
KEY COMPONENTS IN THE DESIGN OF IMAGE AND VIDEO COMPRES-
SION ICs

Konstantinos Konstantinides

Hewlett-Packard Laboratories
Computer Peripherals Laboratory
Imaging Peripherals Department

Abstract

There is a new generation of digital signal processors for image and video compression and
decompression. Regardless of their complexity, most of the image and video compression ar-
chitectures share three major components: an accelerator for computing two-dimensional
DCTs and IDCTs, a motion estimator, and a variable length coder and decoder. This paper
presents a general overview of some of the most common designs and architectures for the
hardware implementation of these key components in image compression ICs.

† This paper will be presented at the 1994 DSPx Exposition and Symposium, San Francisco,
CA, June 1994.

Internal Accession Date Only

1. Introduction
Recently, a new type of a digital signal processor (DSP) has emerged: the image and video
compression processor. Image compression is one of the core technologies in video tele-
conferencing, digital television, and a variety of CD-ROM based multimedia applications.
The establishment of industry accepted standards in image, video, and audio compression,
and the opportunity to attract new markets allow now IC manufacturers to invest in the design
and development of this new generation of DSPs.

There are three main standards in image and video compression:

• JPEG (Joint Photographic Experts Group) for the compression of still images[1].

• Px64 (also known as CCITT Recommendation H.261) for video tele-conferencing[2].

• MPEG (Moving Picture Experts Group) for motion video and audio for use in com-
puter systems (MPEG-1[3]) and broadcast applications (MPEG-2[4]).

All of these compression standards have a common set of core functions, namely a spatial-to-
frequency domain transformation, quantization of frequency-domain signals, and entropy-
coding of the quantized data. For compression of motion sequences, additional processing in
the temporal domain, such as motion compensation, is also employed. The main processing

Inverse
Quantization

Inverse
DCT

Motion
Estimation

Intra/Inter
Classifier

Reference
Memor y

Buffer

Encoding
Entropy

YCrCb

DCT Quantization

JPEG Coding Functions
RGB

Fig. 1 : Processing flow in JPEG, MPEG, and Px64 coding schemes.

flow for JPEG, MPEG, and Px64 is depicted in Fig. 1[5]. Spatial-to-frequency domain trans-
formation is performed via an 8x8 2-D DCT (Discrete Cosine Transform) on the spatial
domain data. After quantization, the quantized DCT coefficients are further compressed
using a lossless compression scheme, such as Huffman coding. For motion sequences,
higher compression can be achieved using motion compensation. Frame-to-frame changes
are determined and only the differences among frames are encoded and transmitted.

Conventional DSPs cannot meet the computational requirements for real-time motion video
compression and decompression. Hence, a new generation of image compression ICs has

2

been developed. Most of the image compression ICs use a RISC (Reduced Instruction-Set
Computer) or DSP core, for general purpose computing, DMA ports for fast I/O, and special
assist units for the three most compute-intensive operations: the DCT, motion estimation, and
variable length coding. In this paper we will present a general overview of the designs used
in image compression ICs for the computation of these core functions.

In Section 2 we describe the implementation of a 2-D DCT based on distributed arithmetic.
In Section 3 we present a systolic architecture for motion estimation, and in Section 4 we
present a hardware implementation for variable-length coding and decoding.

2. Implementation of the 2-D DCT
Let x denote anNxN block of data. Then, the 2-D DCT ofx is defined as

X = Ct x C , (1)

whereC is a coefficient matrix defined as

cij = √ 2

N
cos

(2i − 1)(j − 1)π
2N

, i = 1, 2, . . . ,N , j = 2, 3, . . . ,N , (2)

cij =
1

√ N
for j=1, andCt is the transpose ofC [6].

Because of the wide use of the 2-D DCT in many image processing applications, there is
extensive literature on its hardware implementation[7]. There are two general classes of
implementations: those using conventional matrix analysis and those that use number theo-
retic or polynomial transforms (i.e., the Winograd transform). Polynomial transforms require
the least number of multiplications. However, they require complex control and are not easy
to implement. Techniques based on conventional matrix analysis are the most popular since
they hav e a regular structure.

