) = min{Pr{v €b-Lbl} Pr{ve[-b - (b- C)]}}- )

Theorem 1: Let g, be the sequence output by the filtering algorithm, and let
€ = ||gsfall1. Forany 0 < & =< 1, with probability 1- 8,

er(e/2) < ;n“i (@3)s,1n(2)+ In28)) . (10)

Proof: Let h, be a sequence such that ||4,, f,,||1 > €. Then, there is a set of at
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least ne/(4a) distinct integers i, 0 =< i < n such that | f(i/n)- h(i/n) | > €/2. Let
i be one such integer. Suppose f(i/n)- h(i/n) > /2. If the noise variable v takes
on a value in [-b, (b - €/2)] at this sample point, then |f(i/n)+v-h(i/n)| < b.
The probability of this occurring is at most 1- 7(e/2), by the definition of v. On the
other hand, suppose A (i/n)- f(i/n) > €/2. Then, if the noise variable v takes on a
value in [-(b - €/2),b], | f(i/n)+v-h(i/n) | = b. The probability of this occurring
is also at most 1- 7(e/2).

Thus, the probability that | f(i/n)+v-h(i/n) | < b at a particular value of i for
which | f(i/n)- h(i/n) | > €/2, is at most 1- 7(e/2). It follows that the probability
that | f(i/n)+v-h(i/n)| = b at all of the ne/(4a) values of i for which | f(i/n)-
h(i/n)| > €/2, is at most (1- 7(€/2))"¥“). In other words, the probability that
| fnshn e = b is at most

(1- 1(e/2))"94a) < ¢-nr(e/)el(da) | (12)

Thus, if h, is a particular sequence satisfying |A,,f, |1 > €, the probability that
W fishin llo = b is at most e~ *7€D¢/(4a)  Gince the expected length of the output of
the compression algorithm is S, bits, with probability at most 1- 8/2, the output of
the compression algorithm is of length at most (2/8)S,. Otherwise, the expected
length would be greater than 8/2(2/8)S,,, which is greater than S,. We work on the
condition that the output length is at most (2/8)S, and later account for this
conditionality. That is, we only consider sequences that are representable with at
most (2/3)S, bits. The probability that any such sequence A, will be such that
1A, fu ll1 > € but || fu,hnlle = b is at most

2(2/8)511 e- nt(e/2)e/(4a) . (12)

Since the sequence g, output by the filtering algorithm satisfies ||g,, f,, lo = b, it
follows that the probability that ||g,,f.ll1 > € is at most the quantity in (12).
Setting this probability to be at most 8/2 and taking logarithms on both sides, we
get that with probability 1- 8/2,

er(e/2) < i‘;l‘i- (@3)8,1n2)+ In(23)) . (13)

The above estimate is conditional on the output of the compression algorithm being
of length at most (2/3)S,. Eliminating this condition will lower the probability of
the above estimate by a factor of (1-8/2). Hence, the estimate holds with
probability at least (1-8/2) % (1-8/2). Since (1-8) > (1- 8/2)?, the proof is
complete. O
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Corollary: If the noise variable is uniformly distributed over [-b, + b], then

e =< % (@), n(2)+ In(23)) . (14)

Proof: If the noise is uniformly distributed in the range [-b, +b], 7({) = {/2b.
Substituting in Theorem 1 we get the corollary. O

Remark 1: According to the Corollary, when the noise is uniformly distributed, the
L, measure of the residual noise varies as the square root of the sampling rate.
This is roughly the case in Fifu:e 5.7, where the residual noise at the knee point is
8x 103, 5% 10 and 4 x 10°°, at sampling rates of 1000, 2000 and 4000.

Remark 2: Notice that the proof of Theorem 1 did not require that the noise be of
zero mean. Thus, an Occam filter constructed out of a compression algorithm that
obeys the L, metric can be used to filter noise that is not of zero mean. Indeed,
this was the case in the application of part 1, Figures 5.8 through 5.11.

Remark 3: The convergence bound in Theorem 1 depends only on the tails of the
noise distribution, via v(e). Thus, if the noise distribution is tightly clustered about
its mean, 7({) is small compared to { and the convergence of the filter is slower
than for the uniform distribution. For the distribution of Figure 5.8, 7({) = {/0.8,
while while for the uniform distribution, v({) = ¢{/0.2. Thus, accorg’ylg_to Theorem
1, the L, measure of the residual noise in Figure 5.11 should be V (4) = 2 times
the L1 measure of the residual noise in Figure 5.4. Indeed, this is borne out bg/
experiment, since the L, measure of the residual noise is 8.3 X 10> and 16.6 X 10
in Figures 5.4 and 5.11 respectively.