From (1), the 2-D DCT can be rewritten in terms of two 1-D DCT transforms, as follows:

y = xtC , X = ytC . (3)

From (3), anNxN 2-D DCT can be computed by a) performingN N-point 1-D DCTs of the
rows, b) transposing the output matrix (y), and c) performing anotherN N-point 1-D DCTs.
This row-column transformation allows a 2-D DCT to be computed using fast algorithms and
hardware developed for 1-D DCTs.

Hardware implementations of the 1-D DCT range in complexity from simple multiplier-free
designs to multi-processor systolic arrays. In choosing the implementation for an image
compression IC one has to also take into account that the DCT is only a small part of the
computational pipeline in an image compression algorithm. Hence, smaller, but slower,
designs may be preferable over faster, but larger ones. Recent image compression ICs use
two main techniques for the evaluation of the DCT: a) a multiplier-free processor array based

3

on distributed arithmetic or b) a four-processor multiply-accumulate array.

2.1 8x8 DCT Using Distributed Arithmetic

Distributed arithmetic for the design of DSP circuitry was first introduced by Peled and Liu
in the early 70’s[8]. In those days, the level of circuit integration was very low and an 8x8
parallel multiplier would require multiple ICs. The main idea of distributed arithmetic is that
in digital signal processing (i.e., in a digital filter) most multiplications are performed with
known constants. Hence, intermediate product results can be pre-computed and stored in
memory. By using bit-serial arithmetic, these operations can be computed using look-up
tables, additions, and shifts.

Advances in VLSI now allow multiple parallel multipliers on a single chip. However, an
image compression IC has to perform numerous other operations besides the DCT. As will
be seen, distributed arithmetic still provides a very good alternative for the hardware imple-
mentation of the DCT.

From (3),

y(k, l) = x(k)t c(l) =
N

m=1
Σ c(m, l) x(k, m) , (4)

wherex(k)t is thek-th row vector ofx andc(l) is thel -th column vector of C. Let

x(k, m) = − x(k, m)0 +
B−1

j=1
Σ x(k, m) j 2− j , (5)

denote the two’s-complement binary representation ofx(k, m) using B-bits of precision.
x(k, m) j is the j -th bit of x(k, m) and it can be either 0 or 1. We also assume, without loss of
generality, that the decimal point is immediately after the most significant bit, hence,x(k, m)
can only take values between -1 and 1. Substituting (5) into (4), yields

y(k, l) = − Fk,l (c(l), x(k)0) +
B−1

j=1
Σ Fk,l (c(l), x(k) j) 2− j , (6)

where

Fk,l (c(l), x(k) j) =
N

m=1
Σ c(m, l) x(k, m) j , j = 0, 1, . . . ,B − 1. (7)

From (4)-(7), we can make the following observations: a) For each vectorx(k), we can con-
currently generateN values ofy(k, l) (y(k, 1) to y(k, N)). b) All Fk,l are functions ofc(l)
and bit-patterns of the input data. Hence, they can be precomputed for all 2N possible bit-
patterns and stored in memory. c) Evaluation ofy(k, l) requires only adds, shifts, and table
look-ups. Using bit-serial arithmetic for the input data, ay(k, l) value can be computed inB
cycles.

Fig. 2 shows a block diagram for the implementation of an 8-point DCT using distributed
arithmetic. The design uses eight ROM accumulation units (RACs) for the concurrent com-
putation of eighty(k, l) vectors. Input is done bit-serially through the input delay line. After
B cycles (B can range from 8 to 16), each RAC unit loads (in parallel bit format) its output to
the output delay-line, and results can be shifted-out bit-serially again.

In practice, additional schemes may be used to reduce the size of the ROM tables or speed-up
the computations in the RAC array[6]. Furthermore, distributed arithmetic can also be used

4

Output

D

D

D D

D

DRAC-1

RAC-2

RAC-8

Bit Distributer

ACC

ROM

SHIFT

RAC: ROM Accumulator

Input

Fig. 2: Block diagram of an 8x8 DCT processor using distributed arithmetic.

on butterfly-based DCT algorithms[7]. An example of an image codec that uses a distributed
implementation of the DCT is presented by Aono et al. in[9].

2.2 8x8 DCT Using Parallel Multipliers

A number of image compression ICs incorporate multiple on-chip multiply-accumulate units
(usually four)[5]. These are used for computing the DCT, data format conversions, quantiza-
tion, and other operations. The number of on-chip multiplier-accumulate units is heavily
dependent on the technology and chip-size constraints. However, four-level parallelism is
efficient in many algorithms used in data compression, and especially for the fast implemen-
tation of the 8-point DCT.

Let u(k, m) = x(k, m) + x(k, N − m + 1) andv(k, m) = x(k, m) − x(k, N − m + 1), then

y(k, l) = u(k)t c(l) , l = 1, 3, . . . ,N − 1 (8a)
y(k, l) = v(k)t c(l), l = 2, 4, . . . ,N (8b)

Equation (8) represents the first stage of a decimation in time N-point DCT. From (8), after
some preprocessing of the input data (evaluatingu andv), an 8-point DCT can be computed
using two 4-point DCTs. By definition of the 4-point DCT, even brute-force evaluation does
not require more than four multiply-accumulate operations per output sample. Hence, by
executing these four operations in parallel, an output sample can be available in each cycle.
In practice of course, one can also use fast DCT algorithms that require fewer multiply-
accumulate operations.

5

3. Implementation of Motion Estimators
In block-based motion compensated prediction, a frame is divided into blocks. For each
block (called thereferenceblock) we search the previous frame for the block that best
matches the reference block. This process is commonly referred to as motion estimation.
The search is done in a rectangular area (calledsearch window) around the position of the
reference block. Typical search windows are 16x16 pixels wider than the reference window
(commonly denoted as a [-8,7] search).

Let x(k, l) denote a pixel from the reference block andy(k, l) denote a pixel from the search
block. Under the Mean Absolute Error Criterion, the distortion between twoMxN blocks is
defined as

D(i , j) =
M

m=1
Σ

N

n=1
Σ |x(m, n) − y(m + i , n + j)| , (9)

where (i , j) denotes the position ofy (or candidate) block relative to the reference block.
From (9), for 8x8 blocks, evaluatingD(i , j) requires 64x2 loads, 64x3 math operations (one
subtract, one absolute value, and one add), and one store, for a total of 321 operations per
block. A Y (Luminance) CIF (352x288) frame has 396 16x16 blocks. Hence, at 30 frames
per second, a full [-8,7] motion estimation search (256 total distortion values) requires 396 x
321 x 256 x 30 = 976 million operations per second (MOPS). These numbers do not even
include the operations to find the minimum among all the distortion values.

Because of the enormous computation required for motion estimation, all video compression
ICs use special (internal or external) motion estimation units. Since (9) has no multiply oper-
ations, a common approach is to design a systolic array, where each element of the systolic
array evaluates the operationa + |b − c|. For example, Fig. 3 shows a block diagram of a
motion estimator IC (STI3220) provided by SGS-Thomson[10].

The design has an 128-element systolic array plus a special unit for computing the minimum
distortion. Each element of the systolic array has memory to compute two distortion values.
For efficient I/O, this IC has four input ports: three for the search window and one for the ref-
erence block.

However, the number of elements in the array can be significantly reduced if one takes into
account that each pixel of the search window is used in computing distortion values in multi-
ple sub-windows. For example, for a 16x16 reference block, and a [-8,7] search window,
each pixel of the search window is used in the computation of 16 distortion values[11]. Yang
et al. [11] showed that in this case only 16 processors are needed for 100% processor utiliza-
tion. Fig. 4 shows a block diagram of the motion estimator design proposed by Yang et al.
The x input provides the reference block, while they1 andy2 inputs provide pixels from the
search window. For example, at time 16,x = x(1, 0), y1 = y(1, 0) andy2 = y(0, 16). PE-0
computes x(1, 0)− y(1, 0), PE-2 computesx(0, 15)− y(0, 16), and PE-15 computes
x(0, 1)− y(0. 16). All data input is completed in 16x16+15 cycles. The data input operation
is followed by the comparison operation, where a tree-based comparator computes the mini-
mum distortion value. The processor design (PE-0 to PE-15) is the same with the one shown
in Fig. 3 for the SGS-Thomson IC.