8. The L, Metric

Let C be a compression algorithm that obeys the L, metric, and let v be of zero
mean and variance o2. Let S, denote the expected length in bits of the output of
the compression algorithm when given f, and o2 as input. The expectation is taken
over all possible values of the noise corrupting the sequence. Specifically,

S, = E{|C(},,,a2)|}. (15)

Theorem 2: Let g, be the sequence output by the filtering algorithm, and let
€ = ||gn>fnll2. For any 0 = & =< 1, with probability 1- §,

€ < 18”2(‘:"*”2) ((2/5)5,,1n(2)+1n(12/5)). (16)
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Proof: Let h, be a sequence such that ||A,, f, |2 > €.

: 17t .
Vulls = =3 (famy+v-nGam))?. (1)
0
n-1 n-1 n-1
= %% (f(i/n)-h(i/n))2+-;-§o:v2+-:-§o;2v (f(i/n)-h(i/n)] . (18)
1n-1 1n-1 1n-1 )
= tnfullz + =SVE + =S 2uf(i/n) - —32vh(i/n). (19)
n-o n-y n-o

If ||A, ,]A‘,, |2 = o2, then at least one of the following must hold.

171, , € 17 € 17l . €
- > — - > = - > = . (20
n%v (4 3 n%va(z/n) 3 n%th(l/n) 3 (20)
It follows that
A 171 €
Prillhnfallz = 62t = Pri|=3v2-0? > -t +
n<% 3
171 € 121 €
Pri|=S22f(@i/m)| > —t+ Prq|=3S2h@/m)| > —t. (21)
n<g 3 n< 3

Noting that |f(@i/n)| < a and |h(i/n)| < a, and v € [-b, +b], we can rewrite

the above as
€
> =1+
)

Pr {uhn,i,, Iz = cz} = Pr{
ZP,{

where { is a random variable in the range [-ab, +ab]. Furthermore, since v is of
zero mean so is {. Noting that v? has a mean of o2 and lies in the range [0,b2], we
can invoke Hoeffding’s inequality, Pollard (1984), to get

|

1n-1
L5242
n o

1n-1

P4

n-y

> §}, )

2ne?

> %}SZe %t (23)

1n-1
232- 02
L)
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Similarly, noting that { has a mean of zero and lies in the range [-ab, +ab ], we can
invoke Hoeffding’s inequality to get

|

Substituting, we get

171 € '%
;2@ > 3 < 2 187%a% (24)
0

ne2 nez ne?

Pr{llhmfn l2 = 02} =2 %' +4e Wl < WY (35

Since the expected length of the output of the compression algorithm is S, bits, with
probability at least 1- 8/2, the output of the compression algorithm is a sequence of
length at most (2/3)S,. Otherwise, the expected length would be greater than
8/2(2/5)S,,, which is greater than S,. We work on the condition that the output
length is at most (2/3)S,, and later account for this conditionality. That is, we only
consider sequences that are representable with at most (2/8)S, bits. The
probability that any such sequence h, will be such that [h,,f,[l2 > € but
|#nsfa |2 = o2 is at most

nez

z(m)sn 6e B 18 2(a 2+ bz) . (26)

Since the sequence g, output by the filtering algorithm satisfies ||g,,f, |2 = o2, it
follows that the probability that ||g,.f.|l2 > € is at most the quantity in (26).
Setting this probability to be at most 8/2 and taking logarithms on both sides, we
get that with probability 1- 8/2,

&2 < 18”2(‘;2”’2) ((WS)S,,In(Z)Hn(l?/S)]. @7

The above estimate is conditional on the output of the compression algorithm being
of length at most (2/3)S,. Eliminating this condition will lower the probability of
the above estimate by a factor of (1-8/2). Hence, the estimate holds with
probability at least (1- 8/2) % (1- 8/2). Since (1-8) > (1- 8/2)?, the proof is
complete. O

Remark 4: In the foregoing, we assumed that the noise variable v lies in the
bounded ranged [-b, +b]. This assumption was necessary for Theorem 1, since we
assumed that the L, measure of the noise was bounded and known. For Theorem
2, it is only necessary that the L, measure of the noise be bounded and known.
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The assumption that the noise lies in the range [-b, +b ], where b is bounded but
not necessarily known, was only in the interest of technical simplicity. In particular,
the bounded range assumption allowed us to use Hoeffding’s inequality. We can
release the bounded range assumption if the noise distribution is such that empirical
estimates of the variance and the mean of the noise variable can be shown to
converge exponentially in the sampling rate. This is the case for the normal
distribution for instance, which does not satisfy the bounded range assumption. In
short, the bounded range assumption is solely in the interest of technical simplicity
and is not an essential ingredient.