This architecture provides pel-level motion-vector accuracy. For subpel-level accuracy, mul-
tiple units can be cascaded and operate in parallel[12].

6

Processing Element

128 Processing

Elements and RAM (Search Window)

INPUT

INPUT
(Reference Block)

Unit

Comp.

Min

Vector and Min. Distortion

Address

ADD |x-y| MUXRAM Y

X

Fig. 3: Block diagram of the SGS-Thomson motion estimator IC.

y1,y2 : Search window pixels

PE-0

PE-1

PE-2

PE-15

D

D

D

Mux

Mux

Mux

Comparator

x
y1

y2

x: Reference Block

Fig. 4: Block diagram of a 16-processor motion estimator.

4. Hardware for Variable Length Coding

Variable length coding (VLC) and run length encoding (RLE) are used in the image compres-
sion standards for the lossless compression of the quantized DCT coefficients. Variable
length coders (like Huffman) assign short codewords to input symbols of high probability.

7

Coding is usually done via look-up tables that map an input source symbol to a codeword.
Decoding can be done by tracing bit-serially a decoding tree. Fig. 5 shows a simple coding

0

1

1

0

0

1

0 0

0 1

1 0

1 1

CODER

1 1 1

DECODER

0 0

0 1

1 0

1 1

0

1 0

1 1 0

Fig. 5: Example for VLC coding table and decoding tree.

table and the corresponding decoding tree for 2-bit data symbols.

4.1 The Entropy Coder

The task of the VLC encoder is to map the input data into codewords of variable-length, con-
catenate them together, and segment them into 16-bit output words. Recently, Lei et al.[13]

proposed a hardware implementation that uses parallel operations to perform these operations

BARREL SHIFTER

MUXUP. REGL. REG.

DATA

ADDER

LENGTH

INPUT

CODEWORD

VLC TABLES

Fig. 6: Block diagram of a VLC encoder.

in one cycle. Fig. 6 shows a simplified block diagram of their design.

The VLC tables map input data into variable-length codewords. Codewords are concatenated
in the upper register into 16-bit words using a shift-and-or operation. A four-bit adder keeps
track of the length of the concatenated codeword and controls the shifts of the barrel-shifter.
When the value of the accumulator is bigger than 15, the upper register outputs its content
and the lower register is shifted to the upper register.

8

Fig. 7 shows an example of the operation of the VLC coder for a given codebook and the

b 01

d 101

c 100

e 110

g 11110

f 1110

Codebook:
2

7

9

11

15

2

4

Input

b

g

a

f

e

b

a

a 00

1x16 +

0 1 1 1 1 1 0

0 1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0 0 0 0

0 1 1 1 1 1 0 0 0 0 0 1 1 1 0

0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0

0 1

1 0 0 1

0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1

Upper Register

Output

Register

Lower

Adder

Fig. 7: Example of operation of the VLC encoder.

sequence: "b", "g", ..., "b". After the first input, "b", the adder is incremented by two, the
length of the corresponding codeword output (01). The next output from the VLC table,
11110, is shifted by two bits and is appended to the prior codeword. The adder is incre-
mented by five. After the input symbol "e", the adder overflows. The carry-out bit of the
adder triggers an output of the data stored in the upper register and the content of the lower
register (10) is loaded into the upper register. Then, operation continues as before.

4.2 Design of a VLC Decoder

A parallel VLC decoder is very similar to the encoder. As shown in Fig. 8, it consists again
of VLC tables, a barrel shifter, two data registers (upper and lower), and a 4-bit adder. The
adder keeps now track of the accumulated decoded length and shifts appropriately the com-
bined output of the two registers. When a codeword is matched, the VLC table outputs the
decoded symbol and its length. When the 4-bit adder overflows, the content of the lower reg-
ister is transferred to the upper register and a new 16-bit segment is input to the lower regis-
ter. This architecture allows us to decode one codeword per cycle, regardless of its length.
Fig. 9 shows an example of the operation of the VLC decoder for the same codebook and
encoded sequence we described in Fig. 7. The rectangle shows the position of the barrel-
shifter. Starting from top, a search for a match of the upper register with a codeword in the
codebook yields a match with "01" which corresponds to "b". The adder is incremented by
two, the "window" of the barrel shifter is shifted by two positions (the length of "b"), and a
new search yields a match with "g". The procedure is repeated until the adder overflows
(after "e"). Then the lower register is shifted to the upper register and a new input is loaded
into the lower register.