9. Conclusion

We presented a novel technique for the design and analysis of a class of filters for
random noise—Occam filters. These filters are in general non-linear. The technique
exploits the property that random noise is hard to compress, as compared to useful
signals. The technique is simple to use: run a lossy compression algorithm with the
allowed loss set equal to the noise strength.

We presented two illustrative applications of the technique for univariate signals,
and compared the performance of Occam filters with the Wiener filter that is
known to be optimal in the least square sense over the class of linear filters. We
found that Occam filters can perform as well or better than the Wiener filter,
without requiring a priori spectral knowledge of the signal. We also presented
analytical convergence bounds relating the residual noise achieved by an Occam
filter, with the compression achieved and the sampling rate.

Since the noise rejection characteristic of an Occam filter is directly related to the
effectiveness of the compression algorithm, the filter designer should pick the
compression algorithm best suited to the noise free signal. This is equivalent to
selecting the representation that is best suited to describing the noise-free signal,
rather than always selecting the spectral representation as is the case with classical
spectral filters. This degree of freedom is an important feature of an Occam filter,
since a signal may have a compact description in one representation but not in
another. For instance, a square wave requires broad support in the spectral
representation, but can be compactly represented as a piecewise linear function.
Better yet, a square wave can be represented in terms of the three parameters,
frequency, phase and amplitude, and can be compressed highly by a compression
algorithm that exploits this property. An Occam filter using such a compression
algorithm would have powerful noise rejection characteristics. Indeed a phase-
locked loop is such a filter, and the robustness of a phase-locked loop in the face of
noise is widely known.
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Figure 4.2: Illustrative Plot of compressed size versus allowed loss for the noise-free
sequence.
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Figure 4.3: Illustrative Plot of compressed size versus allowed loss for the noisy
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Figure 5.1: A sequence of 1000 samples.
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Figure 5.2: The sequence of Figure 5.1 corrupted with additive random noise

uniformly distributed in the range [-.1,+.1].
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Figure 5.4: The sequence obtained by filtering the noisy sequence of Figure 5.2
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0.35

[
, /
- [
/

0.10

0.05

—

0.00

1e-02 3 1e-01 3 1e+00

Figure 5.5: Residual noise versus allowed loss €.



x 1000

. 4000
3.00 \\..
,
...\.
Y
250 ,\\
2.00 K
'.'..‘
150 \2000 ."'1
~ \
\\ L
™~ \
1.00 S, 3
DN
1000 N
O\
\ AY 3
050 - Mot
\ \\
\\\
A\
0.00  T— -
H
1e-02 3 le-01 3 1e+00

Figure 5.6: Plot of compressed size versus allowed loss € (logarithmic scale) for
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Figure 5.7: Residual noise versus allowed loss € for sampling rates of 1000, 2000,
and 4000. :

21



16.00

14.00

12.00

10.00

8.00

6.00
4.00

2.00

0.00

-100.00 -50.00 0.00 50.00 100.00 x 1.0e-3

Figure 5.8: Probability density function of random noise variable with non-zero
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Figure 5.9: The sequence of Figure 5.1 corrupted with additive random noise
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Figure 5.10: Plot of compressed size versus allowed loss € (logarithmic scale) and
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Figure 5.11: The sequence obtained by filtering the noisy sequence of Figure 5.9
using the piecewise linear Occam filter.
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Figure 6.2: The sequence of Figure 6.1 corrupted with additive random noise
normally distributed with zero mean and variance .003.
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Figure 6.4 The sequence obtained by filtering the noisy sequence of Figure 3.2 using
the piecewise linear Occam filter.
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Figure 6.5: The sequence obtained by filtering the noisy sequence of Figure 3.2
using a Wiener filter.
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