9

DECODED OUTPUT

UP. REG. L. REG.

BARREL SHIFTER

VLC TABLES

ADDER

INPUT

LENGTH

Fig. 8: Block diagram of a VLC decoder.

g

a

a

f

e

b

0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 b1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1

Barrel-Shifter

0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1

0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1

0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1

0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1

0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1

1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1

1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1

1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1

1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1

1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1

1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1

Upper Register Lower Register Code

Output

Fig. 9: Example of operation of the VLC decoder.

5. Summary and Conclusions
Compression standards like JPEG, Px64, and MPEG share a set of common and computa-
tionally intensive functions, namely, the 2-D DCT, motion estimation, and variable length
coding. For the 2-D DCT, most video processors use row column transformations, and either
a multiplier-free architecture based on distributed arithmetic, or a four-processor multiplier
array. The computational requirements of motion estimation can only be met by systolic-

10

type architectures. For an [-8, 7] search, a 16-processor array achieves 100% utilization of its
processors and provides computational power for real-time motion estimation. Finally, for
variable length coding, a simple architecture with VLC tables, a barrel shifter, two main reg-
isters, and a 4-bit adder can be used for VLC coding and decoding at a rate of one codeword
per cycle, regardless of the length of the codewords.

REFERENCES

1. JPEG-1 DIS Working Group 10, Draft International Standard, DIS 10918-1, CCITT Rec. T.81, Jan. 2,
1992.

2. Video Codec for Audiovisual Services atp x 64 Kbits/s. CCITT Recommendation H.261, CDM XV-R
37-E, International Telegraph and Telephone Consultive Committee (CCITT), Aug. 1990.

3. MPEG-1 CD, Working Group 11, Committee Draft ISO/IEC 11172, Intern. Standards Organization, IPSJ,
Tokyo, Dec. 6, 1991.

4. MPEG 2,Generic Coding of Moving Pictures and Associated Audio,ISO/IEC 13818-1,2,3.

5. K. Konstantinides and V. Bhaskaran, "Monolithic architectures for image processing and compression,"
IEEE Trans. on CG&A, Nov. 1992, pp. 75-86.

6. M. T. Sun, L. Wu and M.L. Liou, "A concurrent architecture for VLSI implementation of discrete cosine
transform," IEEE Trans. on Circuits and Systems, Vol. CAS-34, no. 8, Aug. 87, pp. 992-994.

7. S. Wolter, D. Birreck, and R. Laur, "Classification for 2D-DCTs and a new architecture with distributed
arithmetic," 1991 Intern. Symp. on Circuits and Systems, June 1991, Singapore, pp. 2204-7.

8. A. Peled and B. Liu, "A new hardware realization of digital filter," IEEE Trans. on ASSP, Vol. ASSP-22,
No. 6, Dec. 74, pp. 456-462.

9. K. Aono et al., "A video digital signal processor with a vector-pipeline architecture," IEEE J. Solid State
Circuits, Vol. 27, No. 12, Dec. 92, pp. 1886-1894.

10. O. Colavin, A. Artieri, J-F. Naviner, and R. Pacalet, "A dedicated circuit for real time motion estimation,"
Proc. Euro-ASIC ’91, pp. 96-99, Paris, France, 1991.

11. K-M Yang, M-T Sun, and L. Wu, "A family of VLSI designs for the motion compensation block-
matching algorithm," IEEE Trans. on Circuits and Systems, Vol. 36, No. 10, Oct. 89, pp. 1317-1325.

12. I. Tamitani et al., "An encoder decoder chip set for the MPEG video standard," Proc. IEEE ICASSP-92,
pp. V-661-664, 1992.

13. S-M. Lei et al., "VLSI implementation of an entropy coder and decoder for advanced TV applications,"
1990 IEEE Symp. on Circuits and Systems, Vol. 4, pp. 3030-3, 1990.

11

